

©2013 IEEE. Reprinted, with permission, from Hesse TM, Paech B, Supporting
the Collaborative Development of Requirements and Architecture Documen-
tation, Proceedings of the 3rd International Workshop on the Twin Peaks of
Requirements and Architecture (TwinPeaks'13), Rio de Janeiro (Brazil), July
16th, 2013, pp. 22-26.

This material is posted here with permission of the IEEE. Such permission of the
IEEE does not in any way imply IEEE endorsement of any of the University of
Heidelberg's products or services. Internal or personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution must be obtained from the IEEE by writing to pubs-
permissions@ieee.org. By choosing to view this document, you agree to all
provisions of the copyright laws protecting it.

Supporting the Collaborative Development of
Requirements and Architecture Documentation

Tom-Michael Hesse
Institute of Computer Science

University of Heidelberg
Im Neuenheimer Feld 326, 69120 Heidelberg, Germany

hesse@informatik.uni-heidelberg.de

Barbara Paech
Institute of Computer Science

University of Heidelberg
Im Neuenheimer Feld 326, 69120 Heidelberg, Germany

paech@informatik.uni-heidelberg.de

Abstract—In most software projects, particular requirements
significantly drive the design of the software architecture by
forcing architectural decisions to be made. As requirements and
architecture are refined iteratively, their extensions and
improvements need to be aligned continuously. Much research
has been conducted to identify such requirements and their
impact on architecture. However, it remains a problem how to
collaboratively document such requirements and architectural
knowledge under development. In particular, knowledge of
architectural decisions such as assumptions or alternatives for
the system erodes over time and can even vaporize completely. A
major reason is the inability to easily manage informality and
complexity of knowledge when performing both requirements
engineering and architecture design. Therefore, we propose a
documentation model for decisions supporting the intertwined
documentation of related requirements and architecture
knowledge. It provides documentation elements, which are
common to both disciplines. In order to support refinement in
documentation, knowledge can be iteratively accumulated at
different levels of granularity. So the model fits to the twin peaks
model of requirements and architecture. In consequence, the
comprehension and collaboration between requirements
engineers and system architects is improved by negotiating and
refining the same documentation together in an ongoing process.
We apply our approach to an example in order to demonstrate
that it is applicable and useful for managing architectural
decision knowledge in relation to the grounding requirements.

Index Terms—Architecturally significant requirements,
architectural design decisions, knowledge model, decision
documentation

I. INTRODUCTION

It is widely acknowledged that in software development
projects particular requirements drive the systems’
architecture. Due to this impact on the software architecture
they are called architecturally significant requirements (ASRs)
[7]. As the architecture of software can be seen as a set of
design decisions [11], architectural design decisions (ADDs)
are made to tackle these ASRs. Such ADDs related to ASRs
are extremely relevant for the architecture, as they define and
explain architectural structures with their origin in particular
requirements. We will call all knowledge being or concerning
ASRs and ADDs decision knowledge in the remainder of this
paper.

However, often ASRs are overlooked in the beginning of a
project [7] and hints uncovering them are not well
documented. Especially in early project stages, requirements
and architecture are expressed highly informal [19]. In
consequence, also the decision knowledge tends to remain
implicit. This informality eventually leads to a loss of decision
knowledge, when requirements and architecture evolve. So
vague or changing ASRs might be not reflected in the
architecture, what results in high costs for later changes [7].
This informality raises the need for a documentation structure,
which allows refining given information incrementally. This is
the first requirement for our approaches.

Besides informality, another reason hindering the creation,
management and use of decision knowledge is the attitude to
think of requirements and software architecture as two
different and separated kinds of knowledge. As pointed out in
[3], such a distinction is arbitrarily and should be avoided. But
current approaches either focus on offering models and
methods for documenting requirements or for documenting
architectural knowledge. Many approaches consider linking
both fields, but they do not represent all decision knowledge in
a common model for an overall view. So the documentation
gap between requirements engineers (REs) and software
architects (SAs) is not bridged sufficiently and communication
remains being hindered. Hence, a documentation approach is
needed, which aims at actively supporting both REs and SAs.
Moreover, an explicit and flexible representation for
requirements should be given. Those are requirements two and
three for the presented approach.

In summary, the first problem is that vague and changing
ASRs are not well documented that prevents the architecture
from being kept aligned to those requirements. Here, we
expect incrementally refined documentation to preserve such
knowledge and raise awareness for the alignment. The second
problem is that the corresponding ADDs are treated separately
from requirements, so that the REs cannot understand them
easily and might not be aware of the impact of changing
requirements. This is also true for the SAs comprehension of
ASRs. So the documentation should address both REs and
SAs and provide an explicit representation for requirements,
which is applicable by both groups.

978-1-4799-0962-9/13/$31.00 c© 2013 IEEE TwinPeaks 2013, Rio de Janeiro, Brasil22

The remainder of the paper is structured as follows. In
Section 2 we present major parts of the model in detail and
give a practice example, in Section 3 we outline the benefits of
the model, Section 4 gives a short overview of related work
and Section 5 concludes the paper.

II. THE DOCUMENTATION MODEL

We tackle the problems presented in Section 1 by
providing a documentation model for decision knowledge.
This model implements the abovementioned requirements and
can serve as high-level structure for documenting decision
knowledge. Essential parts of the model are depicted in Figure
1. However, the presentation of the full model would exceed
the limits of this paper.

In order to provide a better understanding for the model
elements, we instantiated them with a practice example. The
example decision was taken from [1] and originated from an
insurance company. We enriched the example with additional
information in order to use all presented model elements. A
graphical representation of the example can be found in Figure
2. In the following numbers in brackets refer to an element
depicted in this figure.

The example deals with the decision to implement an
automated risk approval in an insurance company due to
changed internal policies. In addition, it is implicitly stated
that the policy change was made because users often had
trouble with manual approvals.

This information is elicited and documented by the RE in
the first iteration. As a key element, the DecisionStatement (1)
is employed to represent the decision made with all
administrative information needed such as the status of

decision progress and implementation. It may depend on other
DecisionStatements (via the dependsOn-relation) and can
contain any number of DecisionComponents, which represent
knowledge related to the decision. Each DecisionComponent
can contain further DecisionComponents itself and may be
linked to other knowledge elements by the concerns-relation,
if necessary. DecisionComponent is the parent class for all
knowledge elements describing the decision more in detail.
The children can be grouped in three categories: they may
describe the problem or solution of the decision (via Question
and Solution), the decision context and rationales (via
Argument).

Going back to the example, the RE uses a Constraint (2) to
describe the additional policy constraint in the environment of
the decision. Moreover an Assumption (3) is nested in this
constraint to explain expected reasons for the constraint and
outline its importance. Both elements inherit from the Context
class which represents knowledge about the environment of
decisions and their components. Such context information can
drive questions via the isBoundTo-relation. Moreover, context
knowledge can serve as a criterion for the evaluation of
solutions, what is indicated by the isAssessedBy-relation.

In the second iteration, the SA makes a solution proposal,
reminds of possible negative effects for the system and asks
whether law regulations might influence the pending decision.
Therefore, a Solution (4) is used to express that the account
management server of the company is extended by an
automated approval module. In addition, an Argument (5) is
added to this solution with an attacks-relation. Arguments
allow providing explicit rationale for decision knowledge;
they can support, attack or comment any part of the decision
knowledge. They are also used as an attachment to the
resolves-relation in order to explain why a particular solution
was chosen. The SA employs the Question (6) to state his
uncertainty towards law restrictions on solutions for an
automated risk approval. Questions can be applied for any
knowledge that might pose a challenge or raise a discussion on
the decision.

In the third iteration, the RE has discussed the question
with the customer and identified the laws concerned by the
solution. So the RE adds an Argument (7) commenting the
question in order to explain that automated approvals not Fig. 2. Typical Elements of the Decision Documentation Model

Fig. 1. The Model Applied on Deciding an Automated Risk Approval

23

exceeding 10k$ are permitted. Moreover, the RE states an
Alternative (8) to cope with the restrictions on the automated
approval. Instead of managing all approvals on the server
automatically, approvals above 10k$ are handed over to the
client program. Then, the user can make the final decision on
the approval. So an Alternative is a refinement of solutions
showing different solution options and their characteristics.
Finally, the RE adds an Argument (9) with the supports-
relation motivating the solution by outlining the advantages
for the users.

The requirement in the example turns out to be
architecturally significant according to [7]. It is strictly
enforced by the internal policy change. It also influences the
principal architecture of the system. The risk approval will be
realized by adapting the architecture of the account
management server. Moreover, a communication channel to
the client has to be established, since risks beyond 10k$ need
to be approved manually by the user.

The full documentation model contains many additional
knowledge elements for a more fine-grained representation of
Question/Solution-, Context- and Argument-elements. But the
core elements presented in this paper are sufficient to give an
impression of the model and to demonstrate its practical use. It
should be noted, that none of the elements is dedicated to be
exclusively used by REs or SAs. Grouping the elements along
their primary use to represent a question, a solution, context or
rationale, shall improve the readability and comprehension of
the knowledge elements in the figures. But we encourage the
usage of all elements by both REs and SAs, whenever the
elements fit to the given knowledge. So REs may state
solutions like the Alternative in (8), as well as SAs are free to
raise questions, as shown in (6).

III. BENEFITS FOR ASR AND ADD MANAGEMENT

In contrast to the current approaches, our documentation
model realizes all requirements introduced in Section 1. First,
it supports a continuous refinement of knowledge due to the
ability to nest DecisionComponents iteratively. Second,
because there is no border between the problem and the
solution description, the documentation model elements are
applicable for expressing requirements and architecture. As a
result, REs and SAs are supported in continuously negotiating
the documentation and collaborating with each other. We will
discuss these benefits with respect to the given example.

A. CONTINUOUS REFINEMENT OF DECISION KNOWLEDGE

The documentation model allows documenting decision
knowledge in an iterative and continuous fashion. The seed for
documentation is the DecisionStatement, which has a high-
level granularity and serves as reminder for the decision by
summarizing it. This knowledge could be important for project
managers to get a quick overview of the state of requirements
and architecture design.

The more elements are added to the documentation, the
more fine-grained and specific the knowledge elements will
become. An example is the Solution and its refinement
Alternative. Such information can be helpful to SAs being
interested in getting to know the latest technical changes. So

the hierarchy of knowledge elements represents different
levels of granularity.

Through the refinements in the model any information that
is recognized as important can be documented, but
documentation is not enforced by a static template. None of
the knowledge elements presented in Section 2 is mandatory
for documentation. So documentation can be focused on the
information that matters in a particular context or that is
currently present. Hopefully, this decreases the barrier for
documenting decision knowledge. In consequence, it is likely
that loosing valuable knowledge during the beginning of
requirements engineering and architecture design is prevented,
because more knowledge is documented explicitly.

Such an iterative documentation approach fits well to the
Twin Peaks model, as depicted in Figure 3. Our model
contributes to the Twin Peaks model by distinguishing
problems and solutions, context and rationales within each of
the two peaks. But it does not introduce a border between
requirements and architecture, as shown by the refinement
iterations of the example. Starting with elements 1 – 3, the RE
initially provides decision knowledge about the ASR, which is
refined from the SA with his corresponding ADD knowledge
in elements 4 – 6. As a reaction of the RE, elements 7 – 9 are
documented further refining the decision knowledge.

In addition, this refinement helps to tackle the issue of an
explicit management of assumptions on ASRs, as mentioned
in [7]. We present assumptions as first class entities in our
model, so that assumptions can attract more attention in
documentation activities. In addition, we explicitly provide
assumptions in requirements documentation, as they can
represent and be related to requirements in our model.

B. CONTINUOUS NEGOTIATION AND COLLABORATION BETWEEN

RES AND SAS

Iteratively documenting decision knowledge with our
documentation model can help establishing continuous
negotiation and collaboration between REs and SAs. Both
groups can access and use the same documentation structures.
This lowers communication barriers between REs and SAs.
Working on the same knowledge will increase the negotiation

Fig. 3. The Process of Documenting the Automated Risk Approval Mapped
to the Twin Peaks Model

24

processes towards the stored information and their impact on
the system. In this way, vague knowledge about requirements
is likely to be identified and consolidated faster. We expect
this to increase the possibility of having those requirements
documented properly that will turn out to be architecturally
significant later on.

The negotiation process requires an increased
collaboration between REs and SAs. In order to raise
awareness for each other [7], the documentation model can
serve as a mediator and bring REs and SAs together. On the
one hand, the SAs can comprehend the development of
requirements, so they can keep their architecture aligned in the
resulting ADDs. On the other hand, REs can benefit from
questions and solutions introduced by SAs, as they get a better
understanding for the impact of the requirements on the
system.

IV. RELATED WORK

Our documentation model was inspired by representations
for design rationale, such as Questions, Options, and Criteria
(QOC) by MacLean et al. [14] and the Decision
Representation Language (DRL) by Lee [13]. The main
differences are the explicit and fine-grained modeling of
context knowledge and the ability to nest and refine all
components of a decision. Moreover, we consider the decision
documentation process to be collaborative between different
project roles. These aspects also distinguish our model from
the specifications in ISO 42010:2011 standard [10]. The
standard describes the documentation needs for architectural
knowledge, but does not explicitly provide a structure that
supports such documentation approaches or collaboration
between different stakeholders.

Several approaches exist to support the documentation of
ADDs. In Table 1, we present an overview of typical
approaches. Many of them were introduced either at the
Quality of Software Architectures (QoSA) conference or the
Workshop on Sharing and Reusing Architectural Knowledge
(SHARK). For each approach, we investigated to what degree
the requirements stated in Section 1 are realized.

Most approaches for documenting architectural design
decisions address SAs only. The approach of Burge and
Brown RATSpeak with its tool SEURAT focuses on software
developers. The approaches of Herold et al. and Mou and
Ratiu consider REs explicitly, but lack support for knowledge
refinement. Here, our model presents a new approach of
documentation, as it takes REs and SAs into account and also
provides support for iterative knowledge refinement driven by
both roles.

All approaches support the documentation of requirements
in different ways. First, RATSpeak/SEURAT, the approach of
Tang et al. and Whalen et al. consider requirements implicitly
as a part of other knowledge elements, for example in decision
rationales, decision motivation or constraints. Second,
requirements are represented as attributes of decisions or as
links from decisions to requirement artifacts, such as use case
description documents. This is done by most approaches, like
Archium by Jansen and Bosch, Tyree and Akerman, Kruchten
et al. or Capilla et al.. Third, requirements are represented as

first-class entity, like in the approach of Falessi et al., PAKME
by Babar et al. and Herold et al.; Mou and Ratiu even
introduce a formal requirements model in order to
automatically transform requirements knowledge into test
cases. We decided to implement a hybrid approach by making
requirements and their subtypes assumptions and constraints
first-class entities with the Context element and its subclasses.
In addition, external requirements artifacts can be linked to the
Context. This increases the flexibility in documentation,
because all related knowledge can be made available in the
model, according to its type. Moreover, the requirements
remain explicit and are not hidden in textual descriptions of
other elements.

TABLE I. TYPICAL DOCUMENTATION APPROACHES FOR ADDS

Approach Roles Representation of
Requirements

Knowledge
Refinement

RATSpeak [4],
SEURAT [5]

Dev. Implicit: Part of rationale Nested decisions
and alternatives

Archium [11] SA Decision attribute:
context

Decisions refine
other decisions

TyreeAkerman
[16]

SA Decision attribute:
Related Requirements

Decisions refine
other decisions

Falessi et al. [8] SA First-class entity:
objective

Static refinement
process

Kruchten et al.
[12]

SA Links to requirement
documents

Mandatory
attributes

PAKME [2] SA First-class entity: ASR Nested rationales
Capilla et al.
[6]

SA Decision attribute:
Requirements; Links to
requirements documents

Mandatory and
optional attributes

Herold et al. [9] RE,
SA

First-class entity: Goal,
softgoal, task

None

Tang et al. [16] SA Implicit: Part of decision
motivation

Element
specialization;
nested reasons,
rationales and
outcomes

Zimmermann et
al. [20]

SA Decision attribute:
Decision drivers

None

Mou and Ratiu
[15]

RE,
SA

Formal requirements
model

None

Whalen et al.
[19]

SA Implicit: Part of formal
architecture constraints

Hierarchy
extension

The ability to refine documented knowledge is realized in
many different ways, depending on the principles of each
approach. The proposals of Herold et al., Zimmermann et al.
and Mou and Ratiu do not explicitly consider a refinement
process for their documentation. The approaches
RATSpeak/SEURAT, PAKME and the approach by Tang et
al. employ the nesting of knowledge elements. The approach
by Tyree and Akerman and Archium introduce dedicated
relations for ADDs in order to express that they refine other
decisions. Kruchten et al. and Capilla et al. introduce a set of
mandatory attributes for decisions, which have to be set.
Optional and user-defined attributes can be added to extend
and refine the decision knowledge. Falessi et al. define a static
refinement process for their model in order to derive the
model elements, but they do not specify how to refine a given
element. Tang et al. propose several specializations of high-
level model elements, whereas Whalen et al. introduce a
hierarchal structure where elements may be added on different

25

levels. Our approach focuses on the refinement of knowledge
through nesting these elements and using specialized model
elements. Instead of limiting the nesting to particular elements
in our model every DecisionComponent may contain other
components. So the documentation for all decision elements
can be extended iteratively and the documentation process is
not restricted by arbitrary model constraints.

V. CONCLUSION

In this position paper, we have introduced a decision
documentation model supporting the collaborative
development of documented requirements and architectural
knowledge. Decision knowledge can be stored in different
knowledge elements that can be nested and specialized as
needed. Our model provides two major benefits for the
documentation of decision knowledge resulting from ASRs.
First, an iterative refinement of knowledge is supported
through the nested model elements. In addition, the hierarchy
of specialized knowledge elements represents different levels
of granularity for the decision knowledge. Second, our model
supports the collaboration between REs and SAs, as the model
does not distinguish knowledge to belong exclusively to one
of both roles. This increases negotiation and collaboration
processes between REs and SAs and helps to create an
intertwined comprehension of requirements and architecture.
Overall, vague and changing requirements knowledge can be
identified faster, as both REs and SAs negotiate and refine the
same documentation. This leads to a better alignment of the
corresponding architectural design decisions.

We are currently working on the implementation of this
model in UNICASE [18], which is a knowledge management
tool integrating project and system knowledge directly in the
Eclipse IDE. We aim at providing tool support for decision
knowledge documentation as close to software design and
development as possible. We expect our model to be useful for
any software project that faces the need for explicit
documentation of ASRs and ADDs. However, it should be
noted that the model was not yet evaluated within real world
case studies. We strive to present such evaluation of our model
as soon as we have collected data from practice use through
the tool support.

ACKNOWLEDGMENT

This work was partially supported by the DFG (German
Research Foundation) under the Priority Programme
SPP1593: Design For Future – Managed Software Evolution.

REFERENCES
[1] U. Abelein and B. Paech, “A Descriptive Classification for End User -

Relevant Decisions of Large-Scale IT Projects” in 6th International
Workshop on Cooperative and Human Aspects of Software Engineering
(CHASE’13: ICSE Workshops 2013), accepted to appear.

[2] M. A. Babar and I. Gorton, “A Tool for Managing Software Architecture
Knowledge” in Second Workshop on Sharing and Reusing Architectural

Knowledge - Architecture, Rationale, and Design Intent
(SHARK/ADI’07: ICSE Workshops 2007).

[3] R. C. de Boer and H. van Vliet, “On the similarity between requirements
and architecture” in Journal of Systems and Software, vol. 82, no. 3, pp.
544–550, 2009.

[4] J. E. Burge and D. C. Brown, “An Integrated Approach for Software
Design Checking Using Design Rationale” in Proceedings of the First
International Conference of Design Computing and Cognition, pp. 557–
576, 2004.

[5] J. E. Burge and D. C. Brown, “Software Engineering Using RATionale”
in Journal of Systems and Software, vol. 81, no. 3, pp. 395–413, 2008.

[6] R. Capilla, F. Nava, and J. C. Duenas, “Modeling and Documenting the
Evolution of Architectural Design Decisions” in Second Workshop on
Sharing and Reusing Architectural Knowledge - Architecture, Rationale,
and Design Intent (SHARK/ADI’07: ICSE Workshops 2007).

[7] L. Chen, M. Ali Babar, and B. Nuseibeh, “Characterizing
Architecturally Significant Requirements” in IEEE Software, vol. 30, no.
2, pp. 38–45, 2013.

[8] D. Falessi, G. Cantone, and M. Becker, “Documenting Design Decision
Rationale to Improve Individual and Team Design Decision Making: An
Experimental Evaluation” in Proceedings of the 2006 ACM/IEEE
International Symposium on Empirical Software Engineering (ISESE
’06), pp. 134–143, 2006.

[9] S. Herold, A. Metzger, A. Rausch, and H. Stallbaum, “Towards
Bridging the Gap between Goal-Oriented Requirements Engineering and
Compositional Architecture Development” in Second Workshop on
Sharing and Reusing Architectural Knowledge - Architecture, Rationale,
and Design Intent (SHARK/ADI’07: ICSE Workshops 2007).

[10] International Organization for Standardization, International
Electrotechnical Commission, “ISO/IEC/IEEE 42010: Systems and
software engineering — Architecture description”, Genf, CH, 2011.

[11] A. Jansen and J. Bosch, “Software Architecture as a Set of Architectural
Design Decisions” in 5th Working IEEE/IFIP Conference on Software
Architecture (WICSA’05), pp. 109–120, 2005.

[12] P. Kruchten, P. Lago, and H. Van Vliet, “Building Up and Reasoning
About Architectural Knowledge” in Second International Conference on
Quality of Software Architectures (QoSA), pp. 43–58, 2006.

[13] J. Lee, “Extending the Potts and Bruns Model for Recording Design
Rationale” in 13th International Conference on Software Engineering
(ICSE), pp. 114–125, 1991.

[14] A. MacLean, R. M. Young, M. E. Victoria and T.P. Moran, “Questions,
Options, and Criteria: Elements of Design Space Analysis”, in Human-
Computer Interaction, vol. 6, no. 3–4, pp. 201–250, 1991.

[15] D. Mou and D. Ratiu, “Binding Requirements and Component
Architecture by Using Model-Based Test-Driven Development” in First
IEEE International Workshop on the Twin Peaks of Requirements and
Architecture (TwinPeaks), pp. 27–30, 2012.

[16] A. Tang, J. Han, and R. Vasa, “Software Architecture Design
Reasoning: A Case for Improved Methodology Support” in IEEE
Software, vol. 26, no. 2, pp. 43–49, 2009.

[17] J. Tyree and A. Akerman, “Architecture Decisions: Demystifying
Architecture” in IEEE Software, vol. 22, no. 2, pp. 19–27, 2005.

[18] UNICASE, http://www.unicase.org/ (retrieved: June, 2013)

[19] M. W. Whalen, A. Murugesan, and M. P. E. Heimdahl, “Your What is
My How: Why Requirements and Architectural Design Should Be
Iterative” in First IEEE International Workshop on the Twin Peaks of
Requirements and Architecture (TwinPeaks), pp. 36–40, 2012.

[20] O. Zimmermann, T. Gschwind, J. Küster, F. Leymann, and N. Schuster,
“Reusable Architectural Decision Models for Enterprise Application
Development” in Third International Conference on Quality of Software
Architectures (QoSA), pp. 15–32, 2007.

26

	Hesse, Paech_ Zusatz
	hesse_twinpeaks13.pdf

