
Maintainable Systems with a Business Object Approach��

Wiebe Hordijk��

Division of Computer Science

Vrije Universiteit

���� HV Amsterdam� NL

Sascha Molterer� Chris Salzmann

Institut f�ur Informatik

Technische Universit�at M�unchen

����� M�unchen� F	R	G	

molterer
in	tum	de

Barbara Paech��

Fraunhofer Institute for

Experimental Software Engineering

����� Kaiserslautern� F	R	G	

Panagiotis K� Linos

Department of Computer Science

Tennessee Technological University

Cookeville� TN ����� USA

linos
csc	tntech	edu

��The work for this paper was partially supported by the Bayerische Forschungsstiftung via FORSOFT project A�
��Most of this work was carried out while the author was at the Technische Universit�at M�unchen�
��Most of this work was carried out while the author was at the Technische Universit�at M�unchen�



Abstract

The concept of Business Objects �BOs� has been recently promoted as a new way of exploiting object�

orientation for achieving large�grain reuse� In this paper� we address the issue of how to e�ectively re�

engineer business software applications using BOs as a reuse technique� To this end� we �rst identify the

reuse features of business objects and then compare them with other reuse techniques� In addition� we

show that software re�engineering can be more economical when business objects are used� Our work also

provides guidance on how to develop and use a Business Object Architecture �BOA�� which is shared by a

group of interrelated and interdependent software applications� We argue that such architecture allows for

more e	cient reuse and better maintainability and it is illustrated by means of a case study in a realistic

manufacturing environment�

Keywords�Software Maintenance� Software Reuse� Business Objects� Software Architecture� Case Study

Software Re�engineering� Reverse Engineering

ii



Hordijk� Linos� Molterer� Paech� Salzmann� Maintainable Systems with Business Objects 


� INTRODUCTION

The success of international business enterprises is contingent upon the abundance of already existing

legacy software� In order for these companies to remain competitive and e�ective� they have to allow for

a systematic evolution of their business processes� A key issue in such an evolution is the change and

maintenance of their software� Such maintenance can be sometimes radical and very costly but in most cases

the required change is gradual and incremental investment of resources is necessary�

It is commonly accepted today� that software reuse is a promising approach for facilitating the evo�

lution of software�intensive systems �Biggersta� and Perlis 
��� Dunn and Knight 
��
� Krueger 
����

Sametinger 
���� Jacobson et al� 
����� In particular� systematic reuse aims to produce software from a

portfolio of reusable artifacts� so that architectural similarities and common requirements among applica�

tions can be exploited to accomplish signi�cant improvement of the productivity� quality and performance

for software companies�

According to Jacobson� there are several organizations� which have demonstrated reuse levels up to

��� �Jacobson et al� 
���� p� ��� Such organizations include� among others� AT�T� which achieved a reuse

level of ���� Ericson AXE� with ��� reuse� Motorola ��� and Brooklyn Union Gas with a reuse level of

up to ����

Basically� there are three ways of achieving e�ective software reusability �Canfora et al� 
����� The

�rst way is to purchase reusable software artifacts from the market �known as COTS�� the second is to

develop them from scratch� and the third way is to re�engineer them from existing software� The third

approach is expected to bring short�term results and it is the focus of this paper�

In particular� we focus on the re�engineering of existing applications based on business objects� Busi�

ness objects have recently been put forward as a new way of exploiting object�orientation for large�grain

reuse �Shelton 
���� They serve as a storage place for business policy and data� Academic and industrial ac�

tivities have focused mainly on the component technology associated with business objects� namely business

object facilities �Emmerich and Ellmer 
���� However� there is little guidance on exactly how to develop a

business object architecture for a set of applications�

In this paper we propose a rationale for developing a shared business object architecture �SBOAs� to

allow for more e	cient reuse and better maintainability� It is tailored to the application of business objects

for re�engineering of an interrelated set of applications�

In order to illustrate the proposed SBOA� we discuss a case study using an existing business application

which we call P in the following� P is an in�house developed information system� owned and currently used

by a big manufacturing company in Germany� It is primarily used for managing data� and related technical

drawings for parts� P is implemented using the SMALLTALK object�oriented programming language�



� Hordijk� Linos� Molterer� Paech� Salzmann� Maintainable Systems with Business Objects

The rest of this paper is organized as follows� First we identify the reuse features of components �

which are the basis of business objects � by comparing them with other reuse techniques known from the

literature� Then we de�ne the main concepts in the realm of business objects and collect their maintenance

requirements� Based on that we present the SBOA and the main issues in the design of an SBOA� We discuss

how to �nd the balance between shared and application�speci�c features of business objects as well as how

to evolve dependencies between business objects over time� These issues� as well as the concept of an SBOA

are illustrated with the system P� We close with future work�



Hordijk� Linos� Molterer� Paech� Salzmann� Maintainable Systems with Business Objects �

� REUSE

In this section we will recapitulate the essential reuse facets from the literature and typical mechanisms

for code reuse� The aim is to provide the foundation for the assessment of the reuse features of business

objects in the next section�

��� Reuse Facets

�Krueger 
���� is an extensive survey of reuse techniques� It distinguishes the following facets of reuse

techniques�

� abstraction�

� specialization�

� integration mechanisms and

� interface description�

The interface description makes explicit the external facets of a reusable unit to be used by the

environment� the integration mechanism provides the glue between the reuse units� It is typically based on a

particular model of allowed interactions between the units� The mechanism can be applied at development�

build�time or run�time �Karlsson 
����� Typical interface descriptions are import�export� include� provided

properties or provided capabilities�

Specialization �often also called customization� is achieved by changing the variable part of the reuse

unit� The variability can be due to parameterization� con�gurability and to underspeci�cation� The latter

requires the addition of details� either declaratively �constraints� or constructively �re�nement� in particular

inheritance��

The abstraction facet deals with the granularity and the description level� In �Krueger 
����� however�

this distinction is not made� The granularity ranges from single code elements �statements� which are

meaningless without the environment to a complete architecture which is self�contained� In between� there

are on the one hand patterns which describe projections of complete designs wrt� speci�c aims and on the

other hand components which are parts of the complete design delivering a speci�c functionality� but usually

depend on one another in the delivery� The description level typically ranges from machine code to domain

speci�c speci�cations� In between� there are programming languages and general speci�cation languages�

Of course� there are some dependencies between the granularity of the unit and the description level� for

example code elements are not described with speci�cation languages� However� for the more modern reuse



� Hordijk� Linos� Molterer� Paech� Salzmann� Maintainable Systems with Business Objects

Granularity Description Specialization Integration Interface

Mechanisms Mechanisms Descriptions

Code Elements Machine Code Parameter Development time Import�Export

Pattern Programming Con�guration Building time Provided

Languages Capabilities

Component Speci�cation Re�nement Run�time Include

Architecture Domain speci�c Constraints Ad hoc Provided

Speci�cation Properties

Table 
� The facets of reuse techniques

techniques like components� di�erent languages can be used in parallel� In particular� interface speci�cation

languages become very important�

Table 
 summarizes the di�erent facets of reuse techniques and their typical values�

��� Reuse Technique Classi�cation

Table � classi�es the major techniques for code reuse according to the facets identi�ed in the last

section� Besides the facets we have also characterized the aims of the techniques� since� often� reuse is not

the only aim for the technique�

According to the level of granularity� there are four major classes of code reuse techniques


� High�level programming constructs aim at platform independence and abstraction� they typically

apply to code elements and use parameterization for specialization� Integration is done at build time

or development time� Interface description is not used�

�� Components provide the most precise notion of interface� �Krueger 
���� discusses code and execution

components� In addition� we look at classes� which are reused through inheritance� This is the major

contribution of object�oriented programming languages to reusability�

�� Patterns aim at reuse of experience� On the code level� one can distinguish design patterns from

idioms� The latter are speci�c to the programming language� The description is very comprehensive�

Specialization is done by re�nement� integration is done at development time and the interface is only

described in terms of the provided capabilities�

�� Frameworks also try to capture experience� However� in contrast to patterns they are self�contained�

The specialization mechanisms vary� Since they are self�contained� they don�t need to deal with inte�

gration and interface description�



Hordijk� Linos� Molterer� Paech� Salzmann� Maintainable Systems with Business Objects �

Technique Granularity Specialization Integration Interface Aim

High�level Code Parameterized Build�time None Platform

Programming Elements slots �compiler� independence�

Language or development time understandability

Constructs

Classes Component Re�nement Build�time Provided Reusable�

�Inheritance� Capabilities data�centered

Code Component Con�guration Build�time� Include Facilitate

Components programming installation

language speci�c

Execution Component None Run�time system None Describe dynamic

Component �Threads� of the programming structures

Tasks� language	e	g	 making use of the

schedulers runtime environment�

for analyzing

run�time properties

Design Pattern Con�guration Development� Provided Capture

Patterns Re�nement time capabilities design experience

�combination�

Idioms Pattern None Development� Provided Capture

time capabilities implementation

experience

Framework Architecture Inheritance or None None Reuse of

Con�guration architectures

Table �� Classi�cation of some Major Reuse Techniques



� Hordijk� Linos� Molterer� Paech� Salzmann� Maintainable Systems with Business Objects

� THE BUSINESS OBJECT APPROACH

This section introduces business objects and discusses their reuse features� This discussion will make

apparent the need for the shared business object architecture �SBOA� � The design rationale for an SBOA

is the main contribution of this paper and is introduced in the next section�

��� Business Objects and Reusability

According to �Shelton 
��� business objects describe a thing� concept� process or event in operation�

management� planning or accounting of a business organization� This distinguishes them from technological

objects like GUI�objects� They are enabled by business object facilities which provide transaction and

persistence �Emmerich and Ellmer 
���� Business objects are components and therefore focus on large�scale

reuse� As sketched in the last section� they can be reused on the level of classes as well as in the form

of code components� The main di�erence is the specialization mechanism� Classes are specialized through

inheritance and code components through con�guration�

Clearly� con�guration is the more simple mechanism� However� it is not su	cient in a large organiza�

tion� where it is not possible to foresee all possible new applications which would like to reuse the business

objects� Thus� there will always be the need to adapt the given business objects to di�erent contexts� This

can be achieved through inheritance� but requires a careful selection of the business features which are

incorporated in the general classes� We will discuss this topic in detail in the next section�

��� Maintainability and the Shared Business Object Architecture

While in the literature� the focus is on business objects common to several businesses �as a basis for

COTS �� we focus on the business objects common to a set of interrelated applications within an organization�

In the following� we discuss the maintenance requirements resulting from this context�

Within most large organization applications are developed locally to individual departments� Thus�

the requirements engineering� design and implementation of the application is tuned for that department�

However� business processes typically a�ect several departments� Thus� parts of the business process are

implemented redundantly in several applications� While this often gives rise to inconsistencies hampering

the daily�work of the employees� it also a�ects severely the maintenance e�orts needed for the applications�

If the business process changes� all the applications have to be maintained�

To remedy this situation� re�engineering clearly has to strive for factoring out the business logic com�

mon to several applications� This common business logic should be reused through the di�erent applications�

The reuse could take place at development time� where the business logic is copied to a new application�

However� while this reduces the development e�ort for the new application� it does not reduce the mainte�



Hordijk� Linos� Molterer� Paech� Salzmann� Maintainable Systems with Business Objects �

nance e�orts� Therefore� from a maintenance point of view� the common business logic must be part of an

architecture which is shared between the applications�

����� Business Object Architecture

The typical business object architecture 	BOA
 separates the business logic from the application

speci�c parts as well as from the persistence mechanism �Hung et al� 
�����

Application Model

GUI Application logic

Business Objects

Persistence mechanism

Figure 
� business object Architecture

As depicted in �gure 
 the BOA consists of the

Data model tier� this basic layer holds and manages the data model of the system� This could be

realized i�e� by a database or a repository system�

Business logic tier� this layer holds the encapsulated business logic which is realized as business

objects�

Application logic tier� here the parts of the application speci�c logic are positioned� These might

be GUI or application speci�c data or processes�

It is important to note that this separation is the ideal case and can hardly be practiced in existing

system� The borders of the layers are in real life system not sharp�

The BOA is clearly su	cient to allow the change of the business logic for a single application� However�

as discussed above� for a set of interrelated applications the business logic needs to be shared between all the

applications� Also� this sharing should incorporate sharing of classes as well as of their instances� Therefore�

we introduce in the next section the concept of a shared business architecture�

����� Shared Business Object Architecture

As depicted in �gure � a shared business object architecture is a BOA which allows the business

objects to be shared between several applications�



 Hordijk� Linos� Molterer� Paech� Salzmann� Maintainable Systems with Business Objects

Application Model

GUI

Application Model

GUI Application logic

Business Objects

Persistence mechanism

. . .

. . .

Figure �� Shared business object Architecture

While this concept straightforwardly ful�lls the maintenance requirements identi�ed above� it intro�

duces additional complexity in the design of the business logic tier� since it needs to ful�ll the needs of several

applications without introducing unnecessary dependencies between the applications� The next section will

propose a solution as to how to handle this complexity�



Hordijk� Linos� Molterer� Paech� Salzmann� Maintainable Systems with Business Objects �

� THE DESIGN OF A SHARED BUSINESS OBJECT ARCHITECTURE

This section introduces a rationale for the design of an SBOA� In particular it treats the design of

shared business logic and the management of dependencies between shared business objects�

��� Design of the Shared Business Logic

The main question in the design of the shared business logic is how to deal with features relevant

for more than one application� Typically� these features are incorporated in a general class in the business

logic layer so that application�speci�c classes inherit from the general class� However� this might induce

unnecessary complexity on the speci�c classes for one application� when the general classes include features

shared between other applications� Separating these features into general classes only shared by a subset of

the applications� on the other hand� reduces the possible sharing between applications� since only instances

of shared classes can be shared� In the following we will discuss the possible solutions based on a highly

simpli�ed model consisting of three classes as shown in �gure �� Classes are sets of features �attributes or

methods�� Features are independent of each other� Classes are named A� B� C� In some of the solutions

discussed below intersection classes like A�B �written AB for short� are introduced� The small letters a� b�

etc� are used to indicate the features� A � a � d � e � g� but a � d � ��

ABC

A B

C

AB

AC BC

a b

c

d

e

fg

Figure �� Simpli�ed scenario with three classes

Before we start with the discussion of the di�erent solutions� we introduce the implementation cost as

the criteria for how to evaluate them� To emphasize the sharing of a business object by several applications

we call the applications reuse contexts of the business object�




� Hordijk� Linos� Molterer� Paech� Salzmann� Maintainable Systems with Business Objects

����� Implementation Costs

The key issue on software development and reuse are the factors of cost and quality � as in every

business domain� For the term of software there is a special relation between the factor of cost and the issue

of reuse and sharing� in the general software development process it is � in the short term � cheaper to

build software that is application speci�c� In the long term� however it is cheaper to build generalized� not

application speci�c software� which can be reused in other applications�

Formally this means� that implementing a feature � has a cost K�� The cost KS of implementing a

set of features S is the sum of the costs of implementing the elements�

KS �
X

��S

K� �
�

Because higher quality requirements are imposed on classes which are meant for reuse� the cost of

implementing a feature in a general class is usually higher than that of implementation in an application�

speci�c class� These additional costs are due to e�g� special quality assurance measures like inspections in

the early phases or testing� Another cost driver might be that features of general classes are designed to be

more general� Coming up with this generality usually requires further e�ort� In our view� it is safe to assume

that these additional costs are proportional to the cost of implementing the feature in the application�speci�c

class�� Thus� in the following we use the factor x for generalization costs and the cost of implementing a

feature in a general class is xK��

����� Big class

In this approach� the designer tries to foresee as many as possible future reuse contexts for the

business object� All features that might be needed� are added to the class� All anticipated reuse contexts

are documented� For the features� the reuse contexts for which they have been anticipated are documented�

This approach can only be applied in situations� where all or most of the reuse contexts can be

foreseen� The cost during initial development is increased� The abundance of unused features may hinder

performance�

Because the same class is used in every reuse context� the instances can be shared easily� During

development of a new reuse context� none of the code has to be changed� Thus� reuse is very cheap�

Looking at our example� the big class would contain all features of classes A� B and C� Since all

features are implemented with reuse quality� the total cost becomes�

Ktot � x�Ka �Kb �Kc �Kd �Ke �Kf �Kg�



Hordijk� Linos� Molterer� Paech� Salzmann� Maintainable Systems with Business Objects 



����� Subclassing

In subclassing approaches� certain general features are implemented in a general class� For use in ap�

plications� this general class is subclassed and application�speci�c features are added� Since there are several

policies for deciding which features go in the superclass and which go in the subclasses� three approaches

using subclassing are given�

The fact that a class in a certain reuse context inherits the general class� might cause problems when

we want the class in the reuse context to inherit another class� Some languages� like Java and SMALLTALK�

do not support multiple inheritance� In such cases� the designer must choose which of the possible parent

classes to inherit� for the other inheritance relationship� another construct� like delegation� can be used�

Because all classes have the same superclass� instances can be shared� but only the features that have

been de�ned in the superclass are generally available� Moreover� there is an instantiation problem� when two

applications A and B use their own subclasses XA and XB of superclass X� then an instance of XB created

in B cannot be used by A as an instance of XA� In the Big Classes approach� they are all instances of the

same class�

��
���
 Big superclass� In this approach� the designer tries to identify those features that occur in at least

two reuse contexts� Those features are implemented in a general class� The application�speci�c features can

be added in one subclass for each application�

Like the �Big class approach� for this approach the designer needs to be well aware of the possible

reuse contexts� Unused features may hinder performance� but not as much as in the �Big class approach�

AB + AC + BC

A B C

Figure �� Class diagram for our example with a big superclass

For our example� a class diagram illustrating this approach is shown in �gure �� The superclass

comprises the features in parts d� e� f and g in �gure �� The cost of the example becomes�

Ktot � Ka �Kb �Kc � x�Kd �Ke �Kf �Kg�




� Hordijk� Linos� Molterer� Paech� Salzmann� Maintainable Systems with Business Objects

��
���� Small superclass� In this approach� the designer tries to identify those features that will be needed

in every reuse context� These core features are implemented in a general class� When other features are

needed� the designer adds those in a subclass�

Compared to the �Big superclass � this approach has lower initial cost but higher reuse cost� Features

that occur in more than one reuse context� but not in all of them� are implemented more than once�

A B C

ABC

Figure �� Class diagram for our example with a small superclass

Figure � illustrates this approach for our example� The superclass corresponds to part g of �gure ��

The cost is�

Ktot � Ka �Kb �Kc � ��Kd �Ke �Kf � � xKg

��
���� Multiple inheritance layers� In this approach� inheritance is maximized� Those features that occur

in every reuse context are implemented in a general class� just like in the �Small superclass approach�

This class is inherited by classes that contain features that are needed in some� but not all� reuse contexts�

Finally� the application�speci�c classes are derived from general classes that are as speci�c to that application

as possible�

This approach is illustrated in �gure �� Assuming that the same quality measures are taken in the

middle layer� the cost is the same as for the �Big superclass approach�

Ktot � Ka �Kb �Kc � x�Kd �Ke �Kf �Kg�

This approach becomes problematic when more classes are added due to more reuse contexts� With

four reuse contexts� if there are overlaps between all combinations of them� we end up with four layers and

a total of 
� classes� This is clearly not feasible� In languages that do not support multiple inheritance� this

approach is not possible at all�



Hordijk� Linos� Molterer� Paech� Salzmann� Maintainable Systems with Business Objects 
�

AB AC BC

ABC

A B C

Figure �� Class diagram for our example with multiple inheritance layers

����� Extensions

This approach is available in certain environments� like IBM San Francisco �IBM 
��� and the

SMALLTALK language� One class with the core features is developed� like the superclass in the Subclassing

approach� Features needed in speci�c contexts can be added in extensions� Extensions are added at runtime

to each instance separately� This o�ers a bulk of possibilities for other properties� but for reuse� we only

look at the case where the same extension is added to each instance of a class in a certain application�

Like for subclassing� there are a number of policies for whether to add a feature to the class or to

an extension� These approaches are analogous to the subclassing approaches� with the only di�erence that

features are not implemented in subclasses but in extensions� The cost formulas are the same� too� Therefore�

we do not repeat the individual approaches here�

A disadvantage of extensions is that they can only be used in certain environments� An advantage is

that all instances are of the same class� so instances can be shared�

����	 Reimplement

If only a small amount of reuse contexts is envisioned for a class� or if the class is completely application

speci�c� it may not pay o� to design a class for reuse� If a class is reused that was not designed for it� one often

has to reimplement most of the features� For simplicity we assume that all features have to be reimplemented�

Advantages of this approach� if it can be called one� are that the initial cost is not raised by reuse

issues� and that no anticipation of possible reuse contexts is required� Disadvantages are that the reuse cost




� Hordijk� Linos� Molterer� Paech� Salzmann� Maintainable Systems with Business Objects

is high and sharing of instances is impossible�

For our example� the cost is�

Ktot � Ka �Kb �Kc � ��Kd �Ke �Kf � � �Kg

����
 Comparing the costs

We can generalize the cost formulas of the most important approaches from our three�classes example

to the general case with n classes� When we have n classes that each �partly� overlap with each other�

features can occur in any number of those classes� from 
 �application�speci�c� to n �core�� We regard all

features that occur in only one reuse context as a set� all features that occur in exactly two reuse contexts

as another set� and so on� Note that these sets are mutually exclusive�

We can extend our cost function as follows�

Ki is the cost of implementing all features that occur in exactly i reuse contexts� 
 � i � n�

Now we can express the cost of implementing all reuse contexts of a class as the costs of all features

in all reuse contexts of that class� using the �Big class approach� as follows�

KBigClass � x

nX

i��

Ki� for x � 
 and n � �

The same can be done for the �Big superclass � �Small superclass and �Reimplement approaches�

KBigSuper � K� � x

nX

i��

Ki

KSmallSuper � xKn �

n��X

i��

iKi

KReimplement �

nX

i��

iKi

If x � 
� that is� if no extra costs are invested in higher quality for reusable features� then the �Big

class and the �Big superclass approaches have the same cost and are cheapest� When x increases� however�

the �Big class approach will quickly become more expensive than other approaches�

On the other end of the scale� if x � n� the �Reimplement approach is the cheapest� Since we require

n to be at least �� this is not very likely to happen�

The interesting area is where 
 � x � n� In this area� either �Big super or �Small super is cheapest�

KBigSuper � KSmallSuper � K� � x

nX

i��

Ki � xKn �
n��X

i��

iKi

�

n��X

i��

xKi �
n��X

i��

iKi ���



Hordijk� Linos� Molterer� Paech� Salzmann� Maintainable Systems with Business Objects 
�

This implies that if x � �� �Big super will always be cheaper� and if x � n� 
� �Small super will

always be cheaper� When � � x � n� 
� it depends on the costs of the individual features and the amount

of features in every group� If the greater part of the features are used in many reuse contexts� �Big super 

will be cheaper� if the greater part of the features are used by only a few applications� �Small super will

be cheaper� The greater x is compared to n� the more favorable �Small super will be compared to �Big

super � For �xed x� �Big super gets more favorable as n increases�

These results are summarized in table � depending on the factor of generalization costs x�

Generalization Costs Cheapest Reuse Strategy

x � 
 big class and big super


 � x � � big super

� � x � n� 
 big super or small super

n� 
 � x � n small super

x � n small super and reimplement

x � n reimplement

Table �� Reuse strategies compared on Reimplementation Costs

If an estimation of the generalization costs x somewhere between 
 and � is reasonable� and this is

the case for a business object approach� then putting all features that are needed more than once into the

superclass seems to be the best general approach� Therefore this is the approach that is taken in redesigning

the case study in section ����

��� Managing the dependencies between shared business objects

The sharing of classes and instances between di�erent applications increases the interdependence of

applications� While the business logic of one application is changed� all applications which share code with

this application have to be stopped� Then the references to the shared objects and classes have to be updated

according to the changes� In �gure �� all applications i� j� k and l depend on business object b� Changes

of business object b caused by changes of the business logic of one of these applications a�ect all other

applications� Therefore� applications i� j� k and l interdepend�

It is obvious� that the bene�t of the reuse would be worthless� if for every modi�cation of a business

object that is needed by one application all applications have to be stopped and modi�ed� Therefore� it is

important to encapsulate the access instances and to instantiate a protocol between the objects which allow

for the dynamic discovery of object features� Both cases will shortly be discussed in the following� for a more

thorough discussion see �Salzmann 
�����




� Hordijk� Linos� Molterer� Paech� Salzmann� Maintainable Systems with Business Objects

Application i Application k Application l

Business Object b

Application j

(solid lines) (dotted lines)
InterdependenceDependence

Figure �� Raising the Level of Dependence by Sharing Business Objects

����� Semi�Dynamic Object Con�guration

Semi�dynamic con�guration management supports the encapsulation of object instantiation� It is

already realized in frameworks like IBM�s SanFrancisco through the use of factories�

concreteFactory1 concreteFactory2

A <− getObject(); A’ <− getObject();

getObject();

ObjectFactory

Client

allocate A;

Figure � Semi�Dynamic Con�guration� Instantiation Factories

Factories � a pattern� well known from �Gamma et al� 
���� � encapsulate the instantiation objects

�see �gure ��

So for the case� that a class is changed such that instead of an object A an object A� is instantiated

every time an object A is allocated in the source code� one needs only change one line of code in the factory

instead of tracking all allocation occurences� The change can even take place at runtime� if the system

supports dynamic linking facilities� This saves a lot of e�ort and raises the !exibility� For almost every

business object factory San Francisco uses structures to ease the con�guration�

However� semi�dynamic con�guration changes only the instance� allocated in the future� The already

existing instances remain the same and must be handled separately�



Hordijk� Linos� Molterer� Paech� Salzmann� Maintainable Systems with Business Objects 
�

����� Dynamic Object Con�guration

Dynamic con�guration means the change of business objects and references at any time � including

the runtime� One possible approach is to allow for dynamic discovery of object features� This means� that

all current instances and all future allocated instances of a certain class A should be exchanged with an

instance of another class A�� by keeping the structure of connections � i�e� associations and aggregations�

This change should happen during the productive phase � i�e� when the system is running and used � without

any constraints� However� this is not yet � or only under special constraints � realized in current SBOAs�




 Hordijk� Linos� Molterer� Paech� Salzmann� Maintainable Systems with Business Objects

� A CASE STUDY� THE P SYSTEM

To illustrate our approach we discuss a case study where an existing application interrelated with

several other applications is re�engineered using the SBOA� The purpose of this case study is to understand

better the issues involved in re�engineering of applications with SBOA� It is not used to con�rm the assump�

tions on generalization costs made in section ��
� since this would require to compare the solutions with

and without generalization using the same implementation technology� In the case study� only the former

solution has been implemented�

In this case study� P is re�engineered by considering the commonly accepted re�engineering process

model� namely reverse engineering followed by forward engineering �Byrne 
����� During the reverse en�

gineering phase� the design model is recovered from the existing source code �Tilley 
���� It is worth

mentioning that the typical assumption of no existing consistent documentation is also the case with P�

Therefore the only reliable documentation of the system is the source code itself�

During the second phase� the recovered design model is modi�ed and improved by keeping the func�

tionality of the system the same� The aim is to create an easy�to�change and maintainable design for P

while preserving its original functionality� The modi�cation of the design is based upon the SBOA� We

have formalized the design using CDL� a language de�ned by the Object Management Group �OMG� for

describing object business architectures �OMG 
���� Finally� during forward engineering� we used IBM�s

San Francisco �IBM 
��� as the underlining implementation framework�

Because of space limits� here we only present a small part of the new model� The detailed re�

engineering products can be found in �Hordijk 
�����

First we sketch the current implementation� Then we discuss the design of the SBOA and its imple�

mentation�

��� Current implementation

P is an information system that manages engineering data on product parts� This includes part data�

CAD�CAM documents� construction materials� norms and projects� The system communicates with another

application� an information system that manages part lists� as well as with a digital drawings archive� P

has been implemented in SMALLTALK� an object�oriented language� using VisualWorks� a SMALLTALK

IDE from ParcPlace�Digitalk �now ObjectShare� Inc� " http���www�objectshare�com�� It consists of ��

SMALLTALK classes from which � classes representing business entities� the remaining classes are for

technical purposes �GUI� database connectivity� printing and so on��



Hordijk� Linos� Molterer� Paech� Salzmann� Maintainable Systems with Business Objects 
�

Version PDocumentPPart

Part Document

1 n 1 n

Figure �� Most important classes

��� New model

The central issue in remodeling P for an SBOA is� which classes to regard as general classes and

which as P�speci�c classes� Following the guidelines from section ��
 we �rst have to determine the reuse

features and their generalization costs� In the case study� generalization costs are 
� since no additional

quality measures are carried out and also no e�ort is invested to make the features of the general classes

more general� As pointed out� in that section� we believe that in general the generalization costs will be

between 
 and �� Thus� in the case study we followed the �Big super approach from section ��
�

So� we want to regard each feature that is probably going to be reused as a general feature� Classes

which contain �almost� only such general features are general classes� Classes that contain no general features

are P�speci�c classes� The general classes should be independent of the application�speci�c classes� that is�

general classes cannot contain references to P�speci�c classes� Following these guidelines� we identi�ed 
�

general classes out of the above mentioned � classes which are representing business entities in P�

In the following� general classes are depicted as dotted rectangles� to distinguish them from P�speci�c

classes� which are depicted as normal rectangles�

The classes shown in �gure � form the backbone of P� P administers data about production parts and

manufacturing aids� called Parts� Of these parts� several versions exist� Each version is described in several

documents� P administers the life cycles of the versions and documents�

The classes Document and Part are split up into a general part� containing the general features� and

a P�speci�c part� containing the P�speci�c features� The classes Document and Part are the general classes�

The classes PPart and PDocument inherit those classes� The Version class is entirely P�speci�c�



�� Hordijk� Linos� Molterer� Paech� Salzmann� Maintainable Systems with Business Objects

��� New implementation

Because the entire P system would be too big to fully reimplement in San Francisco� a subset of 
�

classes of the classes mentioned in the last section was selected for implementation� In most cases� these

classes were not fully implemented either� instead� a subset of their attributes was selected�

The selected classes were implemented according to the San Francisco Programming Model� This

implies that getter and setter methods have been implemented for each attribute� while the attributes

themselves are protected� For each relationship� quite a few methods were implemented� depending on

the kind of relationship� these include methods for iterating over the partners in a one�many relationship�

adding and removing partners� etc� Apart from these� some methods were implemented in each class which

are needed by the framework to make them persistent�

A lot of methods had to be implemented just because we used San Francisco� However� these are

highly routine and can probably be generated by a code generator� Programmers using San Francisco business

objects will still need to know the programming model� so there will always be an initial investment� This

is worthwhile when business objects can be reused in other applications�

As a rough estimate� 
�� classes �mostly GUI classes� of the original �� classes will remain for the

P system� 
� general classes are implemented and maintained as shared business objects apart from the

P system� The remaining �� classes which represented P speci�c business entities can be combined to ��

classes� Through the fact that San Francisco is a framework which o�ers a lot of common object services

like persistence� many of the more technical classes like database connectivity classes can also be dropped�

��� Evaluation

The case study has enabled us to draw some conclusions on the advantages and disadvantages of the

SBOA approach� Experiences with CDL are collected in �Hordijk et al� 
����

	���� Reusability

The system has been designed according to the �Big super approach based on assumptions on the

generalization cost and the reusability of features in P� If these assumptions are correct� the reusability of P

in the new implementation is enhanced� The correctness of the reusability assumptions can only be judged

after implementing the applications related to P�

It should be noted also� that reusability of the business objects is restricted to applications written

in San Francisco�



Hordijk� Linos� Molterer� Paech� Salzmann� Maintainable Systems with Business Objects �


	���� Modi�ability and con�gurability

The existing P implementation cannot be modi�ed at runtime� When new system versions are dis�

tributed �which happens quite often�� a small tool that resides on the users� computers downloads and installs

the new version� This is done when the user starts P�

In the new application� since all business objects run in a server process in San Francisco� application

programs can be started and stopped any time without a�ecting the server or the BO�s� This means that

application logic can be modi�ed while other applications are still running� We could regard this as a

restricted kind of dynamic con�guration� BO classes can be added at runtime� When a BO class is modi�ed

however� San Francisco has to be restarted for the changes to take e�ect�

	���� Integrity

An added advantage of SBOA is increased integrity of business data� In the existing P implementation�

the model objects serve as what Lauesen calls �wrapper objects� �Lauesen 
��� p� ��� which are the access

points to the data for the application logic� Because all updates are performed on the model objects instead

of directly on the database� old data in windows cannot corrupt the database�

The same is true for all programs written with the IBM San Francisco framework� Here� the business

objects serve as wrapper objects� The SBOA provides another kind of integrity� namely integrity of data

between multiple applications� Since each entity in the subject domain is represented by at most one business

object� the data are the same for all applications� Without shared business objects� inconsistencies between

applications can easily occur�



�� Hordijk� Linos� Molterer� Paech� Salzmann� Maintainable Systems with Business Objects

 CONCLUSION

Nowadays� business enterprises need to renovate and maintain their software applications regularly so

that they can remain competitive in today�s market� In this paper� we have addressed an important related

software maintenance problem� which results from the fact that business applications are usually developed

locally for individual departments �and thus producing redundant or overlapping implementations� within

an organization� In order to remedy this problem� we �rst considered the concept of Business Objects �BOs�

as a reuse technique during re�engineering of such applications� By comparing BOs with other existing reuse

techniques� we eventually justi�ed their ability to support large�grain reuse�

Secondly� we studied the concept of a Business Object Architecture �BOA�� which separates the

business logic from the application speci�c parts as well as from the persistence mechanism� We then

extended such architecture to allow for sharing of business objects between several applications and named

it Shared Business Object Architecture �SBOA�� We also have made an attempt to provide a rationale

for designing SBOA e�ectively by keeping the cost low� More speci�cally� we have proposed ways of how

the business logic can be shared economically and how the dependencies between objects can be managed

e	ciently within the SBOA framework�

Finally� we have validated our research �ndings by means of a case study� More speci�cally� we

launched a project where a group of business applications� which belong to a manufacturing company�

are re�engineered using SBOA� The new design was evaluated based on criteria such as its reusability�

modi�ability� con�gurability and integrity� Based on our experiences from this study� we conclude that the

SBOA� proposed in this paper� appears to be a promising approach toward the renovation and maintenance

of business software applications�



Hordijk� Linos� Molterer� Paech� Salzmann� Maintainable Systems with Business Objects ��

REFERENCES

Biggersta�� T� and A� Perlis� Eds� �
���� Software Reusability � Addison�Wesley Pub Co�

Byrne� E� J� �
����� �A Conceptual Foundation for Software Re�engineering� In IEEE Conference on Soft�

ware Maintenance� pp� ��������

Canfora� G�� A� Cimitile� and M� Munro �
����� �RE�� Reverse�engineering and Reuse Re�engineering� 

Software Maintenance� Research and Practice 
 � ������

Dunn� M� F� and J� C� Knight �
��
�� �Software Reuse in an Industrial Setting� A Case Study� In ��th

ICSE � IEEE� pp� �������

Emmerich� W� and E� Ellmer �
���� �Business Objects� The Next Step in Component Technology# In

Proceedings of CBISE�� CaiSE��� Workshop on Component Based Information Systems� Pisa� Italy �

J� Grundy� Ed�� technical report ��
�� Dept� of Computer Science� University of Waikato� Hamilton�

New Zealand� pp� �
����

Gamma� E� et al� �
����� Design Patterns� Elements of Reusable Object�Oriented Software� Addison Wesley�

Hordijk� W� �
����� �Re�engineering an existing object�oriented system with business objects� Master thesis

at the Vrije Universiteit Amsterdam�

Hordijk� W�� S� Molterer� B� Paech� and C� Salzmann �
���� �Working with Business Objects � A Case

Study� In Business Object Design and Implementation II � D� Patel� J� Sutherland� and J� Miller� Eds��

Springer Verlag�

Hung� K�� Y� Sun� and T� Rose �
����� �A Dynamic Business Object Architecture for an Insurance Industrial

Project� In �th Intl� Object�Oriented Information System Conference� pp� 
���
���

IBM �
���� �IBM San Francisco Extension Guide� http���www�software�ibm�com�ad�sanfrancisco��

Jacobson� I�� M� Griss� and P� Johnson �
����� Software Reuse� Architecture� Process and Organization for

Business Success � Addison Wesley�

Karlsson� E��A�� Ed� �
����� Software Reuse � A Holistic Approach� John Wiley � Son�

Krueger� C� W� �
����� �Software Reuse� ACM Computing Surveys �� � �� 
�
�
��

Lauesen� S� �
���� �Real�Life Object�Oriented Systems� IEEE Software March�April � �����

OMG �
���� �Combined Business Object Facility� Business Object Component Architecture� Technical

Report OMG Document bom����
���� OMG�

Salzmann� C� �
����� �Managing Shared Business Objects� In Proceedings of ICSE workshop Engineering

Distributed Objects EDO�� � W� Emmerich and V� Gruhn� Eds�� Departement of Computer Science�

University College London� http���www�cs�ucl�ac�uk�EDO����

Sametinger� J� �
����� Software Engineering with Reusable components � Springer Verlag�

Shelton� R� �
���� �Enterprise Re�Use� Distributed Computing Monitor �� � �� ���
�



�� Hordijk� Linos� Molterer� Paech� Salzmann� Maintainable Systems with Business Objects

Tilley� S� �
���� �A Reverse�engineering Environment Framework� Technical Report CMU�SEI���TR�����

Carnigee Mellon University�


