
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/267791255

Task-Driven	Requirements	in	Object-Oriented
Development

Article	·	January	2004

DOI:	10.1007/978-1-4615-0465-8_3

CITATIONS

38

READS

159

2	authors,	including:

Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:

Sysplace	View	project

Fun-of-Use	View	project

Barbara	Paech

Universität	Heidelberg

212	PUBLICATIONS			2,255	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Kirstin	Andrea	Kohler	on	13	January	2015.

The	user	has	requested	enhancement	of	the	downloaded	file.

https://www.researchgate.net/publication/267791255_Task-Driven_Requirements_in_Object-Oriented_Development?enrichId=rgreq-35ec80d2dc3efc180b97fa3b8bb03ecd-XXX&enrichSource=Y292ZXJQYWdlOzI2Nzc5MTI1NTtBUzoxODUxMTYzODcxOTI4MzNAMTQyMTE0NjU5NDI5MQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/267791255_Task-Driven_Requirements_in_Object-Oriented_Development?enrichId=rgreq-35ec80d2dc3efc180b97fa3b8bb03ecd-XXX&enrichSource=Y292ZXJQYWdlOzI2Nzc5MTI1NTtBUzoxODUxMTYzODcxOTI4MzNAMTQyMTE0NjU5NDI5MQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Sysplace?enrichId=rgreq-35ec80d2dc3efc180b97fa3b8bb03ecd-XXX&enrichSource=Y292ZXJQYWdlOzI2Nzc5MTI1NTtBUzoxODUxMTYzODcxOTI4MzNAMTQyMTE0NjU5NDI5MQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Fun-of-Use?enrichId=rgreq-35ec80d2dc3efc180b97fa3b8bb03ecd-XXX&enrichSource=Y292ZXJQYWdlOzI2Nzc5MTI1NTtBUzoxODUxMTYzODcxOTI4MzNAMTQyMTE0NjU5NDI5MQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-35ec80d2dc3efc180b97fa3b8bb03ecd-XXX&enrichSource=Y292ZXJQYWdlOzI2Nzc5MTI1NTtBUzoxODUxMTYzODcxOTI4MzNAMTQyMTE0NjU5NDI5MQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Barbara_Paech?enrichId=rgreq-35ec80d2dc3efc180b97fa3b8bb03ecd-XXX&enrichSource=Y292ZXJQYWdlOzI2Nzc5MTI1NTtBUzoxODUxMTYzODcxOTI4MzNAMTQyMTE0NjU5NDI5MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Barbara_Paech?enrichId=rgreq-35ec80d2dc3efc180b97fa3b8bb03ecd-XXX&enrichSource=Y292ZXJQYWdlOzI2Nzc5MTI1NTtBUzoxODUxMTYzODcxOTI4MzNAMTQyMTE0NjU5NDI5MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universitaet_Heidelberg?enrichId=rgreq-35ec80d2dc3efc180b97fa3b8bb03ecd-XXX&enrichSource=Y292ZXJQYWdlOzI2Nzc5MTI1NTtBUzoxODUxMTYzODcxOTI4MzNAMTQyMTE0NjU5NDI5MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Barbara_Paech?enrichId=rgreq-35ec80d2dc3efc180b97fa3b8bb03ecd-XXX&enrichSource=Y292ZXJQYWdlOzI2Nzc5MTI1NTtBUzoxODUxMTYzODcxOTI4MzNAMTQyMTE0NjU5NDI5MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kirstin_Kohler?enrichId=rgreq-35ec80d2dc3efc180b97fa3b8bb03ecd-XXX&enrichSource=Y292ZXJQYWdlOzI2Nzc5MTI1NTtBUzoxODUxMTYzODcxOTI4MzNAMTQyMTE0NjU5NDI5MQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Chapter #

TASK-DRIVEN REQUIREMENTS IN OBJECT-
ORIENTED DEVELOPMENT

Barbara Paech, Kirstin Kohler
Fraunhofer Institute for Experimental Software Engineering
Kaiserslautern, Germany
E-mail: {paech,kohler}@iesef.raunhofer.de

Abstract: There is no accepted method today that integrates requirements engineering
and object-oriented development for user interface and information-intensive
systems. In this paper we present the major issues such a method has to deal
with and illustrate them with examples from our method TORE (Task and
Object-oriented Requirements Engineering).

Key words: Requirements specification, Object-oriented development, User interface
design, Tasks

1. INTRODUCTION

Object-oriented methods have penetrated software development in many
application areas. As for the evolution of the structured methods, they
focused first on code, but then gradually several notations for design and
requirements were introduced, and were finally standardized with the unified
modeling language (UML) [26]. At the same time, the unified process [15]
was developed to standardize the application of these notations that widely
differed before in methods such as [4,7,14,29]. For requirements
engineering, the unified process - in industry mostly known in the specific
form of the Rationale Unified Process (RUP) [19] – offers use cases and
class diagrams.

While use cases were not part of the early object-oriented methods, they
are now widely accepted as a good means to capture requirements. This is
exemplified in the bulk of recent book publications on use cases, e.g. [1,6].

2 Chapter #

The most popular of these is [6], which treats use cases in isolation. It gives
guidance on how to develop use cases on different levels of detail, but does
not show how to integrate use case development into a full-fledged
requirements engineering process. So, for example, little is said about how to
integrate class modeling with use case modeling or how to integrate user
interface development with use case modeling. Thus, despite the
standardization efforts, there is no commonly accepted method today that
integrates object-oriented development (OO) and requirements engineering
(RE), not even for particular application domains.

Although there is no accepted method, it is possible to characterize the
fundamental issues of such integration. It is the purpose of this paper to
present and illustrate these issues for a particular domain, namely user
interface- and information-intensive systems (in the following abbreviated as
UIS). Object-oriented applications are typically from this domain. Examples
are information or workflow systems to support business processes in a
company, or web-applications for B2C. In our discussion we focus on
functional requirements, since methods for non-functional requirements are
just starting to evolve (e.g., [5]) and are not tailored to object-oriented
methods.

 The rest of this paper is structured as follows: in Sect. 2 we discuss the
properties that a method integrating RE and OO should exhibit. Then we
propose a conceptual model of functional UIS requirements that reflects
these criteria. This model is used to classify two prominent, but quite
different methods in this area. In order to illustrate the details of the
integration, we sketch our own method Task and Object-oriented
Requirements Engineering (TORE) in Sect. 3, using the example of a web-
book store. Then we discuss how this method satisfies the criteria given in
Sect. 2. We conclude with a summary and an outlook.

2. REQUIREMENTS SPECIFICATION METHODS
FOR OBJECT-ORIENTED DEVELOPMENT

In this section we describe the essential concepts a specification method
integrating RE and OO must support. In Sect. 2.1 we look at the stakeholders
involved in system development and their needs wrt. specification. This
uncovers four criteria that are refined into 16 concepts in Sect. 2.2. The
resulting conceptual model covers the complete set of decisions that have to
be made to specify UIS. We use the conceptual model in Sect. 2.3 to sketch
how two prominent specification approaches differ in their support wrt. the
elements of the conceptual model.

#. Task-driven Requirements in Object-oriented Development 3

2.1 Integrating RE and OO for UIS

The purpose of requirements specification is to capture the information
necessary for the stakeholders involved in system development so that they
can efficiently contribute. Depending on their roles, these stakeholders have
different needs:
– For procurers, product managers, and users, the specification must

capture the value proposition of the procurers or managers and the needs
of the users. This entails that it must be understandable by these
stakeholders.

– For the system developers, the specification is the basis for the
development. This means that it must be precise and consistent so that
designers and implementers know what to build and quality assurance
knows what to validate. In particular, this includes the user interface
designers and usability testers.

In addition, the specification must support the project manager and the

maintainers, but we are not concerned with these issues here.
Typically, there exists not one single specification that can serve both

purposes. Thus, different notations and different views and abstraction levels
are used. At some level functional requirements typically describe the input,
output and behavior of system functions. However, there is little agreement
on how to capture the system context, and what the exact boundary to design
should look like.

Since we are dealing with OO, we stipulate that an analysis class model
(and possibly some other preliminary OO models) should serve as the lowest
level of requirements specification. The main difference to design class
models is that they are not optimized wrt. design issues like cohesion and
coupling and quality requirements such as performance.

Since we are dealing with UIS, we also stipulate that the requirements
specification should explicitly state the user interface requirements. Note
that usability is typically viewed as a non-functional requirement. However,
the elements of the user interface are needed to realize system functions.
That is why we treat them as functional requirements here. Thus, the main
question is how to capture the system context.

Structured development methods start with a context diagram making the
data flow between the environment and the system explicit, e.g. [12]. Based
on this, high-level functions are described and decomposed. In later
methods, these descriptions were complemented with data-oriented
descriptions, such as entity relationship diagrams [11]. Early object-oriented
methods start with a high-level class diagram capturing the domain relevant

4 Chapter #

for the development, and gradually evolve this to a class diagram of the
system, e.g. [29].

RE methods often start with goals, where goals are high-level functional
or non-functional requirements [5,6,20].

Human-computer interaction (HCI) methods typically start with the tasks
of the users [9,13]. The tasks can be identified by looking at the current work
of the users. The tasks are similar to the high-level activities identified by the
structured methods through the context diagram, since both abstract from the
actual system functions and focus on the context in which the functions are
used. However, the viewpoint is different, since tasks emphasize the work
context of the user, while the high-level activities emphasize the central role
of the system to be built. Similarly, tasks are often covered by the goals
identified in goal-oriented RE methods, but again the viewpoint is different.
Goal-oriented RE methods start with the interests of the stakeholders, but not
with the work context.

Considering these different ways to capture the system context, we
stipulate for UIS that the specification process should start with tasks. Since
UIS are developed to support work contexts, tasks must be made explicit in
the UIS requirements.

Altogether, a method integrating RE and OO for UIS must satisfy the
following criteria:
– For the procurers, product managers and users it must support the

specification of the system context, in particular that of user tasks.
– For the OO developers it must support the specification of analysis class

diagrams.
– For the user interface developers it must support the specification of user

interface requirements.
– For all stakeholders it must support the specification of system

functions.

In the following section we take a detailed look at the concepts behind

these criteria.

2.2 A conceptual model for functional requirements of
UIS

RE methods are typically characterized by the activities and notations
they support. The activities lead to decisions that are documented with the
notations (see also Kovitz [18]). During RE the stakeholders make decisions
about the effect of the software system on the environment. Even if people
who analyze and specify requirements do not think about this as a decision-
making process , this is what they do: deciding about the behavior of the

#. Task-driven Requirements in Object-oriented Development 5

system. These decisions constrain the solution space for the subsequent
development activities (design and implementation). In the following, we
will call them requirements decisions or just decisions for short.

Thus, more fundamentally than activities and notations, RE methods can
be distinguished according to the following characteristics:
– Decision types explicitly supported: During RE, decisions have to be

made. Approaches differ as to whether they offer support to explicitly
make these decisions, or whether they leave them implicit. If decisions
are made implicitly, this means they are made arbitrarily. Different
people will make them differently.

– Order of decisions: Different approaches recommend a different order in
the sequence of decisions. This has a big influence on the outcome of the
decisions, because decisions made constrain the solution space for
subsequent decisions.

– Guidance to make decisions: Approaches differ in the kind and amount
of guidance they give to make decisions. This guidance helps to explore
different options for the decisions and to make the right decision.
Without explicit guidance, stakeholders are again at risk of making the
decisions arbitrarily.

– Documentation of decisions: Notations are used to document decisions.
Different approaches use different notations to document the same
decision. The choice of a notation depends on the type of decision. Not
every notation is suitable for documenting every type of decision.
Sometimes, one notation can be used to document several decisions.

In the following, we present a conceptual model for the decision types

that should be supported by methods integrating RE and OO. These decision
types detail the criteria given in the previous section. In Sect. 2.3. we discuss
which notations are used by two prominent methods to document these
decisions.

As shown in Fig. 1, we identified 16 requirements decisions to be made
for UIS, and aligned them on four abstraction levels:
– Task level: The motivation for users to use a UIS is their work. UIS

support the tasks users perform as part of their work in a specific role.
Decisions about the roles and tasks to be supported by the UIS are made
on this level.

– Domain level: Looking at the tasks in more detail reveals the activities
users have to perform as part of their work. These activities are
influenced by organizational and environmental constraints. At this level,
it is determined how the work process changes as a result of the new
system. This includes, in particular, the decision on which activities will
be supported by the system (called system responsibilities) and which
domain data are relevant for these activities.

6 Chapter #

– Interaction level: On this level, decisions about the apportionment of

activities between human and computer are made. They define how the
user can use the system functions to achieve the system responsibilities.
This decision has to be aligned with the decision about the UI structure,
which the user can use to invoke the system functions.

– System level: Decisions about the internals of the application core and
the graphical user interface (GUI) are on the system level. They
determine details of the visual and internal representation of the system

to be developed.

Figure #-1. Decision Types

Each level corresponds to a specific view on the system and its context

on a specific level of detail. Furthermore, the decisions on one level depend
on the decisions of the previous levels. Decisions of one level have to be
made after all decisions of the previous level have been determined. If
decisions of lower levels are made without taking into account the higher-
level decisions, the system will not adequately support the users in their
tasks. Within one level decisions influence each other. The order between
decisions of one level is arbitrary.

(T1)
tasks

Domain Level

System Level: Application Core and GUI

Interaction
Level

Task Level

(D2)
to-be

(D1)
as-is

(D4)
domain

data

(D3)
system

-respon.

(I3).
Interact.

data

(I4)
UI-

structure

(I2)
inter-
action

(I1)
system

functions

(C1)
internal
actions

(C2)
internal

data

(C3)
archi-
tecture

(C1)
internal
actions

(C2)
internal

data

(C3)
archi-
tecture

(G3)
UI-data

(G2)
dialog

(G4)
screen-

structure

(G1)
navig./supp.

funct.

(G3)
UI-data

(G2)
dialog

(G4)
screen-

structure

(G1)
navig./supp.

funct.

(G3)
UI-data

(G2)
dialog

(G4)
screen-

structure

(G1)
navig./supp.

funct.

#. Task-driven Requirements in Object-oriented Development 7

 In the following, we explain the decision types represented in Fig. 1. In
Sect. 3 we illustrate them with the example of a web-bookstore using the
notations recommended in TORE.
– (T1) Decisions about the user tasks:

The decisions determine the user roles and the tasks of these roles to be
supported by the system. Business processes determine these tasks.

– (D1) Decisions about the as-is activities:
The user tasks consist of several activities. As-is activities are the steps
users currently perform as part of their work without the new system.
Decisions must be made on what the as-is activities of a task are (as these
are rarely explicit) and whether they are relevant for the system. These
decisions shape the understanding of the purpose and the responsibilities
of the new system.

– (D2) Decisions about the to-be activities:
It needs to be decided how the as-is activities will change as a result of
the new system. As-is activities always carry the potential for
improvement. New technologies like the Internet or handheld devices can
result in radically new to-be activities. To-be activities constitute the
steps of the user tasks in the future.

– (D3) Decisions about the system responsibilities:
Typically, the system does not support all to-be activities, but only a
subset. These are the system responsibilities. These decisions clarify the
key contribution of the system.

– (D4) Decisions about the domain data relevant for a task:
System responsibilities of UIS manipulate data. Decisions have to be
made on which domain data are relevant for the system responsibilities.

– (I1) Decisions about the system functions:
System responsibilities are realized by system functions. The decision
about the system functions determines the border between user and
system.

– (I2) Decisions about user-system interaction:
It has to be decided how the user can use the system function to achieve
the system responsibilities. This determines the interaction between user
and system.

– (I3) Decisions about interaction data:
For each system function the input data provided by the user as well as
the output data provided by the system have to be defined.

– (I4) Decisions about the structure of the user interface (UI-structure):
Decisions about the grouping of data and system functions in different
workspaces have to be made. System functions and data grouped in one
workspace will be close together in the GUI. This means that users need
less navigation effort in the interface to invoke system functions and

8 Chapter #

view data within the workspace. Through the UI-structure, the rough
architecture of the user interface is defined. This structure has a big
influence on the usability of the system.

– (C1) Decisions about the application architecture:
The code realizing the system functions is modularized into different
components. In the decision about the component architecture, existing
components and physical constraints as well as quality constraints such
as performance have to be taken into account. During requirements only
a preliminary decision concerning the architecture is made. This is
refined during design and implementation.

– (C2) Decisions about the internal system actions:
Decisions have to be made regarding the internal system actions that
realize the system functions. The system actions define the effects of the
system function on the data. These decisions also define an order
between the system actions as far as this is necessary to understand the
behavior of the system function. In OO the system actions are grouped
within classes. This is only a preliminary decision, which is refined
during design and implementation.

– (C3) Decisions about internal system data:
The internal system data refines the interaction data to the granularity of
the system actions. The decisions about the internal system data reflect
all system actions. In OO, system data is grouped within classes. Again,
this is only a preliminary decision, which is refined during design and
implementation.

– (G1) Decisions about navigation and support functions:
It has to be decided how the user can navigate between different screens
during the execution of system functions. This determines the navigation
functions. In addition, support functions that facilitate the system
functions have to be defined. These functions realize parts of system
functions that are visible to the user, for example, by processing chunks
of data given by system functions in a way that can be represented in the
user interface. Another example are support functions that make the
system more tolerant towards user mistakes.

– (G2) Decisions about dialog interaction:
For each interaction the detailed control of the user has to be decided.
This determines the dialog. It consists of a sequence of support and
navigation function executions. These decisions also have a strong
influence on the usability of the system.

– (G3) Decisions about detailed UI-data:
For each navigation and support function, the input data provided by the
user as well as the output data provided by the system have to be defined.
These decisions determine the UI-data visible on each screen.

#. Task-driven Requirements in Object-oriented Development 9

– (G4) Decisions about screen structure:

The separation of workspaces as defined in (I4) into different screens that
support the detailed dialog interaction as described in (G2) has to be
decided. The screen structure groups navigation and support functions as
well as UI-data. The decisions to separate the workspaces into different
screens are influenced by the platform of the system.

The levels conform to a certain kind of pattern: At the domain level, the

interaction level, the application core and the GUI, there are always
decisions concerning behavior chunks like activities, functions or actions as
well as decisions concerning data. Interaction and dialog put these chunks
into a sequence. UI-structure, architecture and screen structure group data
and behavior chunks together.

In order to ensure completeness of our conceptual model, we investigated
methods integrating RE and OO wrt. these decisions types. In the following
section we discuss two approaches in relationship to our model in more
detail.

2.3 Comparing approaches with the conceptual model

For our discussion, we choose the use case approach by Armour/Miller
[1], which details the RE approach of the RUP, and the Contextual Design
approach by Beyer/Holtzblatt [3], which is an elaborate HCI approach.
These two approaches can be viewed as two extremes: Armour/Miller
emphasize embedding in a typical OO process and thus only use the
notations from the UML. Beyer/Holtzblatt emphasize usability and use
several new notations dedicated to task- and GUI-modeling.

Fig. 2 lists the decision types of the conceptual model in relationship to
the notations used in the two approaches. “X” in a cell indicates that the
notation, represented by that row, is used to document the decision
represented in the column. If a decision column is empty, this means the
approach does not support this decision type. Note that the approaches also
differ wrt. guidance given on making decisions (see Sect 2.2), but this is not
reflected in the table.

Armour/Miller cover most of the decision types of our conceptual model.
One main characteristic of their approach is the continued usage of use cases
at different levels. Use cases on a high abstraction level (initial use cases) are
subsequently extended with additional fields to elaborated use cases. This
continued usage of use cases minimizes the documentation effort, because
models created in early steps of RE can be reused and extended during later
steps. Armour/Miller provide very detailed guidance on how to extend and
use the use cases at different levels. In addition to the different abstraction

10 Chapter #

levels, Armour/Miller also introduce “what-is” and “will-be” use cases. They
support the documentation of our “as-is” and “to-be” decisions.
Armour/Miller do not explicitly use system functions as part of their
approach. The decisions about the system functions are hidden in the base
and elaborated use cases and are only explicitly specified on the user
interface level. Internal use cases describe the interaction of internal actions.
Armour/Miller also distinguish between two types of data models: domain
object model and analysis object model. The domain object model is used to
document the domain-, data- and interaction-data decisions. The decisions
about the UI-structure are not made explicitly, but left to the physical
interface design.

Figure #-2. Decision Types and Notations of Armour/Miller and Beyer/Holtzblatt

Armour/Miller emphasize the importance of architecture decisions to
balance the use case model. These decisions are documented in an

Ta
sk

A
s-

Is

To
-B

e

S
ys

te
m

 R
es

po
ns

.

D
om

ia
n

D
at

a

S
ys

te
m

 F
un

ct
io

n

In
te

ra
ct

io
n

In
te

ra
ct

io
n

D
at

a

U
I-S

tru
ct

ur
e

In
t.

S
ys

te
m

 A
ct

io
ns

In
te

rn
al

 D
at

a

A
rc

hi
te

ct
ur

e

N
av

./S
up

p.
 F

un
ct

io
ns

D
ia

lo
g

U
I-D

at
a

S
cr

ee
n

S
tru

ct
ur

e

(T
1)

(D
1)

(D
2)

(D
3)

(D
4)

(I1
)

(I2
)

(I3
)

(I4
)

(C
2)

(C
3)

(C
1)

(G
1)

(G
2)

(G
3)

(G
4)

Armour/Miller
Use Case Diagramm X
Domain Object Modell (Glossary) X X
Initial What-Is System Use Case X
Initial What Will Be System Use Case X
Base System Use Case X
White-Box Base System Use Case X X
Elaborated System Use Case X X
Internal Use Case X
Activity Diagram X
Architecture Document X
Analysis Sequence Diagrams X
Analysis Object Model X
Transaction Information Model X X
Logical Screen Order X
Beyer/Holtzblatt
Consolidated Work Model X X
Storyboard X X X
Focus area X X X
UED X
Use Case
Object Model

#. Task-driven Requirements in Object-oriented Development 11

architecture document, which, however, is not described in detail. Whereas
the decision types of the application core are covered by their approach, it
neglects the user interface part. The user interface design is derived by
turning the use cases into so-called transaction information models. A
transaction is a system function call by the user and the system response as a
result of the function together with the data involved. From each transaction
a logical screen is derived. These logical screens are placed in sequence to
form transaction trees. This order documents the dialog decision.
Armour/Miller do not support the decisions about navigation and support
functions nor the screen structure.

Contextual Design emphasizes the task, domain, interaction and user
interface level. One of the notations invented by Beyer/Holtzblatt is the work
model. It provides a very detailed picture of the tasks and as-is activities. As
part of the work model, communication between the people involved, work
artifacts, cultural and environmental constraints are documented. The to-be
activities, system responsibilities and interaction are illustrated with the
storyboard. In addition, Beyer/Holtzblatt introduce focus areas and the User
Environment Design (UED) to document the UI-structure and screen
structure. Focus areas document workspaces with their purpose, system
functions, navigation functions, and interaction data. The complete set of
focus areas builds the UED. In this approach some notations are used to
document several decision, for example, the focus area and the storyboard.
Whereas Contextual Design is very detailed in the description of the user
interface, it omits the application core. Beyer/Holtzblatt mention that the
focus area should lead to use cases and OO models that guide the
implementation. The transition to these models is not described.

In addition to the two approaches described above, we also investigated

several other approaches wrt. our conceptual model, e.g. [6,8,22,25]. We
found that all decisions documented in these approaches were part of our
conceptual model, but none of them covers all. Also, the order of the
decisions and the guidance given as well as the notations used differed.
Thus, we came up with our own approach to integrate RE and OO. It covers
all decision types and thus exhibits all the issues of integrating RE and OO.
This approach is sketched in the next section, and the decisions types are
illustrated with an example.

12 Chapter #

3. TASK- AND OBJECT-ORIENTED

DEVELOPMENT (TORE)

In this section we sketch our own method for integrating RE and OO for
UIS: Task- and Object-oriented Development (TORE). The fundamentals of
this method are described in [27]. An adaptation of this method for
component-based product line engineering is described in [2]. In the
following, we sketch the rationale for the development of TORE and the
most prominent issues arising in the integration of RE and OO.

The most important driving factor for the development of TORE was to
define a method that satisfies the criteria explained in Sect. 2.1. In particular,
TORE was designed to support the identification and explicit specification of
tasks, functions, analysis class diagrams, and user interface requirements.

Figure #-3. Decision types and notations used in TORE

Another important driving factor in the design of TORE was to provide
notations and guidance for making all 16 requirements decisions explicit.
We are fully aware that in industrial application, there is rarely time to
specify all decisions explicitly for the whole system, but we are convinced
that depending on the context, different subsets of the decisions for different

Ta
sk

A
s-

Is

To
-B

e

S
ys

te
m

 R
es

po
ns

.

D
om

ia
n

D
at

a

S
ys

te
m

 F
un

ct
io

n

In
te

ra
ct

io
n

In
te

ra
ct

io
n

D
at

a

U
I-S

tru
ct

ur
e

In
t.

S
ys

te
m

 A
ct

io
ns

In
te

rn
al

 D
at

a

A
rc

hi
te

ct
ur

e

N
av

./S
up

p.
 F

un
ct

io
ns

D
ia

lo
g

U
I-D

at
a

S
cr

ee
n

S
tru

ct
ur

e

(T
1)

(D
1)

(D
2)

(D
3)

(D
4)

(I1
)

(I2
)

(I3
)

(I4
)

(C
2)

(C
3)

(C
1)

(G
1)

(G
2)

(G
3)

(G
4)

TORE
Business Process Diagram X
Role Description X
Task Description X X
Activity Diagram and Activity Description

X X X
Use Case Diagram X
Function Description X
Use Case Text X
ERD X
Glossary X
UI Structure Diagram X
Class Model X X X
Architecture Description X
Dialog Text X
Dialog Statechart X
Prototype X X X

#. Task-driven Requirements in Object-oriented Development 13

subsystem parts should be specified explicitly. Thus, it is important to enable
the developers to specify whatever they need [17].

According to the method characteristics discussed in Sect. 2.2., the last
issue left is the question of which order the decisions should be made in.
Fig. 1 shows the major dependencies between the decisions. TORE respects
these dependencies and gives recommendations on the order within the
levels. On each level, we use one or two models to drive the decisions, and
the other models make the remaining decisions explicit, thereby
consolidating the first decisions. This ensures consistency and completeness.

In the following, we show how to describe the decisions in TORE. We do
not describe the TORE process completely, but only give hints on how the
decisions of higher levels support decision making on the lower levels. We
illustrate the specifications produced in TORE with the example of a web-
bookstore. This should help the reader to understand the decision types in
more detail. Fig. 3 gives an overview of the notations used in TORE for the
different decision types. We discuss these notations in the following
subsections, where each subsection describes the notations used for one of
the four levels: task, domain, interaction and system. The latter is divided
into core and GUI.

3.1 Task Level

Fig. 4 shows an activity diagram representing part of the business process
of a bookstore.

Customer acquisition Market analysis

Order acquisition

Order delivery

Book order

Customer Bookstore

Data flow Interacts with

Figure #-4. Business Process

Starting with business processes is a good way to identify user tasks and
roles (T1). Since UIS often radically change the ways business processes are
conducted, it is important to make these changes explicit early on. Methods
for creating business processes are described, e.g., in [16,30].

Table #-1. Role description

14 Chapter #

Role description Customer
Interests: The Customer wants to receive interesting books quickly and cheaply.
Tasks: The Customer is responsible for Book Order
Age/Gender: Adults (18-75 years old), male and female
Skills: Reads German, browses and searches the Iinternet, no other specific IT skills
Environment: Email access, browser Netscape or Explorer, average PC equipment

Parallel to the process descriptions, role descriptions are developed to
capture the interests and responsibilities of the future system users. This is
enhanced with description of skill levels that are needed for usability
considerations. Table 1 shows such a role description for the customer.

The main purpose of business process modeling in TORE is to identify
the tasks. Thus, for each role one identifies the relevant tasks in each
business process and creates task descriptions for them. As an example
consider Table 2, which shows a task description for Book order. The
task description typically mentions the as-is activities implicitly.

Table #-2. Task description
Task description Book order
Description: Within this task the customer selects books from the bookstore. The bookstore
gets the money from the customer. The customer receives the selected books from the
bookstore
Performance: This task will be carried out 10,000 times a day by different customers
worldwide.
Frequency: The average user will carry out this task between once per month and once per
year.
Trigger: no special trigger, whenever customer likes
Risks: customer pays, but does not receive books

3.2 Domain Level

Based on interviews or work observations (or other elicitation methods,
see [23,10]), the user tasks are refined with further activity diagrams to
identify the system responsibilities.

(D1) As-is activities
First, the as-is activities are identified. As-is activities are often only

described textually in the task description. Sometimes, however, it is
important to explore the as-is activities in more detail. Then further activity
diagrams can be drawn, and activity descriptions similar to the task
descriptions are created. In both cases, problems with the as-is activities
mentioned by the users have to be captured and need to be taken care of
during development.

#. Task-driven Requirements in Object-oriented Development 15

(D2) To-be activities

Based on the as-is activities, the to-be activities are defined. Again, this
can be done textually or with diagrams. Here, IT experts need to discuss with
the users major changes in the existing work processes induced by new IT
possibilities. One major difficulty is to know when to stop refinement of the
tasks. Since the activity descriptions serve to identify the system
responsibilities, we recommend stopping as soon as an activity can clearly
be associated with the system. It is a matter of the interaction level to decide
in which ways these activities are supported by the system.

In the example, as-is activities detail how the user buys books in a
conventional book store. The to-be activities detail how the user orders
books from an Internet bookstore, that is: the customer has to Select
Books, to Provide Customer Data and to Place Order. Both
are supported by the system. Thus, they are system responsibilities.

Order

Customer
Address

is_part_of
0..*0...*

1...*
Book
Title
Author

1

•A book has a title and an author.
It can be included in zero or
more orders.

•A payment transfers money
from the customer to the
bookstore. This can be done
either by credit card or by bank
transfer.

is_submitted_
by

Payment
Amount
Type

1

1
for

Figure #-5. Domain data

(D3) Domain data
To consolidate the activity models, a data model is developed in parallel,
which has to cover all the data mentioned in the activity descriptions. This
can be a glossary for the major terms used in the task descriptions. It can
also capture data structure in terms of an entity relationship diagram (ERD).
In TORE we do both, since ERDs are the first step on the way to an analysis
class model. In addition to the ERD, each class is described textually so that
these descriptions serve as glossary entries.

Fig. 5 shows part of the data model of the bookstore. At this level, only
class name, associations and possibly attributes are captured to characterize
the data associated with a class.

 (D4) System responsibilities
The system responsibilities are collected in a list structured according to

the different roles involved in these activities. To facilitate discussion, this

16 Chapter #

should be visualized in a use case diagram as in Fig. 6. We use the notation
adapted from [21], where the system border crosses the use case bubbles.
This highlights the fact that these activities are supported by the system. The
exact border between the human and the system has to be determined on the
interaction level.

Select Books

Customer
Place Order

Book Store System

Provide Customer Data

Figure #-6. Use case diagram

3.3 Interaction Level

The adequate border between human and system can only be defined in
close interaction with the users. There are several models that can support
discussion with the users. It can either focus on the interaction or on the UI-
structure, or on the interaction data. In TORE we recommend using one of
the first two, since there is evidence that users have difficulties discussing
abstract data models [24]. The reason is that class models abstract too much
from the representations users are accustomed to in their work. The system
functions are described after the UI-structure has been decided.

(I2) Interaction
The discussion of interactions to determine the border is based on a use

case description for each system responsibility. As shown in Table 3, this
description explicitly names system responsibilities. We employ a use case
template adapted from [6, 8]. From the latter we take the explicit distinction
between actor and system activities. The template facets are similar to the
ones of the RUP. One difference is our emphasis on locating exceptions in
the description of the flow of events. In our experience, a detailed analysis of
exceptions is a prerequisite for a complete understanding of the dynamics.

The main problem with use case descriptions is the abstraction level.
Since we use them on the interaction level, we do not describe user interface
details and abstract from screens, UI-data, and navigation and support
functions, although the latter can often be found in practice. Instead, the use
cases show for each system responsibility how the user navigates between
workspaces.

#. Task-driven Requirements in Object-oriented Development 17

(I4) UI-structure
Another way to determine the border between humans and system is to

discuss the UI-structure with the users. As shown in Fig. 7, this structure
groups data and system functions together similar to the workspaces of [3].

At first, the system responsibilities are shown in this structure, and then
they are gradually replaced with the identified system functions. Here the
user’s imagination is not focused on the dynamics, but more on the question
of which information is presented in which context. This can also be
supported by UI-prototypes. However, such prototypes bear the risk of users
concentrating on UI-details, instead of on the major structure.

Table #-3. Use case text for Place Order
Name Place Order
Realized User Task Book Order
Initiating Actor Customer
Participating Actor Bookstore Clerk
Flow of events
1. The System displays the shopping basket with the selected book.
2. The Actor selects the “Place Order”-responsibility. [No Customer Data]
3. The System shows order and shopping basket and supports the Actor in determining

the payment method and the address and submitting the order. [New selection] [New
customer data] [No order]

4. The System acknowledges the order to the Actor, stores the order and supports the
Clerk with the “Order Delivery”-responsibility.

5. The Actor receives the selected books
Exceptions
[No Customer Data] The System does not have information on the address and payment

methods of the Actor. The System changes to the “Provide Customer Data”-Responsibility.
When this is successfully finished, the System continues with 3.

[New selection] The Actor decides to change the shopping basket and selects the “Select
Book”-Responsibility. The System preserves the data submitted so far and changes to the
“Select Book” Responsibility. After successful completion of selection, the System continues
with 3.

[New customer data] The Actor decides to change his or her data and selects the “Provide
Customer Data”-Responsibility. When this is successfully finished, the System continues
with 3.

[No order] The Actor does not submit an order before leaving the bookstore system. The
System stores the data submitted so far. When the Actor revisits the bookstore system, the
data will be shown to him.

Precondition Shopping basket is not empty
Postcondition Actor has ordered and received books

18 Chapter #

Name Place Order
Rules Payment must be either by credit card or by bank transfer
Quality Requirements Security/Privacy: Data about payment transaction and customer

has to be protected

 Search books
Purpose: Selection of books
Data:
- search criteria
- list of books with title and author
Function:
- search
- move to shopping basket

Book details
Purpose: Detailed info about book
Data: abstract, picture of cover,
ISBN no., year, review, order
conditions, availability
Function:
- move to shopping basket

Shopping Basket
Purpose: overview about selected
books
Data: shopping basket, total sum
Function:
- delete item from list
- move to memo

Memo
Purpose: Keep list of interesting
books
Data: memo list
Function:
- delete item from memo list

I d Ei k f hi b

Order
Purpose: Definition of order
conditions
Data: Payment method, address
Function:
- submit order

Customer account
Purpose: View and change
information about customer
Data: status of order, email,
customer address, payment
Function:
- change customer data

Select Books

Place Order

Provide customer data

Figure #-7. UI-structure

(I3) Interaction Data
The data model from the domain level is refined at the interaction level.

This model is used to consolidate the decisions made during use case or UI-
structure elaboration. In the example, the data model is extended with a
shopping basket class detailing the association between books and order. We
do not yet define methods at this stage, since they are not visible to the user
and therefore not important at the interaction level.

(I1) System functions

#. Task-driven Requirements in Object-oriented Development 19

In parallel, for the more complex system functions, a function description is
developed that captures the data changes. The template is similar to the
function descriptions of FUSION [7]. In particular, they explicitly name the
data input and output of the function. This allows for easy cross-checks with
the data model.

3.4 System Level: Application Core

At this level in TORE, the OOA model is developed fully. This step can
be carried out in parallel with the GUI development, before or after it. The
results have to be synchronized.

 (C3) Architecture
At first, a preliminary architecture specification is developed to capture

physical constraints given by the customer and decisions necessary to refine
non-functional requirements and functional requirements in parallel (e.g., in
order to specify security, the architecture has to be known).

(C1) Internal actions and (C2) internal data
In TORE, decisions about the code component are documented as they

are in the KOBRA method [2]. The essence of KOBRA is a recursive
process of specification and realization. Fig.8 shows the description
techniques involved.

oration

Structural Model
(UML class/object
diagrams)

Functional Model
(operation
specifications)

Structural Model

(UML class/object
diagrams)Interaction Model

(UML collaboration
diagrams)

Activity Model
(UML activity
diagrams)

Behavior Model
(UML statechart diagram)

Component

Specification

Realization

Figure #-8. KOBRA development

20 Chapter #

In TORE, the only iteration of the KOBRA process that is important is
the top iteration , which describes how the system functions are realized
through the interaction of analysis classes. Further iterations are design
iterations.

The function descriptions and the class model constitute the specification.
The use cases describe the context of the system functions and thus
substitute the behavior model of the system used in KOBRA.

The purpose of the realization is to capture the details of the system
functions in terms of interaction between analysis classes. That is, the
internal actions are the methods of the classes, and the internal data are the
classes and their attributes. The major issue is how to distribute the business
logic realized in one function to the different classes. To avoid premature
distribution resulting in complex class interactions, in KOBRA and TORE
we use the Data aNd Activity (DNA) approach.

Fig. 9 illustrates the essence of the DNA approach: starting with the
function descriptions, the actions necessary to realize the function are
explored in parallel with an activity diagram, and the data input, modified
and output through the function is refined into a class model (without
methods). Then the identified actions are allocated to the identified classes,
resulting in a full-fledged class model.

 Data Activities

Data
Modeling

Interaction
Modeling

Activity
Modeling

Figure #-9. DNA

Structural Model
(UML class/object

Functional Model
(operation

Structural Model

(UML class/object Interaction Model
(UML collaboration

Activity Model
(UML activity

Behavior Model
(UM statechart

Component

Specification

Realization

In the example, the activity model for the Submit Order- function is
trivial, It only consists of creating a shopping basket, a payment method, an
address, and an order. These activities can be straightforwardly associated
with the classes given so far. The only choice is where to locate the control
of the function, that is, who calls the methods to create the shopping
basket, payment method, address and order. According to

#. Task-driven Requirements in Object-oriented Development 21

[14], one could define a new class order function with one method
responsible for coordinating the other methods. Another straightforward
choice is to give the control to the order class, so that the method Create
order creates all the other objects. However, since an order is not created if
the user cancels the order activity, we prefer to define an order function
class.

Since in TORE, function descriptions are created only for complex
system functions, the class model gained in realization is not complete.
Completion can be left to design. Alternatively, further methods are defined
by exploring the classes in detail as described in typical OOA methods.
Furthermore, the decisions on the GUI induce support functions and thus,
new methods, and sometimes also classes.

3.5 System level: GUI

At this level in TORE the details of the user interface requirements are
decided.

(G4) Screen structure and (G1) navigation/support functions and

(G3) UI-data
The bulk of the work here consists of refining the UI-structure into a

screen structure for a specific platform. Criteria for the mapping of the
workspaces onto an adequate set of screens are described in [22]. The
navigation between these screens is detailed with navigation functions.
When designing the navigation of this screen structure, it is important to
watch out for subtle dependencies between UI-steps and system actions
defined in the application core. Sometimes, support functions have to be
designed, providing part of the result of a system function. In addition, the
details of the presentation of the data on the screen have to be determined.
This includes the selection of appropriate user interface elements (e.g., is the
user offered a choice or is he or she required to type in some text).

In TORE, we use GUI prototyping tools to define the screen structure. A
GUI prototype allows to capture three decisions in one model: screen
structure, navigation functions, and the UI-data. One can choose between
high-fidelity prototypes (e.g., linked HTML pages without functionality) or
low-fidelity prototypes (e.g., pencil drawings on paper). Low-fidelity
prototypes have the advantage that they are easy to change. High-fidelity
prototypes can be used to perform usability tests first and thus, to get early
user feedback. For a more detailed discussion about high versus low fidelity
prototypes, see also [28]. If high-fidelity prototypes are used, then the
decision about the dialog can also be captured as part of the prototype.

22 Chapter #

(G2) Dialog
The dialog refines the interaction. It defines the dynamic sequencing of

the screens. To get an overview of complex screen dependencies, state
diagrams are used to describe the dialogs.

Fig. 10 shows part of a dialog for the Place order use case. It
involves screens from the Place Order Responsibility and the Provide
Customer Data Responsibility. The states are labeled with the data
shown or with the name of the screen the transitions are labeled with
navigation functions. The system functions (including support functions)
called are shown as the second part of the transition label. Thus, in the
example, two navigation functions complete order and submit order are
introduced. Note that in general, the dialogs of different use cases should be
combined into one state diagram to get a complete overview about the
dynamics of a set of screens.

Another possibility for detailing a dialog is to enrich the use case text
with details about screen structure and navigation functions. This is
especially helpful for an in-depth discussion of a particular dialog. It does
not, however, provide a complete picture of the different screens.

Search
Book

Screen

Place
Order
Screen

Customer
Account
Screen

Complete order

Select

Move to shopping basket
Submit order
[No Customer
data] Close/

Move
to
Memo

Submit order/
Submit order

Submit order/
Submit order

Select

Figure #-10. Dialog

3.6 Experiences with TORE

Since 1998 we have been using TORE to teach students and practitioners
the fundamentals of task-driven requirements specification. We have also
performed major case studies, e.g., in the context of KOBRA. Parts of this
have been applied in industrial development, e.g., for a logistic systems. Our
experience is that it takes some time until computer scientists understand the
value of a task-driven approach. Typically, they like to start directly from a
class model or from system functions. However, it turns out that the
discussion about the task structure is very helpful for creating a common

#. Task-driven Requirements in Object-oriented Development 23

understanding of the system to be developed. Thus, after some time the
software engineers appreciate having a clear basis for function definition.
The main advantage for the customers is that this way, only the necessary
system functions are implemented. When tasks are used to drive release
planning, another advantage is that releases completely support tasks.

4. CONCLUSION

We have presented the fundamental issues in integrating requirements
engineering with object-oriented development for user interface- and
information-intensive systems. As UIS focus on supporting work contexts,
the requirements process must be driven by tasks, and user interface
requirements must be specified explicitly. We have identified 16 decision
types covering the result of the RE process for UIS. The alignment of these
decision types on the task, domain, interaction and system levels shows how
task and user interface decisions complement the activity- and data-oriented
decisions typically covered by RE and OO methods. A comparison with a
typical OO method and a typical HCI method for UIS shows that only part
of these decision types are covered by existing methods. This is due to the
fact that the software engineering and the human-computer interaction
communities are quite far apart nowadays. RE can serve as a bridge between
them. We have to make software engineers, human-computer interaction
experts in general, and requirements engineers in particular, aware of all
decision types. As illustrated with the TORE method, this does not require
new notations or new tools. Thus, the main obstacle for industrial acceptance
of such an integrated method is the mindset of the people. A good way – if
not the only one – to change this is to gather empirical evidence about the
effectiveness of the integrated methods.

ACKNOWLEDGEMENT

We thank the RUE department at IESE, Soren Lauesen, und the editors
for helpful comments on an earlier version of this paper. This work was
funded by the BMBF in the EQF project under the label: e-Qualification
Framework - VFG0008A

REFERENCES

1. Armour, F. ,Miller, G., Advanced Use Case Modeling, Addison-Wesley, 2000

24 Chapter #

2. Atkinson,C., Bayer, J., Bunse, Ch., Kamsties, E., Laitenberger, O., Laqua, R.,
Muthig, D., Paech, B., Wüst, J., Zettel, J., Component-based product Line
Engineering with UML, Addison Wesley, Component Software Series, 2002

3. Beyer, H., Holtzblatt, K., Contextual Design: Defining Customer Centered Systems,
Morgan Kaufmann Publishers, 1998

4. Booch, G., Object-Oriented Analysis and Design with Applications, Benjamin
Cummings, 1994.

5. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J., Non-Functional Requirements in
Software Engineering, Kluwer Academic Publishers, 2000.

6. Cockburn, A., Writing Effective Use Cases, Addison Wesley, 2001
7. Coleman D., Arnold P., Bodoff S., Dollin C., Gilchrist, H., Hayes F., and Jeremaes

P., Object-oriented Development: The Fusion Method, Prentice Hall, 1994.
8. Constantine, L., Lockwood, L., Software For Use, Addison Wesley, 1999
9. Diaper, D., Task analysis for human-computer interaction. Ellies Horwood, 1989
10. Dray, S. & Mrazek, D. "A day in the life:" Studying context across cultures. In J.

Nielsen & E. del Galdo, Eds. International User Interfaces, John Wiley & Sons,
1996.

11. Downs, E., Clare, P., Coe, I., Structured Systems Analysis and Design Method:
Application and Context, Prentice Hall, 1992

12. DeMarco, T., Structured Analysis and System Specification, Prentice Hall, 1978.
13. Hackos, J.T., Redish, J.C., User and Task Analysis for Interface Design, John Wiley

& Sons, 1998
14. Jacobson I., Object-Oriented Software Engineering, Addison-Wesley, 1992.
15. Jacobson, I, Booch G., Rumbaugh J., The Unified Software Development Process,

Addison Wesley, 1999
16. Jacobson, I., Ericsson, M., Jacobson, A., The Object Advantage: Business Process

Reengineering with Object Technology, Addison-Wesley, 1994
17. Kohler, K., Paech, B., “Requirement Documents that Win the Race, Not

Overweight or Emaciated but Powerful and in Shape”, First Workshop for Time
Constrained Requirements Engineering TCRE’02, 2002

18. Kovitz, B.L. Practical Software Requirements. A Manual of Content and Style,
Greenwich: Manning Publications Co., 1998

19. Kruchten, P. B., The Rational Unified Process: An Introduction, Addison-Wesley,
2000.

20. van Lamsweerde, A., Darimont, R., Massonet, P. (1998): “Goal-directed
elaboration of requirements for a meeting scheduler: problems and lessons learned,”
Int. Symp. on Requirements Engineering, 194–203

21. Lauesen, S., Software Requirements – Styles and Techniques, Addison Wesley,
2002

22. Lauesen, S., Harning, S., “Virtual Windows: Linking User Tasks, Data Models and
Interface Design”, IEEE Software, pp. 67-75, July/August 2001

23. Macaulay, L.A., Requirements Engineering, Applied Computing, Springer Verlag,
1995

24. Moynihan, T., ”Objects versus Functions in User-Validation of Requirements:
Which Paradigm Works Best?, OOIS, pp.54-73, 1994

25. Oestereich, B., Objektorientierte Softwareentwicklung: Analyse und Design mit der
Unified Modeling Language, Oldenbourg Wissenschaftsverlag GmbH, 2001

26. OMG, “ The Unified Modeling Language”, http://www.omg.org/uml/
27. Paech, B., Aufgabenorientierte Softwareentwicklung- Integrierte Gestaltung von

Unternehmen, Arbeit und Software, Springer Verlag, 2000

#. Task-driven Requirements in Object-oriented Development 25

28. Rudd, J., Stern, K., Isensee, S., Low vs. High Fidelity Prototyping Debate,
Interactions, Vol.2, No. 1, 1996

29. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and Lorensen, W., Object-
Oriented Modeling and Design, Prentice Hall International, 1991

30. Scheer, A, ARIS – Business Process Frameworks, Business Process Modeling,
Springer-Verlag, 1999

View publication statsView publication stats

https://www.researchgate.net/publication/267791255

