
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © [2001] IEEE.  
Reprinted from Proceedings of the 5th IEEE International Enterprise 
Distributed Object Computing Conference, EDOC 2001, pp. 212-223 
 
This material is posted here with permission of the IEEE. Internal or 
personal use of this material is permitted. However, permission to 
reprint/republish this material for advertising or promotional purposes or 
for creating new collective works for resale or redistribution must be 
obtained from the IEEE by writing to pubs-permissions@ieee.org  
By choosing to view this document, you agree to all provisions of the 
copyright laws protecting it. 



Developing and Applying Component-Based 
Model-Driven Architectures in KobrA 

Colin Atkinson', Barbara Paech', Jens Reinhold2, Torsten Sander2 
'Fraunhofer IESE, Kaiserslautern, 0-67661 Germany 
2PSIPENTA Software Systems GmbH, D-10178, Berlin 

Abstract 
Component-based software engineering is widely 
expected to revolutionize the way in which software 
systems are developed and maintained. However, 
companies who wish to adopt the component paradigm 
for serious enterprise software development face serious 
migration obstacles due to the perceived incompatibility 
of components with traditional, commonly used 
development approaches. This perception is reinforced 
by contemporary methods and component technologies, 
which Qpically view components as merely "binary- 
level" modules with little relevance beyond the 
implementation and deployment phases of development. 
In this paper we present a method, known as KobrA, 
that embraces the component concept at all phases of 
the software life-cycle, and allows high-level 
components (described in the UML) to be implemented 
using conventional software development approaches as 
well as the latest component technologies (e.g. 
JavaBeans, CORBA, COM). The approach therefore 
provides a practical vehicle for applying he component 
paradigm within the context of a model driven 
architecture. After explaining the noteworthy features of 
the method, the paper briefly presents an example of its 
use in the development of an Enterprise Resource 
Planning System. 

1. Introduction 

It has long been recognized that the solution to the 
quality and productivity problems currently facing the 
software industry lies in increased software reuse. 
Furthermore, of the various reuse approaches currently 
available, component based development probably 
holds the potential to facilitate one of the most 
significant improvements in reuse levels. However, the 
adoption of the component-paradigm in real-world 
software products is being hampered by the narrow 
view of components currently offered by the dominant 
component-oriented implem- entation technologies (e.g. 

0-7695-1345-W01/$10.00 0 2001 IEEE 

JavaBeans, COM and CORBA), and the leading 
development notations/methods (e.g. UML[ l]/RUP[2]). 
These all essentially take the view that components are 
binary executables (or something close to them) and are 
thus of importance only in the: latter stages of a software 
development project. In short, they take the view that 
components are the result of a development project 
rather than an integral part of it. 

This view of components may make sense in "green 
field" development projects (where there is no existing 
software) or for small scale (sub) systems where 
everything can be developed from scratch (e.g. GUI 
subsystems), but it is not practicable for industrial scale 
software development. Developers in this environment 
invariably have to struggle with the demands of the 
market, legacy software systems and less than up-to- 
date technology (e.g. tools, languages etc.). Companies 
concerned with the day-to-day business of enterprise 
software development are therefore rarely in a position 
to throw away all their existing software assets and 
reimplement them in the latest technology of the day 
(e.g. component technologies). On the contrary, as with 
the transition to any new development paradigm, the 
move to component-based development will be a slow, 
incremental and often pa.infu1 process for most 
companies. 

The "binary module" view of components that currently 
dominates contemporary development approaches and 
component technologies is therefore doing little to help 
software organizations actually move to a more 
component-oriented way of doing things in practical, 
enterprise development situations. What is required, in 
contrast, are development approaches that support the 
essence of the component paradigm at a level of 
abstraction that is independent of specific 
implementation technol- ogies, and thus can be used 
with any of them. In short, methods are needed that 
make the component concept an integral part of the 
complete software life-cycle (including analysis and 
design as well as implementation) and are based on 
development activities that are strongly oriented around 

2 12 



the components making up a system's architecture. 
Moreover, such methods must be supported by flexible 
development environments capable of managing the 
abstract descriptions of components, as well as their 
implementation in various technologies. This should 
include traditional technologies as well as "component 
technologies." 

Modern approaches to component-based development 
also typically employ some kind of supporting 
framework to provide the context in which components 
are instantiated and deployed. The rationale is that many 
of the components within a given domain tend to be 
deployed in a similar way in the majority of 
applications, and the variations between applications are 
typically embodied within a critical few components. It 
therefore makes sense to consolidate these common 
components and their deployment patterns within a 
preconfigured, but tailorable framework. However, 
companies facing real world development pressures are 
no more capable of throwing away their entire software 
base to move to a framework approach than they are to 
a component-based approach. An incremental way of 
migrating to frameworks is also therefore needed to 
make these technologies more viable in practical 
development contexts. 

In this paper we describe a method that aims to meet 
these needs. Known as KobrA, the. most important 
single feature of the approach is the strict separation of 
the abstract description of components from their 
implementation. In other words, composition and 
implementation are two totally separate dimension of 
concern. Individual components, as well as their nesting 
within one another, are described at a level of 
abstraction akin to analysis/design in the form of UML 
diagrams. This abstract model driven architecture can 
then be mapped to various different implementation 
approaches depending on the prevailing forces on the 
development projects. By separating the description of 
components and their relationships from specific 
implementation idiosyncrasies, the approach allows an 
incremental and controlled migration to the component 
paradigm, first at the analysis/design level and later at 
the implementation level. The method also supports an 
incremental introduction to framework engineering. 

The remainder of this paper is structured as follows. In 
section 2 we describes how UML models are used in 
KobrA to describe components. Section 3 then sketches 
the development process recommended by KobrA. In 
section 4 we explain the difference between framework 
engineering and application engineering in KobrA, 

while section 5 discusses how the principle of 
separation of concern is realized. Section 6 then 
discusses how KobrA was used for the development of 
a component-based framework for Enterprise Resource 
Planning (ERP) applications. 

2. UML-Based Component Modeling 

In view of its widespread acceptance, the obvious 
candidate for supporting a high-level (technology 
independent') representation of components is the 
Unified Modeling language (UML). The language 
certainly provides a rich set of modeling concepts and 
diagram types intended to support the description of 
components and their related characteristics. However, 
the UML's support for components is very much based 
on the "binary module" concept, and the related idea 
that they are of significance only in the latter phases of 
development. The UML itself does not explicitly 
support a process, but this view of components is clearly 
implicit in the intended role of component and 
deployment diagrams (the so called implementation 
diagrams). Moreover, Rational's recommended process 
for applying the UML, the Rational Unified Process [2], 
explicitly delegates components to the final 
"implementation" stages of development. 

As mentioned above, this limited "implementation- 
level" view of components complicates the task of using 
component-oriented ideas with other implementation 
technologies, and misses the opportunity to exploit the 
advantages of component in the earlier phases of the 
software life cycle. Instead of merely providing a 
graphical picture of the final component-based 
implementation of a system, what is required is a way of 
organizing and structuring UML development artifacts 
(including class diagrams and behavioral diagrams) in a 
component-oriented fashion. This will allow the 
analysis and design of a system to proceed in a more 
component-oriented way, and the benefits of modular 
organization to be exploited when attempting to reuse 
parts of the system for new applications. 

This observation is not new. Probably the best-known 
approach advocating a component-oriented approach to 
the use of the UML is the Catalysis method [3]. 
However, Catalysis only follows this approach to a 
limited extent, since it also uses other concepts, like 

Here we mean implementation-level technology, such as 
programming language or a particular component technology 

2 13 



frameworks, to organize UML diagrams and defines 
many kinds of models (or views) that are not intended to 
be fundamentally component-oriented. In contrast, the 
KobrA approach is based on the principle that all UML 
artifacts used in system development should be 
structured and organized around the essential 
components in a system. This is embodied by KobrAs 
principle of locality which holds that, to the greatest 
extent possible, all development artifacts (e.g. 
requirements, architectures, designs etc.), should be 
created from the perspective of (and thus belong to) one 
and only one component in the system. 

At some point or other every method purporting to use 
or support components must define what it means by 
this concept. The literature clearly indicates that this is 
no easy task [5 ] .  The KobrA method approach to this 
issue is based on the simple and practical metaphor of - 

components = (sub)systems. 

Essentially any behavior-rich software abstraction 
capable of remembering some state information and/or 
of responding intelligently to external requests can be a 
component in KobrA. This includes entities ranging 
from entire systems to small. To make this principle 
work in practice it is necessary to have a uniform view 
of components in which they are all modeled in the 
same way regardless of their granularity or location. 
Moreover, it is also important to be able to explicitly 
capture the nesting of components within one another. 
In short, the method must adopt a fractal like view of a 
component-oriented system in which, to the greatest 
extent possible, all components at all level are treated in 
the same way2. 

KobrA components are also very much like subsystems 
in a technical sense as well. Like UML subsystems, 
components in KobrA exhibit the dual properties of 
classes and of packages. This means that they cannot 
only offer features and services (like a class), but they 
can act as containers for other entities, such as lower- 
level (i.e. sub) components. The difference between 
UML subsystems and KobrA components is that 
whereas the former cannot have any behavior of their 
own, the latter certainly can and usually do. 

Viewing a component as a system also has the 
advantage that it is possible to leverage the substantial 

Catalysis is another well-known method that also recognizes 
the importance of the fractal-like model of a component-based 
system. 

body of knowledge on the object-oriented modeling of 
software systems. As illustrated in Figure 1, KobrAs 
way of describing components is essentially based on 
the Fusion approach [4] for system description. This in 
turn is based on the original OMT approach which 
heavily influenced object-oriented development in the 
early 90's. 

Specification 

Figure 1 UML-based representation of Components 

Figure 1 shows that the description of a component in 
KobrA is composed of two parts - a specification and a 
realization. These roughly correspond to the analysis 
and design views of a traditional non-component based 
system. The specification describes the externally 
visible properties of a component in terms of three main 
models - one or more static structure diagram giving the 
structural view, a set of operation specifications3 giving 
the functional view, and a statechart diagram giving the 
behavioral views. These three views reflect the original 
three dimensions of object-oriented analysis popularized 
by OMT [6 ] ,  and later strengthened by Fusion [414. 

The realization, on the other hand, describes how a 
component realizes its specified properties in terms of 
interactions with other components (possibly internal 
subcomponents). This is achieved by means of three 
main models - static structure diagrams presenting the 
design level structural view, a set of interaction 
diagrams (collaboration or sequence diagrams) giving 
the interaction-oriented view, and a set of activity 
diagrams giving the algorithmic view. The realization 

These were called operation schemata in the Fusion method 

In fact, the KobrA specification models represent a cross 
between OMT and Fusion, since the functional view 
essentially adopts the Fusion "operation schemata" approach 
while the behavioral view adopts OMTs state chart approach. 

2 14 



views are therefore essentially based on the Fusion 
concept of object-oriented design artifacts, with the 
addition of activity diagrams and the use of a design 
class diagram in place of the Fusion class descriptions. 

as shown in Figure 2. These ensure that the properties 
defined within a specification of a subcomponent match 
the expectations of the supercomponent defined in its 
realization. Three main kinds of consistency rules 
control the form and inter-relationships of the models 
describing a hierarchy of components, as shown in 
Figure 2. 

It is important to note that not all the models defined 
above have to be created for every component. 
Sometimes a model contains no useful information, and 
thus is not needed. This is the case, for example with 
very small components, or purely passive components. 
The position taken by KobrA is that if a model is 
deemed necessary it must take the form explained 
above, but it can be omitted. Additional artifacts not 
mentioned above can also be used in the documentation 
of components, including test cases, data dictionaries 
etc. One special form of auxiliary model supporting 
framework engineering is described below. 

f 

3. Component-Based Development 

Figure 2 Inter-model constraints 

One of the main motivations for basing the KobrA 
models on those of the Fusion method is to leverage 
Fusion’s degree of rigor and quality control. The Fusion 
method is widely recognized as providing one of the 
most systematic approaches to object-oriented 
development thanks to its rigorous inter-model 
consistency constraints and its systematic development 
process. As illustrated in Figure 2, the KobrA method 
has adopted and extended these to provide a 
comprehensive set of inter-model consistency 
constraints. These not only serve as a means of checking 
the correctness of models with respect to one another, 
but also provide a concrete way of defining the 
completeness of a model. In particular, information in 
one model that is not used by any others is redundant 
and can be removed. 

The main difference between KobrA and “traditional“ 
object-oriented methods such as Fusion and OMT is that 
the modeling approach is applied recursively to yield a 
nested hierarchy of (sub)components, all described in 
the same way. The result is a tree of components 
organized according to their composition hierarchy. 
Naturally the inter-view and refinement constraints 
found in the description of a single component are now 
augmented by contract constraints between components 

A software development method has two basic parts, a 
product and a process. The component-oriented model 
driven architecture described in the previous section 
represents the product of a KobrA project: in this 
section we describe the process. 

Strictly speaking, since the nature of the KobrA product 
is perfectly well defined independently of a process, any 
process can in principle be used in its creation. As long 
as a set of artifacts is produced that conforms to the 
rules discussed above, it is not of particular importance 
how they come into existence. In practice, however, 
companies wishing to apply the KobrA approach will 
need the support of a process. Moreover, the simpler 
and more systematic the process steps can be, the easier 
and less error prone the application of the method will 
be. 

3.1 Specification and Realization Activities 

The goal of simplicity is primarily achieved in KobrA 
by the provision of a recursive development process. 
Since the product of a KobrA project is composed of a 
nested hierarchy of components, the process can be 
recursive. In other words, the product can be created by 
the recursive application of the same basic set of 
development activates. This not only leads to a 
significant simplification of the methods, since the 
process can be defined in a relatively small number of 

2 15 



activities, but it also means that the process is tightly 
coupled to the product. This is because activities are 
performed as and when required according to the shape 
of the product. Another powerful feature of a recursive 
process is therefore that it is naturally scaleable to 
products of different sizes. 

- - I  
I.._ 

" ~ ~ " " ~ ~ ~ ^ " I . x " . - x x x " " " " I x x _ I _  

I cs 
""". S p e c i f i c a t i o n  - R e a l i z a t i o n  

Figure 3 Recursive Development Process 

As illustrated in Figure 3, the basic development 
process in KobrA is characterized by the recursive 
application of specification and realization activities, 
which roughly correspond to analysis and design in 
conventional methods. As might be expected, the 
purpose of the specification activity is to create a 
component specification, and the purpose of the 
realization activity is to create a component realization. 

Since the nature of a component's specification is 
determined by the needs of its parent, the component 
specification activity takes places in the context of the 
parent component's realization models, and is driven by 
the corresponding "contract" between the two. 
Similarly, since the purpose of a component's realization 
is to realize its specification, the component realization 
activity takes place in the context of the component's 
specification models, and is driven by corresponding 
refinement rules. The overall development process is 
thus characterized by a repeated cycle of specification 
and realization activities, primarily in a top down 
process. The bottom up aspects of the process are 
discussed in the Component Reuse section below. 

3.2 Context Realization 

Obviously there is one fundamental question that arises 
with the recursive development approach just described 

above - where does the processes start? Clearly it must 
be possible to create a component specification or 
realization by some other means in order to start off the 
recursive process. In KobrA the answer is provided by 
the context realization activity. This is a special variant 
of the regular realization activity whose job is to 
provide the needed starting point. It outputs the same set 
of realization models as the regular realization activity, 
but does so without the benefit of a prior specification. 

Since it has to start from scratch, so to speak, the 
context realization activity is based on "front end" 
requirements elicitation and arialysis approaches such as 
uses case analysis and business process modeling. In 
view of this, the name of the activity "context 
realization" might at first see:m surprising, but further 
thought reveals that it is in fact appropriate. This is 
because the models created within this activity describe 
the "context" of the system in the sense that it is usually 
understood. Included in the context realization models 
are a description of the components (some of which 
may be human) in the environment of the system, and 
the way in which it interacts with them. The term 
realization is used because the introduction of a new 
computer system into a business process almost always 
involves some changes to the process. Describing the 
context of the system therefore also amounts to a 
description of the new way in which the particular 
business process is to be realized once the system under 
development becomes available. 

In a sense the context can be viewed as a pseudo 
component at the root of the development tree. The 
system can be treated as a regular component, just like 
any other in the KobrA development hierarchy. The 
context realization process starts with enterprise 
modeling as a substitute for the missing specification. 
The enterprise models are input for structural, usage and 
interaction modeling. Because of the complexity of the 
context, there are several feedback loops between these 
activities. 

3.3 Implementation and Building 

The specification and realization activities described in 
the previous subsections give rise to an abstract 
description of a tree of components. But since this 
mainly takes the form of a set of UML models, it is not 
executable. Other activities are thus needed to translate 
these abstract descriptions into executable forms. In 
KobrA this is achieved by means of the implementation 
and building activities. 

2 16 



An important principle in KobrA is that the 
implementation and building activities should be 
orthogonal to the decomposition activities captured in 
the UML models. In other words, as shown in Figure 4 
the implementation and building activities represent a 
different dimension of concern to composition. This 
separation of concerns is the basis of KobrA's flexibility 
with respect to traditional implementation technologies 
and thus is support the model-driven architecture 
paradigm. The executable incarnations of components 
depicted on the right hand side of the figure could be 
implemented in almost any kind of development 
technology, ranging from programs in standard 
programming languages, to components in a modern 
component technology such as COM, EJB or CORBA. 
Of course, in the former situation more work has to be 
done to realize inter-component communication (e.g. 
using sockets) whereas in the latter case this is 
supported automatically. 

I m p l e m e n t a t i o n  
6 B u i l d i n q  

Figure 4 Implementation and Building Activities 

There is also no reason why every logical component 
should be mapped to a separate executable. This 
represents one extreme approach5. As shown in Figure 
5 ,  at the other extreme it is also possible to combine all 
the abstract components into a single executable (e.g. a 
program). The choice depends on the prevailing needs 
of the customer when the executable form is generated. 

Another important point to note about the KobrA 
approach so far as the creation of executables is 
concerned is that it is not necessary for every 
component in a hierarchy to be included in every 
executable image. This is because of the fact that since 
KobrA describes every component uniformly, whether 
it be the top-level component at the root of the tree, or 

It is assumed that abstract components represent the smallest 
level granularity (i.e. they will rarely be split up into more 
than one executable). 

smaller components lower down, every component that 
provides useful services to a potential user can be 
treated as a system, and mapped into an executable 
image. Thus, when an abstract component is incorp- 
orated into an executable image its subcomponents must 
also be contained in the image since they are in  a sense 
part of it. 

Figure 5 Single Executable 

However, a component's supercomponent need not 
necessarily be ,  included. Figure 6 below illustrates a 
scenario in  which a component other than the root of the 
tree is selected to represent a system and is translated 
into an executable form. 

, 

Figure 6 (sub)component as a system 

3.4 Component Reuse 

Another important aspect of the KobrA process is the 
so-called component reuse activity. The KobrA 
development activities described to this point are all 
concerned with the development of new software 
components, and thus all lean towards a top-down style 
of development. However, this is not the way in which 

217 



the component-paradigm is supposed to work. Instead, 
application development should support the assembly of 
existing components as well as the creation of new ones 
where needed. This is the role of the component reuse 
activity in KobrA. 

Whenever a new component specification has been 
defined, the KobrA developer has the option of realizing 
it from scratch using the regular realization activity, or 
realizing it using an existing component if one is 
available. This is essentially the infamous "make" or 
"buy" problem. The make option corresponds to the 
regular realization activity while the buy option 
corresponds to component reuse. 

The first task when pursuing the buy option is to find a 
potentially suitable component whose services and 
properties provide a reasonably close match to those 
required. Of course, if a perfect match is found, and a 
component is available that provides a perfect 
realization of the specification, this is simply used 
without modification. This is rarely, if ever, the case 
however. Usually candidate components have at least a 
few properties that do not exactly match the 
requirements defined in the specification. 

1 1 , "  

... " ~""..~." 
__."I" 

Component 
Reuse 

I e prexistinq Component 

Figure 7 Component Reuse Activity 

The next step is therefore a process of negotiation 
between the candidate component and the potentially 
using component to see if an agreed-upon interface can 
be determined. If the candidate for reuse can be 
modified in some way, or is highly parameterized, both 
parties have the flexibility to adjust to a slightly 
modified interface. However, in many cases the 
implementation of the candidate component is 
completely fixed, or may not even be known, as with 
COTS components for example, so all adjustments have 
to be made within the realization of the using 
components. If the candidate component and the 

potential user can agree on a mutually acceptable 
interface (i.e. specification in KobrA terminology) - that 
is an interface which the former can use and the latter 
can fulfill, then the candidate component can be used 
and a fresh realization can be avoided. 

As shown in Figure 7, since it enables existing 
components to be inserted into a component tree 
wherever a match is found, the component reuse activity 
introduces a more bottom up way of developing a 
hierarchy of components. The overall KobrA process is 
therefore balanced between the top-down and bottom-up 
ways of proceeding. 

3.5 Quality Assurance 

As mentioned previously, one: of the benefits expected 
from the component paradigm is increased quality (or 
the attainment of given quality levels more easily). In 
the long term this will arise as the proportion of tried- 
and-tested, off-the-shelf components to newly 
developed components increases. The less brand-new 
software that has to be developed for a new application 
the lower the chance of errors being introduced. 

This notwithstanding, there will always be the need for 
some new software to be developed, even if it is only 
"glue" software in the root component's realization to 
configure a new assembly of preexisting components. 
Furthermore, this need is likely to be the greatest in the 
earliest phases of a company's transition to the 
component paradigm, when they are most vulnerable to 
project cancellation due to perceived failures. To help 
ensure that the quality expectations of users are 
satisfied, the KobrA approach includes several fully 
integrated quality assurance activities. Moreover, since 
the costs of errors rapidly increase the longer they 
remain undetected, the emphasis on KobrA is on early 
defect detection and quality evaluation. In addition to 
testing, this is achieved by means of two main 
techniques. 

The first is the comprehensive and fully integrated use 
of inspections within all activities of the KobrA process. 
Every major development activity, such as specification, 
realization etc. culminates in a series of inspection 
activities designed to check that the extensive inter- 
model consistency rules mentioned above are satisfied. 
KobrA employs an form of perspective-based reading 
[7] that requires components to be inspected from the 
perspectives of various different stakeholders, thereby 
optimizing the defect detection effectiveness of the 
overall inspection process. 

218 



Another important aspect of KobrA's quality assurance 
approach is the early application of quantitative quality 
modeling techniques to try to evaluate the quality of 
development artifacts soon after they are created. 
Although it is usually the most critical quality issue, 
correctness is not the only concern. It is also important 
to be able to evaluate "how well" a specification or a 
realization, once correct, satisfies other quality issues, 
such as maintainability, reliability etc. In other words, it 
is important to ascertain to what extent a components 
adherence to non-functional requirements6. To help 
address this need, KobrA incorporates quality 
assessment techniques based on a quantitative analysis 
of the UML models used to describe components. Using 
statistical analyses of relationships between concrete 
internal measures (such as component coupling and 
cohesion etc) and externally visible properties, such as 
maintainability etc., it is possible to gain early indicators 
of the quality of particular realizations and 
specifications, and thereby to help direct limited 
resources to where they can be most effective. 

Quality assurance activities of the kind just described 
are in fact of more importance in KobrA than in other 
component-oriented development approaches because 
of its reliance on a tree-based structure. When a 
development process involves the top down elaboration 
of a tree, errors made early in the process take on much 
more significance. For an example a mistake in the 
specification of the root component could later require 
the redevelopment of large parts of the component 
hierarchy, whereas errors made in lower level 
components will not have such a significant impact. 

In its tree-based organization of the development 
process, and its emphasis on early quality control and 
defect detection, KobrA bears some similarities to the 
Cleanroom approach [9], one of the most systematic 
methods used in practical software engineering projects. 
In fact, many of the tree organization issue faced in 
KobrA are similar to those faced in the Cleanroom 
approach. 

3.6 Incremental development 

Another important feature of the KobrA method is its 
natural support for incremental development. Since the 
implementation and building activities are orthogonal to 
the component modeling and decomposition activities, 
as soon as a component realization has been completed 

Commonly captured as the well-known "ilities". 

it is possible to translate it into an executable form (i.e. 
an increment). Of course, to actually execute such an 
increment it is necessary to generate preliminary 
substitutes (i.e. stubs) for yet-to-be-built parts of the 
system (i.e. the subcomponents), but this is no different 
to any other incremental process. In KobrA, developers 
are free to choose when to translate a component 
realization into an executable form. Each component 
can be implemented and tested as soon as it is realized, 
to give a highly incremental approach to development, 
or the implementation, building and deployment 
activities can be postponed until the entire component 
tree is complete. 

Looking at the development process in Figure 3 "from 
the top", so to speak, it is clear that the KobrA approach 
can be viewed as an incarnation of the well-known 
spiral process model. The main difference between 
KobrA's approach and other leading UML-oriented 
methods such as RUP [ 2 ] ,  is that in KobrA the 
development increments are more component-oriented. 
Relying on use cases to drive the development process, 
as in the RUP, leads to development increments that are 
more function-oriented. This in turns creates a tension 
between the function (i.e. use-case) oriented increments 
and the component-oriented architecture. In KobrA, the 
development increments and software architecture are 
both component-oriented. 

4. Framework and Application 
Engineering 

The aspects of the KobrA approach described above all 
relate to the development and deployment of a one-off 
single system. While this is a perfectly feasible and 
effective way of applying the KobrA method, it is well 
known that the vast majority of software organizations 
actually have to support a family of related products, 
rather one single product. The KobrA approach 
therefore also accommodates a more product line 
approach to software development in which the 
differences between product variants can be explicitly 
modeled. 

KobrA supports product lines by allowing component 
specifications and realizations to be augmented by so 
called decision models [8]. The purpose of a decision 
model is to relate properties of the component, as 
described by the UML models, to externally visible 
features that represent points of variation. Components 
that possess a decision model are referred to as generic 
components, and model the total set of features 

2 19 



possessed by all their variants in the product line. The 
decision model captures these variabilities in terms of 
the UML models and defines the rules by which they 
may be resolved in specific instances to create specific 
components. 

Since a system is simply regarded as a component in 
KobrA, it is a natural extension to regard a product line 
as a generic component. Specific instances of the 
product can therefore be viewed as specific instances of 
the generic component, created by the resolution of the 
accompanying decision model. The general form of the 
KobrA product is therefore a hierarchy of generic 
components, or a framework, containing interdependent 
decision models. As one might expect, the resolution of 
decision models at one level in a framework will place 
constraints on how decision models lower in the 
component hierarchy are resolved. In extreme cases, 
choices made for a component may lead to some of its 
subcomponents not even being included in that specific 
variant. 

In their most general form, all the development 
activities described in the previous sections can be used 
to develop a framework of generic components. They 
therefore form part of what is called the frumewurk 
engineering activity of KobrA. The activities can also of 
course be used to develop a hierarchy of component 
without any variabilities (i.e. decision models) but this 
is simply viewed as a special case of the more general 
situation. Moreover, to remain consistent with the view 
that any component can be a system (or an application), 
KobrA takes the view that any generic component can 
be a framework. 

Before an executing system can be derived from a 
KobrA framework containing decision models, it is first 
necessary to resolve the corresponding decisions to 
create a concrete instance. This is the role of the 
application engineering activity. The result is a 
hierarchy of concrete specific components, known as an 
application, which can be translated into an executable 
form in precisely the way described above. Each 
application instantiated from a framework in this way is 
said to be a variant of the framework. 

An important characteristics of this approach is that its 
supports an incremental way of introducing product line 
ideas. A company can work with a single system 
version of the component hierarchy (i.e. a framework 
without variabilities) until they feel comfortable enough 
to start to introduce variant features and decision 
models. Moreover, the first decision models can be very 
simple. 

5. Separation of Concerns 
The strength of KobrA's approach to component-based 
and product line engineering, is its strict separation of 
concerns. Not only is the product of a KobrA project 
strictly separated from the process for creating it, but as 
illustrated in Figure 8, the various development 
activities are carefully separated into three main 
dimensions. The abstraction dimension relates to the 
level of detail at which a hierarchy of components is 
described (i.e. UML or code level), the specificity 
dimension relates to the presence or absence of variable 
features from the perspective of a product line, and the 
composition dimension relates to the nesting of 
components within one another. By making solutions to 
these concerns as orthogonal as possible, different 
strategies can be "mixed and matched" in a manner that 
best suits a particular development organization. 

Framework 

I I I Engineering 

J lmplemerilatiofi 

Figure 8 Separation of Concerns 

A central dilemma for any development method is 
achieving the appropriate balance between prescriptivity 
(that is, the enforcement of concrete rules) and 
flexibility (that is, the provision of freedom for the 
developer to work as he or she sees fit). The KobrA 
methods approach to this dilemma is illustrated in 
Figure 9, which plots the degree of prescriptiveness for 
each of the main artifacts created in the general KobrA 
development chain. 

As can be seen from this figure, the method is most 
prescriptive (i.e. defines the most concrete rules) in the 
earlier framework engineering phase, but the level of 
prescriptiveness decreases towards the later 
development stages where the method is much more 
liberal. We believe this provides the optimal support for 
practical migration to the component paradigm since it 

220 



gives companies prescriptive support where it is most 
need (in the earlier front end phases) but allows them to 
employ their own in house development technologies 
for the final implementation-oriented phases. 

I 3 - b  
F r a m e v o r h  A p p l i c a t ~ o n  I m p l e m e n t a t i o n  E x e < u t a b l e  O e p l o y e d S y r t e m  

Figure 9 Degree of Prescriptiveness 

6. Example 

In this section we describe some experiences gained in 
applying aspects of the KobrA method in the 
development of an Enterprise Resource Planning (ERP) 
framework at PSIPENTA Software Systems GmbH, one 
of the leading ERF’ system producers in Europe. 
PSIPENTA took the opportunity to apply KobrA as part 
of the introduction of a new product line known as 
PSIPENTA.COM. 

PSIPENTA’s software products have traditionally been 
based on the typical clientlserver architecture. In the 
new product generation, however, this classical 
structure was enhanced by the introduction of a third 
abstraction layer, which contains a new user interface 
embedded within the Microsoft Internet Explorer. 

The underlying functionality of PSIPENTA is provided 
by around 600 so called PSIPENTA business objects. 
These are not physical components in the sense of a 
DLL, a COM server or a Java Bean, but logical (i.e. 
functional and descriptive) components in the sense of 
KobrA. As illustrated in Figure 10, the underlying 
architecture of the new system is distributed. 
PSIPENTA business objects are thus typically deployed 
on different computers. 

Although each business object possesses its own data 
and behavior, they all interact with the user via the same 
basic user interface model. In particular, the interface to 
each PSIPENTA business object is composed of three 
master window types: filter, overview and detail view. A 
business object is first opened in the filter view. 
Following the specification of the appropriate filter 

parameters, the system then shows the filtered data sets 
in the overview view. The user may subsequently select 
specific data sets for closer analysis in a detail view or 
may manipulate a subset of the data in a processing box. 
Processing boxes are additional windows associated 
with business objects to provide additional optional 
inputs. 

Internet Explorer 

Application Client 

Application Server 

Database Server 

Figure 10 Architecture of PSIPENTA.COM 

This PSIPENTA-specific window handling approach is 
referred to as the standard sequence (in German: 
“Standardablauf ’). A central component in the system 
known as the standard sequence driver (in German: 
“Standardablauftreiber”, or “SAT”) is responsible for 
managing the execution of this standard sequence for 
individual business objects. It achieves this by means of 
so called SAT events driven by user inputs. Figure 11 
shows the possible window transitions for a PSIPENTA 
business object and the associated SAT events which 
initiate these transitions. In the new product version of 
the system, PSIPENTA.COM, the SAT takes the form 
of an emulation module on top of the central Business 

22 1 

http://PSIPENTA.COM
http://PSIPENTA.COM
http://PSIPENTA.COM


Object Broker (BOB). This makes it possible to use all 
the business objects in the manner familiar to 
PSIPENTA users, but in addition any business object is 
callable via the BOB from outside the PSIPENTA 
system using COM. 

-init 

-evaluate 

!%!dv \ c/ *-execute, -init 

- 0 v 2 d v / j l  
create 

& n o d i f y  
delete 

dv2ov 
-read 

Figure 11 BO Window Crossovers and SAT Events 

In developing the new product generation, the central 
goal was to establish a framework which embodied all 
important information about business objects, including 
the standard user interface sequence, window 
alternation and the generic handling of SAT events. The 
aim was to make it easier and faster to build specific 
PSIPENTA business objects, without the need for any 
code duplication to access PSIPENTA components for 
business object management and control. 

The application of the KobrA approach helped us to 
view business objects as logical systems, each 
constructed from a possibly large set of subsystems. 
Figure 12 illustrates the overall KobrA component tree 
for the new framework. The first level components 
below PSIPENT BO - Interface, Business Logic, Datu 
Model and Persistence, are abstract components which 
describe the common properties inherited by the 
concrete components in the levels below. 

These components were partly decomposed into lower- 
level subcomponents during subsequent steps. For 
example the GUI component was decomposed into 
subcomponents related to the three main window types 
and a generic processing window component. During 
the decomposition processes the strict rules of the 
KobrA method proved to be particularly helpful in 
managing the overall execution of the project. KobrA 
was also very helpful during the specification phase for 

identifying important subcomponents, deciding what 
kinds of diagrams to develop and what they should 
contain. 

PSIPENTA BO 

Persistence 

BO Controler 

Figure 12 PSIPENTA BO component tree 

The first use of the new framework was in the 
generation of a new system for user authorization. 
Figure 13 illustrates the individual subcomponents 
making up this authorization system. Since our 
framework was evolved for a single PSIPENTA BO, we 
effectively developed an application in the sense of 
KobrA for each of the new PSIPENTA BOs in this 
figure. 

The connections between the individual components 
show the relationships between the underlying data 
structures in the new authorization system. After 
instantiation of the application, the specific functionality 
and the real data structures were added for each 
business object, and the specific forms and displays for 
the user interface were defined. 

arrignedCompeteice 

Figure 13 Authorization System Business Objects 

The use of the framework to develop specific 
applications and to build new PSIPENTA BOs has 
appreciably improved the reusability, adaptability and 

222 



extensibility of the resulting components. The 
framework has not been in operation long enough to 
judge the long term return on the investment put into its 
development, but the effort involved in creating new 
PSIPENTA BOs has been significantly reduced. 

In the future, the sale and deployment of ERP systems 
will increasingly depend on the quick and cost effective 
adaptation and extension of generic software to 
customer specific needs. By application of the KobrA 
method, PSIPENTA was able to develop a general- 
purpose framework for the new component based 
version of its ERP software PSIPENTA.COM. This 
makes it possible to respond quickly and flexibly to new 
user requests by adding new components. In particular, 
it simplifies the interoperation of PSIPENTA with third 
party software such as workflow systems, e-business 
applications and so on. 

7. Conclusion 

The binary-module view of components that currently 
prevails in the UML and contemporary component 
technologies (e.g. COM, CORBA and EJB) is limiting 
their impact in domains where their benefits were 
widely heralded, such as e-business and web-based 
development. In this paper we have described a method, 
known as KobrA, which tries to address this problem by 
supporting a more model driven approach to 
component-based development that enables components 
to be exploited in all phases of development. As well as 
defining a systematic way of using the UML to model 
components, the method also employs a product line 
strategy for making them generic. This involves the 
creation of generic frameworks that can be rapidly 
instantiated and adapted as needed to meet the needs of 
specific customers. 

Most of the development strategies embodied by KobrA 
are not new. What is new about the method is the way 
they are integrated into a coherent whole. By cleanly 
and strictly separating concerns for different 
development dimensions (e.g. containment, genericity 
and abstraction), and keeping the number of distinct 
development concepts as small as possible, KobrA 
enables the principles of component-based 
development, product line engineering and model 
driven architectures to be used in a simple and 
systematic way. 

To date, the main example of KobrA's application on an 
enterprise level is in the development of the Enterprise 

Resource Planning (ERP) system reported in the final 
part of the paper. This satisfactorily demonstrated the 
applicability of the key aspects of the method, but 
insufficient time has passed to judge whether the 
investment in reusable artifacts has paid off in a 
significant way. However, preliminary indications are 
that this is the case. Further information will be 
provided by additional industrial applications of the 
method currently in the pipeline. 

Acknowledgements 

The authors are grateful to their colleagues on the 
KobrA team for their contribution to the ideas in this 
paper. 

References 
1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

OMG Unified Modeling Language Specification, 
Version 1.3. OMG document ad/99-06-08. 1999. 

I. Jacobson, G. Booch and J. Rumbaugh, "The 
Unified Software Development Process", Addison- 
Wesley, 1998. 

D. D'Souza and A. C. Wills, Catalysis: Objects, 
Frameworks, and Components in UML, Addison- 
Wesley, 1998. 

Coleman, D., Arnold, P., Bodoff, S., Dollin, C., 
Gilchrist, H. Hayes, F., and Jeremaes, P., Object- 
Oriented Development: The Fusion Method. 
Prentice Hall, 1993. 

C. Szyperski, Component Software - Beyond 
Object-Oriented Programming, Addison-Wesley, 
1998. 

J. Rumbaugh et. al, "Object-Oriented Modeling and 
Design",., Prentice Hall, 1991. 

0. Laitenberger, C. Atkinson, Generalizing 
Perspective-based Inspection to handle Object- 
Oriented Development Artefacts, ICSE'99, 1999. 

C. Atkinson, J. Bayer and D. Muthig, "Component- 
Based product Line Development: The KobrA 
Approach", First International Software Product 
Line Conference, Pittsburgh, August 2000. 

Deck, M., "Cleanroom and object-oriented software 
engineering: A unique synergy". In Proceedings of 
the Eighth Annual Software Technology 
Conference, Salt Lake City, USA, April 1996. 

223 

http://PSIPENTA.COM

	IEEE_2013_Copyright
	00950441

