

©2013 IEEE. Reprinted, with permission, from Roehm T, Bruegge B, Hesse TM,
Paech B, Towards Identification of Software Improvements and Specification
Updates By Comparing Monitored and Specified End-User Behavior,
Proceedings of the 29th IEEE International Conference on Software
Maintenance (ICSM'13), ERA track, Eindhoven (The Netherlands), September
22-28, 2013, pp. 464-467.

This material is posted here with permission of the IEEE. Such permission of the
IEEE does not in any way imply IEEE endorsement of any of the University of
Heidelberg's products or services. Internal or personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution must be obtained from the IEEE by writing to pubs-
permissions@ieee.org. By choosing to view this document, you agree to all
provisions of the copyright laws protecting it.

Towards Identification of Software Improvements
and Specification Updates By Comparing Monitored

and Specified End-User Behavior

Tobias Roehm, Bernd Bruegge
Technische Universität München

Munich, Germany

{roehm, bruegge}@in.tum.de

Tom-Michael Hesse, Barbara Paech
University of Heidelberg

Heidelberg, Germany

{hesse, paech}@informatik.uni-heidelberg.de

Abstract—Support of end-user needs is an important success
factor for a software application. In order to optimize the support
of end-user needs, developers have to be aware of them and
their evolution over time. But a communication gap between
developers and users leads to ignorance of developers about
how users use their application. Also, developer assumptions
about user behavior are rarely tested and corrected if they
are wrong. Consequently, many software applications have a
mediocre support of user needs and user problems as well as
changes in user needs are detected rather late.

In this paper, we present a research agenda addressing this
problem by comparing use case descriptions to monitored user
actions. More specifically, we propose to monitor user actions
using instrumentation, detect the current use case of a user
using machine learning, and compare use case steps to monitored
user actions. By detecting differences between both, we identify
mismatches between user behavior and developer assumptions
reflected in use case descriptions. Those mismatches can serve
as starting points to identify software improvements, to test the
use case specification and identify updates, and to revise training
programs. Finally, we sketch a plan to evaluate our approach.

Keywords—User needs, User monitoring, Use case detection,
Comparison of observed and specified behavior, Specification
testing, Reverse modeling, Machine learning, Software evolution

I. INTRODUCTION

In a competitive software market end-users can choose

among several rival applications and pick the application with

the best support of their needs. The success of a software

system in such a situation is determined by the acceptance

of its end-users. Consequently, developers should cooperate

with end-users to understand user needs, develop software that

supports those needs, and ensure the continuous support during

software evolution.

Unfortunately, a communication gap between end-users

and developers exists [12] that hinders cooperation between

developers and users. Developers might not have access to

end-users, end-users might not be willing or able to express

their needs and problems, or developers and end-users might

misunderstand each other. The result of this gap is igno-

rance at the developers’ side about how end-users use the

application [19]. Also, developer assumptions about end-user

behavior are seldom tested and corrected if they are wrong.

Consequently, many software applications have a mediocre

support of user needs and user problems as well as changes

in user needs are detected rather late.

In this paper, we propose an approach to address this

problem. More specifically, we propose to instrument software

applications to monitor user actions. Further, we propose to

detect the use case a user is currently performing and compare

its flow of events to monitored user actions. We propose

to consider use cases as they document the assumptions of

developers about how a user will use an application in a

fine-grained, detailed way. We argue that detected differences

between user actions and use case steps can be exploited

in several ways. First, a difference can serve as starting

point for further exploration and finally identify software

improvements in terms of functionality or usability. Second,

the use case specification can be tested based on the obser-

vation (specification testing) and updates can be identified if

the use case specification is incorrect or incomplete (reverse

modeling). Third, training programs for users can be designed

or refined based on knowledge about application usage and

difficulties users are facing. As developer assumptions about

application usage are reflected and documented in the use case

description, our approach allows comparing the assumptions

of developers about application usage to actual usage obtained

from monitored user actions. Our approach is complementary

to existing approaches such as feedback mechanisms, on-site

user observations, usability labs or user workshops.

The contributions of this paper are the following. First, we

propose to compare monitored user actions to the use case

specification of an application and sketch a corresponding

approach. Second, we discuss how these differences can be

exploited to identify software improvements, to test and update

the use case specification, and to revise training programs for

users.

This paper is organized as follows: In Section II we review

related work. In Section III we describe our approach in

detail. In Section IV we sketch an evaluation strategy for our

approach and finally sum up in Section V.

2013 IEEE International Conference on Software Maintenance

1063-6773/13 $26.00 © 2013 IEEE

DOI 10.1109/ICSM.2013.73

464

II. RELATED WORK

Maalej et al. [12], [13] described the problem of commu-

nication gaps between developers and end-users and proposed

to consider user input as important information. We instantiate

their generic framework and additionally propose to compare

specified and monitored user behavior. Kim et al. [10] describe

TRUE, an approach to collect user actions by instrumentation

and exploit this information to improve video games. While

their approach and goal is similar to ours, they do not compare

monitored and specified behavior automatically.

a) Use Case Mining: El-Ramly et al. [3], [5], [6] de-

veloped an approach to recover use cases from monitored

user actions and exploit that knowledge in user interface

reengineering. Similarly, Antonio et al. [1] and Li et al. [11]

developed approaches to recover a use case model from

runtime information. While these approaches overlap with ours

by the use case detection, they do not compare monitored user

actions with specified use cases. We plan to reuse their work

for use case detection.

b) Comparison of Monitored and Specified Behavior:
Comparing monitored user behavior to a specification of

expected user behavior has been studied by other researchers.

Paternò et al. [15] propose an approach using task models,

i.e. a hierarchical decomposition of a task, to capture expected

behavior of users and compare them to monitored behavior.

Feuerstack et al. [7] use UI models to generate user interfaces

automatically and evaluate their usability by comparing mon-

itored user behavior to the original models. We are currently

evaluating whether and how we can reuse their work.

Robinson [17], [18] proposes an approach similar to ours.

He monitors user and system behavior and compares it to

user goals specified by OCL-like statements. While Robinson

focuses on abstract goals, we monitor and compare lists of

user actions.

c) Automated Usability Testing: Several approaches have

been proposed to monitor user actions and exploit them to

(semi-) automate usability testing. Ivory and Hearst [8] review

the state of the art of automated usability evaluation. Tao [21]

proposes an approach to capture user interactions and analyze

usability in early development phases. Several approaches have

been proposed to evaluate the usability of web applications [2],

[15] as well as mobile applications [9], [16]. Those approaches

focus on usability evaluation while we do not only target

usability problems but also discuss specification testing and

updating.

III. OUR APPROACH

In this section we describe our approach in detail.

A. Motivating Example

In order to motivate our approach, we start with an example

that is depicted in Figure 1. We consider the development

of online banking software. Before the implementation of the

software, developers talked to banking customers and identi-

fied the use case steps (see the left hand side of Figure 1). Now

the software is implemented as a web application, deployed

Use case steps
1.  Log in
2.  Initiate bank transfer
3.  Enter recipient
4.  Enter amount
5.  Submit transaction
6.  Logout

Monitored user actions
i.  Log in
ii.  Initiate bank transfer
iii.  Enter amount
iv.  Enter recipient
v.  Submit transaction

???
Figure 1. Bank Transfer Example

and end-users use it to do their online banking activities. A

sensor within the web server monitors HTTP requests and

identifies user actions from the URLs requested. For example,

the initiation of a new bank transfer can be detected when a

user initiates a HTTP request to the url /BankTransfer.do. All

actions of a user are monitored (see the right hand side of

Figure 1). When comparing use case steps and user actions,

we detect that entering recipient data and amount are switched

in order and the user forgot to logout, e.g. by closing the

browser or surfing to another web page. These differences are

presented to the developers of the banking application and they

have to decide how to handle them. They decide to ignore the

switched order of data entry and to add an automatic logout

feature after a certain inactivity time of a user - a standard

feature of online banking applications today.

B. Research Questions

We address the following research questions.

• How can semantically meaningful user actions be ob-

tained (RQ 1)?

• How can the current use case a user is performing be

identified based on traces of monitored user actions (RQ

2)?

• How can use case steps and monitored user actions be

compared (RQ 3)?

• How can differences between use case steps and moni-

tored user actions be exploited (RQ 4)?

Regarding RQ1, monitoring of low-level user actions such as

mouse clicks and text entered is easy, but we need semantically

meaningful user actions on a similar level of abstraction as

use case steps to be able to compare both. Further, we argue

that detecting differences as such is not a worthwhile goal

in itself but the exploitation of the knowledge gained to

support evolution decisions and test developer assumptions

about application usage (RQ 4).

C. General Framework

In this section we sketch a framework that is necessary to

monitor user actions and compare use case steps to monitored

user actions. Figure 2 gives an overview of our framework. A

user interacts with an application that is instrumented with one

or more sensors. Sensors can be implemented using different

implementation approaches - framework hooks, log file mon-

itors, special monitoring code, or byte code instrumentation.

Also, they can target different frameworks and hence exhibit

a varying degree of application independence and reusability -

465

User‘s Machine Our Server

Application

Sensor Client
Component DB

Server
Component

Data Analysis
1.  UC Detection
2.  Comparison

User Developer

Interacts with

Differences
presented

Monitored
User Actions

Use Case
Specification

Indirect communciation

Improved comprehension

Figure 2. Framework Overview
Grey boxes denote components of our framework.

from being completely independent of the application (e. g. a

sensor monitoring log files), via enabling reuse in the same

framework (e. g. a sensor for RCP framework) to being

completely application dependent (e. g. a sensor integrated in

the application source code). A sensor monitors user actions

and sends them to a client component running on the user’s

machine, too. The client component processes and aggregates

the user actions and sends them to a server component, which

stores them in a database. This architecture provides the

possibility to process user actions on the client side and collect

additional context information while performing the main

processing on the server side to minimize the overhead on a

user’s machine. The monitored user actions from the database

are analyzed in two ways. First, the use case performed by the

user among the set of specified use cases is detected. Second,

the flow of events of the current use case is compared to

monitored user actions and detected differences are presented

to developers. Overall, we achieve an indirect, automated

communication which is effortless for the user.

D. Detection of the Current Use Case

We are exploring machine learning algorithms to detect

the current use case a user is performing based on his or

her actions. As we can observe user actions directly but use

cases not, Hidden Markov Models seem to be appropriate for

our case. Saito et al. [20] developed an interesting, related

approach targeting user tasks. Further, El-Ramly et al. [4]–[6],

Antonio et al. [1], and Li et al. [11] did work on analyzing

user actions and mine use cases models that we plan to reuse.

E. Comparison of Use Cases and Monitored User Actions

In this section we describe the steps necessary to compare

the flow of events of a use case to monitored user actions.

1) Abstracting Monitored User Actions: In order to be

able to compare use case steps and monitored user actions

directly, they have to have a similar level of abstraction. We

are experimenting with three strategies to abstract monitored

user actions. First, our sensors monitor user actions already at

a high level of abstraction, i.e. not every mouse or key action

but manipulation actions that consist of several mouse and key

actions. Second, we use sequential pattern mining to detect

frequent patterns in traces of monitored user action. When a

frequent user action pattern is detected, the sequence of user

actions forming this pattern can be replaced in the traces by

a new, single, and more abstract user action. Third, we use a

taxonomy of user actions in order to reason about user actions

and abstract user action types.

2) Mapping between Use Case Steps and User Actions:
In order to be able to compare use case steps and monitored

user actions a mapping between both has to be established.

This mapping establishes a relationship from use case steps

to types of user actions. It denotes the relationship “This use

case step can be represented by this type(s) of user action”.

We are experimenting with two strategies to accomplish this

mapping. In the first strategy, a developer assigns each use

case step to one or more user action types that correspond

to it. In the second strategy, we compare the similarity of

the textual description of a use case step to the textual

description of a user action in our user action taxonomy. If

the textual similarity exceeds a threshold parameter, we map

the corresponding user action to a use case step.

3) Comparing Use Case Steps and User Actions: Finally

we compare a trace of monitored user actions to the flow of

events of the current use case based on the mapping described

above. We expect the differences to be additional/ missing

steps and a different order of steps. Hence, we iterate over

the steps of the current use case and check for each step

whether a corresponding user action or user action pattern

was monitored. Also, we check if there is a difference in the

order.

F. Exploitation of Detected Differences

We argue that differences between use case steps and user

actions are not good or bad in itself. Developers have to

analyze them, determine how to handle them, and decide

if any of the following situations applies. First, a detected

difference can be the starting point for further analysis and

finally trigger an improvement of the application. Examples of

improvements are additional functionality, changed functional-

ity, or removal of a usability problem. Second, if the monitored

user behavior reflects a valid use of the application that is

not documented in the current specification, the specification

should be updated based on the observation. Third, a detected

difference can trigger changes and tailoring of user training

by taking information about user behavior and problems users

are facing into account. Overall, a detected difference reveals

a wrong assumption of developers (who wrote the use cases)

about application usage and might trigger further investigation.

Thereby, it helps developers to comprehend the behavior of

users and improve the support of user needs within their

application.

466

IV. EVALUATION STRATEGY

In this section we outline our plan to evaluate our proposed

approach. We already implemented the monitoring part of

the framework described in Section III. We implemented

sensors that track user actions in Eclipse RCP applications

and J2EE-based web applications [14]. Using these sensors

we collected user action traces of five users that worked with

an instrumented application for several weeks.

We plan to evaluate our approach with two case studies.

In the first case study, we will monitor user actions using

our sensors and ask users to create a protocol of the tasks/

use cases they are performing. The obtained dataset allows us

to learn predictors of the current use case and evaluate their

prediction accuracy. In the second case study, we will monitor

user actions using our sensors, compare them to the flow of

events of the current use case, and show detected differences to

developers. We will evaluate our approach in three directions.

First, we evaluate its correctness, i.e. if the detected differences

are real differences. Second, we evaluate its helpfulness for

developers, i.e. if the detected differences help developers to

improve their application or update the use case specification.

Third, we evaluate its performance overhead, i.e. how much

overhead our sensors introduce and if the overhead disturbs

users in their daily work.

In the case studies we will use two real-world applications

and their users and developers. The first application will be

UNICASE1, an Eclipse-based CASE tool that supports UML

modeling, rationale-based software engineering, and capture

and use of project knowledge. The second application will be

an application developed by a partner software company.

V. SUMMARY

In this paper we proposed an approach to detect the current

use case a user is performing and to compare its flow of

events to monitored user actions. Detected differences can

be exploited to identify software improvements, to test the

use case specification and identify updates, and to revise

training programs for users. Overall, we aim to improve

user comprehension on the developer’s side and thereby help

developers to maximize the support of user needs in their

applications.

Our next steps will be to continue implementation of our

approach and evaluate it by case studies with two real-world

applications and their users and developers. Further, we will

investigate the impact of privacy issues on our approach.

ACKNOWLEDGEMENTS

This work was partially supported by the DFG (German

Research Foundation) under the Priority Programme SPP1593:

Design For Future – Managed Software Evolution and the

European Commission (FastFix project, grant FP7-258109).

1http://code.google.com/p/unicase

REFERENCES

[1] G. Antonio, D. Lucca, A. R. Fasolino, U. D. Carlini, N. Federico, and
V. Claudio. Recovering use case models from object-oriented code: a
thread-based approach. In Proc. of the Seventh Working Conf. on Reverse
Engineering, pages 108–117. IEEE, 2000.

[2] R. Atterer, M. Wnuk, and A. Schmidt. Knowing the user’s every move
- User activity tracking for website usability evaluation and implicit
interaction. In Proc. of the 15th Int. Conf. on World Wide Web, pages
203–212. ACM, 2006.

[3] M. El-Ramly and E. Stroulia. Mining software usage data. In Proc.
of the 1st Int. Workshop on Mining Software Repositories, MSR 2004,
2004.

[4] M. El-Ramly, E. Stroulia, and P. Sorenson. From run-time behavior to
usage scenarios: An interaction-pattern mining approach. In Proc. of
the Eighth ACM SIGKDD Int. Conf. on Knowledge Discovery and Data
Mining, KDD’02, pages 315–324. ACM, 2002.

[5] M. El-Ramly, E. Stroulia, and P. Sorenson. Mining system-user inter-
action traces for use case models. In Proc. of the 10th Int. Workshop
on Program Comprehension, pages 21 – 29. IEEE, 2002.

[6] M. El-Ramly, E. Stroulia, and P. Sorenson. Recovering software
requirements from system-user interaction traces. In Proc. of the 14th
Int Conf. on Software Engineering and Knowledge Engineering, SEKE
’02, pages 447—-454. ACM, 2002.

[7] S. Feuerstack, M. Blumendorf, M. Kern, M. Kruppa, M. Quade,
M. Runge, and S. Albayrak. Automated usability evaluation during
model-based interactive system development. In Engineering Interactive
Systems, volume 5247 of LNCS, pages 134–141. Springer, 2008.

[8] M. Y. Ivory and M. a. Hearst. The state of the art in automating usability
evaluation of user interfaces. ACM Computing Surveys, 33(4):470–516,
2001.

[9] D. Kim and K.-p. Lee. Development of interactive logger for under-
standing user’s interaction with mobile phone. In Human-Computer
Interaction. Interaction Platforms and Techniques, volume 4551 of
LNCS, pages 394–400. Springer, 2007.

[10] J. H. Kim, D. V. Gunn, E. Schuh, B. C. Phillips, R. J. Pagulayan, and
D. Wixon. Tracking real-time user experience (TRUE): A comprehensive
instrumentation solution for complex systems. In CHI 2008 Proceedings,
pages 443–451. ACM, 2008.

[11] Q. Li, S. Hu, P. Chen, L. Wu, and W. Chen. Discovering and mining
use case model in reverse engineering. In Proc. of the 4th Int. Conf. on
Fuzzy Systems and Knowledge Discovery, FSKD’07. IEEE, 2007.

[12] W. Maalej, H. Happel, and A. Rashid. When users become collaborators:
Towards continuous and context-aware user input. Proc. of the 24th
ACM SIGPLAN Conf. Comp. on Object Oriented Programming Systems
Languages and Applications, pages 981–990, 2009.

[13] W. Maalej and D. Pagano. On the socialness of software. In Ninth IEEE
Int. Conf. on Dependable, Autonomic and Secure Computing, DASC,
pages 864–871. IEEE, 2011.

[14] D. Pagano, M. Juan, A. Bagnato, T. Roehm, B. Bruegge, and W. Maalej.
FastFix: Monitoring control for remote software maintenance. In ICSE
2012 Proceedings, pages 1437–1438. IEEE, 2012.

[15] F. Paternò, A. Piruzza, and C. Santoro. Remote web usability evaluation
exploiting multimodal information on user behavior. In Computer-Aided
Design of User Interfaces V, pages 287–298. Springer, 2007.

[16] F. Paternò, A. Russino, C. Santoro, and V. G. Moruzzi. Remote
evaluation of mobile applications. In Task Models and Diagrams for
User Interface Design, volume 4849 of LNCS, pages 155–169. Springer,
2007.

[17] W. N. Robinson. Seeking quality through user-goal monitoring. IEEE
Software, 26(5), 2009.

[18] W. N. Robinson. A roadmap for comprehensive requirements monitor-
ing. IEEE Software, 43(5):64–72, 2010.

[19] T. Roehm, R. Tiarks, R. Koschke, and W. Maalej. How do professional
developers comprehend software? In ICSE 2012 Proceedings, pages
255–265. IEEE, 2012.

[20] R. Saito, T. Kuboyama, Y. Yamakawa, and H. Yasuda. Understanding
user behavior through summarization of window transition logs. In
Databases in Networked Information Systems, volume 7108 of LNCS,
pages 162–178. Springer, 2011.

[21] Y. Tao. Capturing user interface events with aspects. In Human-
Computer Interaction. HCI Applications and Services, volume 4553 of
LNCS, pages 1170–1179. Springer, 2007.

467

	roehm_zusatz
	roehm_icsm13.pdf

