
Analyzing the Tracing of Requirements and
Source Code during Software Development:

A Research Preview

Alexander Delater, Barbara Paech

Institute of Computer Science, University of Heidelberg
Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
{delater,paech}@informatik.uni-heidelberg.de

Abstract. [Context and motivation] Traceability links between re-
quirements and code are often created after development, which can,
for example, lead to higher development effort. To address this weak-
ness, we developed in previous work an approach that captures trace-
ability links between requirements and code as the development pro-
gresses by using artifacts from project management called work items.
[Question/problem] It is important to investigate empirically what is
the best way to capture such links and how these links are used during
development. [Principal ideas/results] In order to link requirements,
work items and code during development, we extended our approach
from previous work by defining three traceability link creation processes.
We are applying these processes in practice in a software development
project conducted with undergraduate students. The results indicate that
our approach creates correct traceability links between requirements and
code with high precision/recall during development, while developers
mainly used the third process to link work items after implementation.
Furthermore, the students used a subset of the created traceability links
for navigating between requirements and code during the early phase of
the development project. [Contribution] In this paper, we report on
preliminary empirical results from applying our approach in practice.

Keywords: trace, requirement, work item, code, software development

1 Introduction

Requirements-to-code traceability reflects the knowledge where requirements are
implemented in the code. The capture of such links during development is the
focus of recent research [6]. Asuncion & Taylor [1] presented an approach for cap-
turing links between heterogenous artifacts, including requirements and code, by
analyzing interactions of users while they create/generate or modify artifacts.
Omoronyia et al. [8] capture links between requirements and code based on the
operations carried out by developers creating code artifacts to realize require-
ments. In contrast to these approaches, we present an approach that captures
traceability links between requirements and code using artifacts from project
management called work items [3]. Practitioners have discussed the practice of

using work items to capture links between requirements and code, but to the
best of our knowledge there has been no systematic study of this practice [2].

However, surprising little is known about the quality (precision/recall) and
usage of requirements-to-code links during software development [6]. Asuncion
& Taylor and Omoronyia et al. did not provide empirical work in which they
showed the feasibility of their approaches in practice. Maeder & Egyed [5, 6]
report on the usage of such links during software maintenance. However, the
authors did not investigate how these links are used during development, as
software maintenance happens after development.

In this paper, we present preliminary research results from applying our ap-
proach [3] in practice. In order to do this, we extended our approach by defining
three traceability link creation processes linking requirements, work items and
code. We are applying these processes in practice in a software development
project conducted with undergraduate students. Based on the gathered data,
we are inferring direct traceability links between requirements and code using
work items. We are investigating the precision/recall of the inferred traceabil-
ity links between requirements and code as well as how often each process was
executed by the students. Furthermore, we are analyzing whether the students
actually use these direct links during the early phase of the development project
for navigating between requirements and code.

The remainder of this paper is structured as follows: Section 2 presents the
approach. Section 3 introduces the project context, while Section 4 reports on
our research questions and preliminary results. Section 5 discusses threats to
validity and Section 6 concludes the paper and discusses future work.

2 Approach

In [3], we defined a Traceability Information Model (TIM) consisting of arti-
facts from requirements engineering (features, functional requirements), project
management (work items, sprints, developers) and code (code files, revisions) as
well as the traceability links in between. A feature is realized in a sprint and is
detailed in one or more functional requirements. Work items describe work to
be done to realize functional requirements, are assigned to developers, have a
completion status and a due date. A work item must have one or more linked
functional requirements and is contained in a sprint. A feature can be related
to a work item, e.g. during bug fixing. One work item can create one or more
revisions. A revision contains one or more changed code files and is stored in a
version control system (VCS).

We presume the following situation in a development project. First, a list
of features and functional requirements exists. Second, a project manager has
planned the implementation of the features in sprints and s/he has broken down
the implementation schedule of the functional requirements into work items for
the developers. Third, all work items are already assigned to developers. Be-
low we use the term requirement to refer commonly to features and functional
requirements.

Our approach uses work items to link requirements and code during develop-
ment. As we presume that the implementation of the requirements is planned in
work items, we need to capture links between the work item and the code that is
created by its assigned developer. We identified three possibilities of developers
to select a work item that is related to their implemented code. Developers can
select a work item before they start the implementation of code (Process A),
during implementation when they have created code but have not yet stored
it in a VCS (Process B), or after implementation when they have created code
that is already stored in a VCS (Process C). All three processes are depicted in
Figure 1 and explained in the following.

Process C: Link Work Item After Implementation to Previously Created Revision

Process B: Select Work Item During Implementation

Process A: Select Work Item Before Implementation

Select
Work Item

Capture
Requirements

Implement
Code

Validate
Captured

Req. & Code

Link Captured
Requirements to

Selected
Work Item

Create
Revision in

VCS

Link Selected
Work Item to

Revision

Select Work
Item

Implement
Code

Create
Revision in

VCS

Link Selected
Work Item to

Revision

Select
Revision from

VCS

Select Work
Item

Link Selected
Work Item to

Revision

Legend
Activity Activity performed

in all processes Start End Split/Join of con-
current activities

Validate
Code

Fig. 1. Traceability Link Creation Processes A, B and C

Process A) Select Work Item Before Implementation: First, the devel-
oper selects a work item from his/her list of assigned work items. While working
on the work item and implementing new code or changing existing code, all
requirements the developer looks at during implementation are automatically
captured. For example, s/he may look at requirements to know what to im-
plement. When finishing the implementation of the work item, the developer is
asked to validate all captured requirements and new/changed code, which means
s/he confirms all related and removes all non-related requirements or code files.
The validated requirements are linked to the work item and the validated code
is stored in a new revision in the VCS, which is also linked to the work item.

Process B) Select Work Item During Implementation: In contrast to
Process A, in Process B a developer does not need to select a work item before
implementation. Instead, s/he starts directly with implementation. After the
implementation of code and before creating a new revision stored in the VCS,
the developer validates the new/changed code files and selects a work item from
his/her list of assigned work items. A new revision with the validated code files
is stored in the VCS and is automatically linked to the selected work item. In
this process, no requirements are captured and need to be validated.

It is important to note that Processes A and B do not force developers to
select a work item related to the current implementation. In case the developer
implemented code that s/he does not want to be linked to a work item, s/he can
omit the linking of a work item, which ends Processes A and B.

Process C) Link Work Item After Implementation to Previously Cre-
ated Revision: In contrast to Processes A and B, Process C occurs after im-
plementation and it represents an alternative way for the developer to link code
to a work item. A VCS stores a history of all previously created revisions with
information by whom and when each revision was created, as well as all changed
code files. In case a developer has implemented code without selecting a work
item before implementation (see Process A) or without selecting a work item
during implementation (see Process B), s/he can manually select to link a pre-
viously created revision to a work item from his/her assigned work items list.
Similar to Process B, no requirements are captured and validated.

A practitioner can perform a mixture of all three processes during the course
of the project. However, one of the processes can only be applied once per re-
vision. This means each revision in the VCS is either created (Process A,B) or
linked (Process C) by only one of the three processes.

Inferring Traceability Links Between Requirements and Code: The
created traceability links of Processes A, B and C are used to infer direct links
between requirements and code based on the corresponding work items. In [3],
we presented an algorithm for inferring links that is executed when the devel-
oper changes the completion status of a work item from assigned to done. The
algorithm connects in a brute force manner all linked requirements of a work
item with all the code files in the linked revisions of a work item. An in-depth
description of the algorithm can be found in [3].

UNICASE Trace Client: We implemented our approach in the tool UNI-
CASE Trace Client (UTC) [9]. It is an extension to the model-based CASE
tool UNICASE [10], which is a plug-in for Eclipse developed in an open-source
project. UTC integrates itself seamlessly in Eclipse and its supporting plug-ins,
e.g. Subversion (a commonly used VCS). UTC implements the TIM and all its
artifacts and traceability links as well as all three link creation processes.

3 Project Context

To evaluate our approach, we conduct a development project with undergraduate
students. In the following, we describe the development project and provide
information about the participants and the used development process.

Project Description: We are working together with a company from indus-
try specialized on mobile business applications. The company integrates existing
business applications into mobile applications for smartphones and tablet com-
puters. For the company, a knowledge database is developed containing user-
generated content as well as content retrieved from various Internet data sources
(e.g., Google Maps, Wikipedia). The people of the company have a great interest

in full traceability between requirements and code, because they want to main-
tain the developed application later on. Java and JavaScript were used as main
programming languages. The entire project will last for five months from Oc-
tober 2012 until February 2013. In this paper, we report on preliminary results
from the first phase (October 1st - November 8th, 2012) divided in two sprints.

Participants & Development Process: We recruited six undergraduate stu-
dents for our development team, all having basic knowledge in software engi-
neering. The team is applying agile software development techniques, e.g., they
hold regular stand-up meetings discussing completed work, planned work and
any problems preventing them to continue work. The development process is
as follows: in the beginning, the team elicits and specifies a first draft of the
requirements together with the company. In each sprint, the team details the re-
quirements and breaks them down into work items describing their realization.
They assign each work item to a developer and include it in a sprint. Thus, the
situation we presume is present in the project (see Section 2). In the current
state of the project, the team specified 3 features, 8 functional requirements and
implemented 32 code files with 1.573 lines of code in 81 revisions.

4 Research Questions & Preliminary Results

Based on the gathered data in the project consisting of requirements, work items
and code files stored as revisions in VCS, we are applying different analyses. Our
research is driven by three research questions (RQ) and the preliminary results
are presented in the following.

RQ1. What is the precision and recall of the inferred links? Precision
and recall are two standard metrics used in information retrieval [4]. Precision
is the fraction of retrieved instances that are relevant, while recall is the fraction
of relevant instances that are retrieved. In our case, ’relevant’ refers to a correct
traceability link, which is as a link between a requirement and its code where the
code is necessary to realize the requirement. The metrics are computed as:

P =
RelevantLinks ∩RetrievedLinks

RetrievedLinks
(1)

R =
RelevantLinks ∩RetrievedLinks

RelevantLinks
(2)

We manually identified all correct traceability links based on the requirements
and code. A total of 42 traceability links between requirements and code were
created, while 37 were correct, 5 were wrong and 8 correct links were missing.
Wrong traceability links are created when developers change and link code files
that are not particularly related to a work item. Missing correct links are created
where work items have been linked to the wrong requirement. Both situations
are potential causes of errors in our approach. Our approach achieved precision
of 0.881 and recall of 0.933. Results of this scale mean that our approach delivers
high quality links, which is comparable to manually performed linkage [7].

RQ2. What traceability link creation process do developers use? This
RQ is focusing on how often each process was used to link requirements, work

items and code in the first place. The team executed all three processes a total
of 81 times (Process A = 5, Process B = 23, Process C = 53). Thus, in 65% of
the cases, the team implemented the code first and then linked it to work items
(Process C). However, the students behaved differently during the development
project. While some students mainly used Process B, others mostly used Process
C. Since the requirements are not final and detailed in each sprint, the students
only used Process A a few times to look at requirements during development.

RQ3. Do developers use the created links to navigate between re-
quirements and code in the early phases of software development?
Each inferred link between a requirement and a code file had a boolean at-
tribute used (default value = false). When a developer clicked on the link and
”used” it for navigation, the value was set to true. Although the project is still
in an early phase, developers already used 9 links of the 42 created links for nav-
igation between requirements and code, or vice versa. We think that the usage
will increase in the later phases of the project.

5 Threats to Validity

From the very beginning of the project, we are striving to avoid external and
internal threats to validity.

External Validity: In the development project, all undergraduate students
had basic knowledge in software engineering. However, no undergraduate stu-
dent had industrial experience. This does not allow us to draw conclusions for
more experienced developers. In addition, Java and JavaScript were used as
programming languages. Even though we do not expect this, effects might be
different for other programming languages. The authors of this paper gave ad-
vice to the students during the project and made sure that they used UTC. The
students might behaved differently if they did not have to use UTC.

Internal Validity: To decrease variability in knowledge across students regard-
ing the tracing of requirements and code in UTC, we provided an introductory
tutorial of UTC [9]. This ensured that all students knew how to use UTC.

6 Conclusion & Future Work

In this paper, we presented three traceability link creation processes linking
requirements, work items and code. We presented preliminary results from ap-
plying our approach in practice in a development project conducted with under-
graduate students. A finding of our results is that developers mainly link work
items after implementation to previously created revisions. Our approach creates
correct traceability links with high quality during development. In the current
early project state, developers already used 9 of 42 created links to navigate
between requirements and code.

Once the state of the project has further progressed, we want to deepen
our analyses for the research questions in future work. Regarding RQ1, we will
study the evolution of precision and recall of the traceability links, whether
they increase or decrease over time. Furthermore, we want to apply existing
approaches for automatically linking requirements and code and compare the
results with respect to precision and recall to the links created by our approach
in the project. To support comparison between the approaches and their results,
we will consider the metrics F2-Measure and MAP (Mean Average Precision),
combining precision and recall into a single score. For RQ2, we will investigate
how the usage of the three traceability link creation processes changes over the
course of the project. With regard to RQ3, we will investigate whether developers
use the traceability links in later phases of the project for navigation between
requirements and code. Additionally, we want to perform more analyses on the
gathered data, e.g., how many work items were assigned to each developer, or
the minimum/maximum and average amount of lines of code traced per process.

Acknowledgment. The authors would like to thank the company for providing
the opportunity for this project, the students for their participation as well as
Ulrike Abelein and Florian Flatow for their help in organizing the project.

References

1. Asuncion, H. and Taylor, R.: Automated techniques for capturing custom trace-
ability links across heterogeneous artifacts. In Software and Systems Traceability,
Cleland-Huang, J., Gotel, O., and Zisman, A. (Eds.), Springer, pp. 129-146 (2012)

2. Cleland-Huang, J.: Traceability in agile projects. In Software and Systems Trace-
ability, Cleland-Huang, J., Gotel, O., and Zisman, A. (Eds.), Springer, pp. 265-275
(2012)

3. Delater, A., Narayan, N., and Paech, B.: Tracing Requirements and Source Code
during Software Development. In ICSEA’12: Proceedings of the 7th International
Conference on Software Engineering Advances, pp. 274-282 (2012)

4. Frakes, W.B. and Baeze-Yates, R. (Eds.): Information Retrieval: Data Structures
and Algorithms. Prentice-Hall (1992)

5. Maeder, P. and Egyed, A.: Do software engineers benefit from source code nav-
igation with traceability? - An experiment in software change management. In
ASE’11: Proceedings of the 26th International Conference on Automated Software
Engineering, pp. 444-447 (2011)

6. Maeder, P. and Egyed, A.: Assessing the effect of requirements traceability for soft-
ware maintenance. In ICSM’12: Proceedings of the 28th International Conference
on Software Maintenance, pp. 171-180 (2012)

7. Maeder, P. and Gotel, O.: Ready-to-use Traceability on Evolving Projects. In
Software and Systems Traceability, Cleland-Huang, J., Gotel, O., and Zisman, A.
(Eds.), Springer, pp. 173-194 (2012)

8. Omoronyia, I., Sindre, G., Roper, M., Ferguson, J., and Wood, M.: Use case to
source code traceability: The developer navigation viewpoint. In RE’09: Proceed-
ings of the 17th International Requirements Engineering Conference, pp. 237-242
(2009)

9. UNICASE Trace Client, http://code.google.com/p/unicase/wiki/TraceClient
10. UNICASE, http://www.unicase.org/

