

Electronic version of an article published in iSQI (Hrsg) Proceedings of the 3rd World
Congress for Software Quality 2005, Vol. 2, pp 213-222

Copyright © [2005] International Software Quality Institute GmbH (iSQI)

http://www.isqi.org/isqi/deu/conf/wcsq/3/

Criteria for Software Testing Tool Evaluation – A Task
Oriented View

T.Illes, A.Herrmann, B. Paech, J. Rückert

Institute for Computer Science, University of Heidelberg
 Im Neuenheimer Feld 326, 69120 Heidelberg, Germany

{illes, herrmann, paech , rueckert}@informatik.uni-heidelberg.de

Abstract. Considering the immense variety of test tools available, both
commercial and open source, an extensive evaluation of these tools with respect
to their adequacy for a given organizational or project context seems to be
impossible. On this account we present a systematic approach for deriving
easily verifiable evaluation criteria for test tools. We define both, quality
criteria and functional criteria. Using the TORE methodology we identify
activities which potentially could be automated or at least supported by a test
tool. Starting from these activities we derive evaluation criteria for test tools.
We focus on criteria which can be evaluated considering only vendors'
instructions, consequently without an extensive laboratory test. The result of
our work is a reasonable list of criteria allowing an effective classification and
pre-selection of test tools. In a first step we applied our criteria to evaluate three
capture & replay tools. At this, our approach proved of value. The fundamental
differences between the tools could be identified and additional criteria for this
particular test automation technique could be defined.

1 Introduction

Browsing the web one can find an immense variety of tools supporting different
activities performed during the test process. Even though there are over 600 test tools
no approach exists for classifying these tools, apart from a very superficial
categorization into test tools supporting test planning, test design, test execution,
defect tracking or configuration management as mentioned in [20]. Therefore in
product overviews plainest tools and extensive ones are grouped into the same
category. In this paper we refine these criteria to allow a more detailed classification
of tools according to the context of a special project without lapsing into the contrary
by defining criteria, which are only applicable on the basis of extensive product
evaluations. Suchlike criteria require a high effort so that we confine ourselves to
criteria which allow a pre-selection only by consulting the vendor’s instructions.

In order to determine quality criteria for test tools, we extend the characteristics of
the quality model proposed by the standard ISO/IEC 9126 [10] by criteria related to
vendor qualification as mentioned in [4]. For deriving a reasonable set of functional
criteria we analyzed the test process applying the TORE methodology [16]. We
identified that way the tasks performed while systematically testing a software system

2 T.Illes, A.Herrmann, B. Paech, J. Rückert

and the corresponding roles. Refining these tasks we detected activities which
potentially could be automated or at least supported by a test tool. The result of our
work is a set of quality and functional criteria. For validating our results, we then
exemplary applied the criteria in order to evaluate three capture & replay tools.

Related Work. Apart from the criteria defined by Poston and Sexton [18] there is
no founded approach for deriving evaluation criteria for test tools. Since the criteria
proposed by Poston and Sexton focus on company specific criteria or on criteria
requiring a high effort to be evaluated e.g. test effort or test quality (percentages of
found defects), these criteria do not apply for a pre-selection of the test tools.
Additionally, criteria specific to test tools are mentioned without a justification for
their derivation. The criteria mentioned by Poston and Sexton represent a subset of
the criteria systematically derived in our approach.

Commercial test tool evaluations offered by OVUM [15] and CAST [1], [2], and
most of the non-commercial ones as proposed in [19] or [4] appraise only a small
subset of the test tools/frameworks available. These works concentrate on a detailed
evaluation of products offered by the market leaders requiring extensive evaluation
(installation and use) of the test tools. In contrast, we focus on more coarse-grained
criteria enabling an effective pre-selection for users. Furthermore, our approach does
not restrict the tools to be evaluated to a minimal set determined by the market leaders
so that a wide range of test tools can be considered. The criteria defined in the CAST-
reports are not available to us.

Overview. The reminder of this paper is organized as follows. Section 2
summarizes quality criteria for test tools. In section 3 we analyze the test process from
a task oriented view and define activities performed during the test process. Section 4
summarizes the functional criteria derived from the activities identified in section 3.
Section 5 then summarizes the result of an exemplary tool evaluation and section 6
concludes the paper and presents our intended future work.

2 Quality Criteria for Testing Tools

For specifying quality criteria for testing tools, we used the ISO/IEC 9126 standard
[10]. The ISO/IEC standard defines a framework for the evaluation of software
quality, proposing a hierarchical model, which consists of six characteristics and
corresponding sub characteristics for software product quality. Furthermore we
supplemented these characteristics by criteria related to vendor qualifications
proposed in [4]. These criteria consider the following additional aspects: general
vendor qualifications, vendor support, licensing and pricing. Subsequently, we
summarize the quality evaluation criteria we determined this way. The criteria Q1-Q6
represent the characteristics and sub-characteristics of the ISO/IEC 9126 standard, the
criteria Q7-Q9 represent the criteria related to vendor qualifications. A refinement of
these criteria can be found in [9] and [3].
Q1 Functionality suitability, accurateness, interoperability, compliance, security

(1-5)
Q2 Reliability maturity, fault tolerance, recoverability (6-8)
Q3 Usability understandability, learnability, operability (9-11)

Criteria for Software Testing Tool Evaluation – A Task Oriented View 3

Q4 Efficiency time behavior, resource behavior (12-13)
Q5 Maintainability analyzability, changeability, stability, testability (14-17)
Q6 Portability adaptability, installability, conformance, replaceability (18-21)
Q7 General vendor qualifications

22 maturity of the vendor, market share, financial stability
Q8 Vendor support

23 warranty, maintenance and upgrade policy
24 regularity of upgrades, defect list with each release
25 compatibility of upgrades with previous releases
26 e-mail support, phone support, user groups
27 availability of training, recommended training time, price

Q9 Licensing and pricing
28 open source or commercial
29 licensing used, rigidity (floating node-locking license)
30 price consistent with estimated price range
31 price consistent with comparable vendor products

3 The Test Process: A Task Oriented View

We now consider functional criteria for testing tools. For this reason we analysed the
test process. While the criteria proposed by Poston and Sexton [18] focus on
organisational issues and the recommended functional criteria are coarse grained, our
work aims at proceeding in a more general way by considering the whole test process
so that we can derive more detailed and more test specific criteria. For a more abstract
view on the test process we applied therefore the TORE (Task and Object-oriented
Requirements Engineering) methodology proposed by Paech and Kohler in [16]. This
methodology was designed to give guidance to the specification of user requirements
on different abstraction levels. In the context of this work the task and the domain
level are relevant. At task level, the most abstract of the four levels, user tasks and
corresponding roles are identified and specified. These tasks are then refined by
further activities at domain level.

We applied the TORE methodology to identify tasks and roles involved in the test
process. Tasks are typically identified by analysing the current work of roles involved
into the process and emphasis on the work context of these roles [16]. We identified
the tasks by analyzing test process descriptions mentioned in standard textbooks such
as Spillner [20, 17] and Mosley and Posey [14]. The basis of our work is the
fundamental test process described in [20] consisting of planning, specification, test
execution, capturing and analysing test results. We then detailed these tasks according
to [14], resulting in a more precise view of the tasks concerning test design and test
execution. Finally we added tasks continuously performed during the whole test
process concerning the tracking of defects and the management of the test ware as
mentioned in [17]. Test ware includes all artifacts such as test specifications, test
scripts and test data, developed during the test process [17]. In a further step we
refined these tasks by activities. Table 3 summarizes the main tasks and the
corresponding roles involved in the test process we identified in this step.

4 T.Illes, A.Herrmann, B. Paech, J. Rückert

Table 1. Tasks and roles involved in the test process.

ID Tasks Role(s)
A Test planning and monitoring Test manager
B Designing Test Cases Test designer
C Constructing Test Cases Test automator, test designer
D Executing test cases Tester
E Capturing and comparing test results Tester
F Reporting test results Tester
G Tracking Software problem

reports/defects
Tester, test manager, developer

H Managing the test ware Test configuration manager, test
administrator

Subsequently we present refining activities performed during the corresponding

task.
A: Test planning and monitoring. Considering that testing activities represent 30

– 40 % of all activities in the software life cycle [21], it is critical to plan and begin
test activities as early as possible. As testing activities are complex, a sound planning
and monitoring of testing activities is crucial to the success of the project. Thus, key
activities of test planning include the tailoring of the organizational test process to the
requirements of the current project, identifying the constraints of the current project1,
identifying the test strategy, prioritizing test activities, assessing risks, scheduling,
identifying staffing and training needs, defining metrics to monitor the progress of test
activities, defining pass/fail criteria. Key activities in project monitoring include
collecting metrics, project tracking and adapting the test plan according to the current
circumstances. Beside these activities a coordination of the interface to other
processes in the software development life cycle is necessary.

B: Designing Test Cases. 2Key activities of designing test cases are to choose test
techniques based on the defined test strategy, to identify test conditions, to derive and
document logical test cases, and to identify the layout of the test data for logical tests.
The design of test cases includes both, test cases for testing functional requirements
(the “what”) but also quality aspects (the “how”) of the system under test (SUT). The
ISO/IEC standard [10] proposes a framework for characterising quality aspects for
software.

C: Constructing Test Cases. Key activities of constructing test cases include the
implementation of test cases by defining concrete test cases and test data. In case of
test automation test scripts are developed. A test script can realize required
preconditions, the execution steps and set-up and clear-down facilities. Additionally,
test scripts can implement generation procedures for test data and expected outcomes.

D: Executing Test Cases. The test cases designed and constructed in the phases
before must be executed. These activities can be done manually (by executing the

1 Constraints can concern e.g. programming paradigm, specific application characteristics such

as web application, etc.
2 A test case specification should include the test items, input specifications, output

specifications, environmental needs, special procedural requirements and inter-case
dependencies [7].

Criteria for Software Testing Tool Evaluation – A Task Oriented View 5

defined steps of the test case) or automated by running the test script. A semi-
automated execution of the test scripts is also possible.

E: Capturing and comparing test results. Key activities of this task include the
documentation of the executed test steps and outcomes and the verification of the test
results by comparing expected and actual outcomes.

F: Reporting test results. Reporting activities aim at aggregating test information
on different detail levels in a comprehensible and reproducible manner: Test reports
document test results and their analysis [14]. Therefore, reports should have a
customizable degree of detail with respect to the intended audience (managers,
customer, and developers)

G: Tracking Software problem reports/defects. The key activities of this task
concern a problem’s or defect’s traceability during their lifecycle. This lifecycle
includes the recording and classifying of a defect/problem, the monitoring of the
progress on corrective activities, the prioritization of defects to decide whether
corrective actions should be started and regression testing activities of corrected
defects. According to this, a defect passes through various states (new, opened,
denied, analysing, correcting, testing, closed, flop) during its life cycle [20].

H: Managing the test ware. Key activities of this task include the management of
the test ware (versioning, storage, sharing, …), providing traceability between the
elements of the test ware (requirements, logical test cases, concrete test cases, test
data files, …), tracing modifications on a test object and communicating changes, and
creating “snapshots” of the test ware at the end of a test cycle in order to conserve the
results of a test cycle for regression testing.

4 Deriving Functional Criteria for Test Tools

Based on the activities identified using the TORE methodology, we derived
evaluation criteria for test tools. We identified those activities performed in the tasks
described in section 3 that could be potentially supported, respectively automated by a
test automation tool. The resulting criteria are designed in such a way, that they can
be evaluated by “yes” or “no” to enable an efficient evaluation of a variety of test
tools. For a more fine-grained classification, a scaled rating could be chosen (e.g. for
a specific criteria the following scale is conceivable to express to what extent a
feature provided by the particular tool supports the criteria: 0 – not supported, 1 –
semi-automated, 2 – automated). Subsequently we list the functional criteria grouped
by the tasks described in section 3.

A: Test planning and monitoring. Test tool provides support for:

1. customization of the organizational test process
2. particular programming paradigms3 and/or languages, operating systems,

browser, network configuration
3. application specific characteristics, which require specific testing techniques4
4. testing special application domain (e.g. avionics, automotive, etc.)

3 E.g. component-based, imperative, model-driven, etc.
4 E.g. web-based, GUI testing, real-time testing, database testing, protocol conformance testing.

6 T.Illes, A.Herrmann, B. Paech, J. Rückert

5. planning of the test process (scheduling, project tracking, risk management)
6. monitoring test activities

• by tracking of the estimated and actual time/test case
• by providing coverage metrics to measure the progress of testing activities
• by providing metrics from different sources (e.g. requirements, test cases)

6. integration with other tools5
B: Designing Test Cases. Test tool provides support for:

7. designing test cases for the required test level (unit, integration, system)
8. selecting the test techniques
9. defining test conditions derived from the defined test techniques
10. defining templates for structuring the information specifying test cases
11. generation of logical test cases from semi-formal models6?
12. generation of logical test cases from formal specifications (e.g. Z)
13. generation/derivation of test data layout7
14. optimizing the test case set8
15. designing test cases to test quality criteria of the application9
16. restricting the test case set (e.g. ranking by prioritisation of the test cases,

risks assigned to test cases) in case of deadline constraints
C: Constructing Test Cases. Test tool provides support for:

17. editing test scripts
18. developing of test code conforming with accepted software engineering

practices10
19. capturing of executable test cases
20. generation of concrete test cases from (semi-)formal models6
21. generation of (in)valid test data 11
22. generation of stubs, test drivers, mock objects,
23. simulating missing faulty system components

D: Executing Test Cases. Test tool provides support for:
24. setting-up and clearing-down of the test environment/pre condition and

respectively the post conditions for a set of test cases
25. roll-back to initial in case of unexpected errors
26. execution of captured, captured & edited or manually implemented test cases

for functional testing.
27. execution of captured test cases for testing quality criteria12

5 e.g. with other testing tools, project management tools, requirement management tools, etc.
6 E.g. UML scenarios, UML state charts, UML sequence diagrams.
7 E.g. template-based/code based/interface based/specification based/database-based (schema

definitions)/using results of former test cycles.
8 E.g. minimizing test cases by concurrently maximizing coverage of requirements.
9 A possible set of quality criteria is defined by the ISO/IEC 9126 standard as described in

section 2.
10 E.g. modularisation of the code, comments, declaration of variables and data types;

parameter passing; separation of test data and definition of the course of events.
11 E.g. code based; interface based; specification based; from databases (live data information,

schema information), randomly, rule-based.
12 By performing static analysis e.g. checking conformance of the source code to style guides

or by performing dynamic analysis e.g. performance testing or load testing

Criteria for Software Testing Tool Evaluation – A Task Oriented View 7

28. stopping and continuation of the execution of a suspended test case
E: Capturing and comparing test results. Test tool provides support for:

29. logging information on executed test cases13
30. comparison facilities between specified and actual outcomes

F: Reporting test results. Test tool provides support for:
31. aggregation of logged test results
32. customizable, role specific amount of information

G: Tracking Software problem reports/defects. Test tool provides support for:
33. specifying problem reports/defects by using predefined templates
34. generating entries for recorded defects
35. prioritizing defects
36. tracking change requests/defects and their current status
37. generating statistical information
38. for regression testing 14

H: Managing the test ware. Test tool provides support for:
39. management of the test ware 15
40. traceability between the elements of the test ware16
41. by tracing modifications on a test object and communicating changes
42. the maintenance of the test data, of the test cases
43. for automated tests to be (re)used for regression testing/in other projects
44. snapshot facilities (by freeze a special state of the test ware)

5 Applying the Evaluation Criteria

In order to evaluate the applicability of the derived criteria, we exemplary analysed
and compared three capture and replay tools. The capture and replay approach is
primarily applied to regression tests of web and GUI-based applications. Capture and
replay tools are similar in their mode of operation consisting of four steps as
described in [8] and [12]: (1) Capture mode, where all manual user interactions on the
test object are captured; (2) Programming, where the captured interactions are
mapped to a test script, (3) Checkpoints, where additional checkpoints are added to
the test script, (4) Replay-mode, where captured scripts can be replayed. In step 4
results from former tests and current results are compared. In case they differ, the test
fails. The test also fails if defined checkpoints are violated.

The three tools we evaluated are: WinRunner [13], Rational Robot [6], and
HTTrace [11]. WinRunner is distributed by Mercury. This tool is about the market
leader (54% of the market in test tools). Rational Robot is distributed by IBM and
holds 17% of the market in test tools. HTTrace is not a commercial product, but
developed for internal use for the company i-TV-T. We analyzed HTTrace because of
its scientific relevance. Basis of our evaluation was the documentation provided by

13 E.g. executed steps, outcomes and exceptions but also memory/resource usage, network load,

code coverage information.
14 Ee.g. by identifying test case set to be re-executed for regression testing
15 E.g. versioning, storage, sharing, and authorisation facilities.
16 E.g. requirements, logical test cases, concrete test cases, test data files, outcomes, etc.

8 T.Illes, A.Herrmann, B. Paech, J. Rückert

the vendors on their web site. Additionally, we got feedback from Mercury and i-TV-
T regarding our evaluation. Subsequently we present a brief summary of the
evaluation results. A detailed report can be read in [5].

A: Test planning and monitoring. The evaluated tools do not focus on supporting
test planning and monitoring activities. 17

B: Designing test cases. Since the design of test cases does not represent a key
feature of the evaluated test tools, most of these functions e.g. guidance in selecting
test techniques/defining test conditions, derivation/generation of test cases or test data
are not supported. For testing quality criteria of the SUT HTTrace provides
performance tests. For stress tests an additional component, HTBlast, can be
integrated. For WinRunner and Rational Robot, the additionally components Load
Runner and TestDirector respectively Rational Performance Tester must be
integrated for both, performance and stress test. Usability testing is not provided by
any of the vendors.

C: Constructing test cases. Constructing test cases by capturing user interaction
represents one of the key features of the tools where captured scripts can be manually
edited. Expected outcomes are defined by outcomes in previous test runs. In case of
regression testing current and previous outcomes are compared in order to decide if
the test failed or passed. None of the tools supports the generation of test data (valid,
invalid) or the generation of stubs or test drivers.

D. Executing test cases. All tools support the execution of test cases by running
the captured/implemented test scripts. The separation of test data and test script
allows scripts to be parameterized by different test data. Both, WinRunner but also
Rational Robot provide this facility, HTTrace does not offer a solution for this
problem.

E. Capturing and comparing results. Logging of outcomes occurs in a separate
file. Each tool allows comparison of expected (defined by previous test runs) and
actual outcome.

F: Reporting test results. Reporting features can be added to each tool by
integrating additionally components.18

G. Tracking software problem reports/defects. Reporting features can be added
by integrating additionally components19

H. Managing the test ware. WinRunner provides tracebility of test cases to
requirements by integrating the additional component TestDirector, and by Rational
Robot by integrating TestManager. HTTrace provides rudimentarily this facility.
Rational Robot provides a Recovery Manager for a programmable handling for
exceptions in the SUT. WinRunner and HTTrace allow the SUT to be restarted after a
crash.

17 The integration of additional components like TestDirector provided by Mercury and

Rational Test Manager, Rational Administrator or Rational Team Unifying Plattform
provided by Rational support project planning and monitoring facilities. For HTTrace no
additional components supporting project planning are available.

19 WinRunner can be extended by TestDirector, Rational Robot by Rational ClearQuest,
Rational Team Unifying Plattform or Unified Change Management and HTTrace by Scarab
or Tracilla in order to provide defect tracking facilities. These additional components
provide workflow support for automatic notification of changes to the state of a defect.

Criteria for Software Testing Tool Evaluation – A Task Oriented View 9

Summary. Key features of all three test tools are the construction of test cases by
capturing and subsequently editing the test scripts and the execution of the recorded
test scripts. Comparing previous and current outcomes regression tests can be
efficiently performed. By integrating additional components, WinRunner and
Rational Robot can be extended to provide test planning and monitoring as well as
defect and reporting facilities. HTTrace’s strength lies on testing database
applications by allowing the reset of consistent database states. Additionally, all three
tools can be extended to provide support for testing quality attributes of the system
under test e.g. performance.

By evaluating these tools we could identify supplementary criteria specific to
testing web applications by the capture and replay technique: Object recognition (e.g.
HTML-tables, frames, links, etc.), repository for managing objects, mapping of non
standard objects to standard objects (e.g. checkboxes, buttons, etc.), masking facilities
for particular areas on the screen, support for comparing images, OCR (optical
character recognition) to extract text from images, etc. A complete list of criteria,
specific to web testing and a detailed evaluation of the test tools can be found in [5].

6 Conclusion and Future Work

Applying the TORE methodology to the test process with the objective of deriving
criteria for test tools proved to give a useful set of classification and selection criteria.
The comparison of three capture & replay tools showed that the defined criteria are
effectively applicable to the evaluation of test tools based on vendor’s documentation.
The evaluation revealed the basic differences between the test tools. Additionally, our
criteria helped to derive criteria specific to a particular test technique, capture &
replay in this case.

The evaluation criteria derived in our approach can be used for diverse purposes.
At first, our criteria allow a pre-selection of test tools according to (coarse) initial
requirements. Considering that a detailed evaluation is very time-consuming, an
efficient pre-selection is crucial. Applying our criteria, such a pre-selection can be
carried out effectively on the basis of vendor’s information. Certainly, a definitive
decision for using a special tool can only be made by a detailed investigation of the
tools which passed the pre-selection process. Then, the evaluation criteria can be
applied for conducting a survey on commonly used products and to derive the state of
the art in testing tools as well as to identify gaps in the market and scientific
challenges. Additionally, the proposed criteria can be used as a framework for
classifying research results in the area of testing, especially in test automation.

Our future research focuses on providing a survey on test tools using our criteria to
classify commercial and open source tools. Additionally, we aim at refining our
criteria for testing activities specific to particular applications (e.g. object oriented
testing, component based testing, GUI testing, etc.).

10 T.Illes, A.Herrmann, B. Paech, J. Rückert

Acknowledgements. We want to thank Carsten Binnig, Lars Borner and Dima
Suliman for their constructive suggestions, comments and references. We also thank
Mercury and i-TV-T for supporting our evaluations activities.

References

1. CAST Tools. An Evaluation and Comparison, http://www.dpu.se/blocast_e.html (last visited:
July 2005)

2. CAST: Testing Tools - CAST for the Millennium and Beyond,
http://www.dpu.se/blott_e.html (last visited: July 2005)

3. Dörr, J., Punter, T., Bayer, J., Kerkow, D., Kolb, R., Koenig, T., Olsson, T., Trendowicz, A. :
Quality Models for Non-functional Requirements, IESE report nr. 101.04./E, 2004

4. Dustin, E., Rashka, J., McDiarmid, D.: Quality web systems: performance, security, and
usability, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, 2002

5. Herrmann, A., Paech, B., Rückert, J.: Bericht über die Herleitung von Qualitätskriterien für
Test-Werkzeuge, unpublished.

6. IBM, Rational Robot product overview, http://www-
306.ibm.com/software/awdtools/tester/robot/index.html, (last visited: July 2005)

7. IEEE standard 829-1998, IEEE Standard for Software Test Documentation, IEEE Computer
Society, 1998.

8. imbus: Automatisierung von Softwaretests, 7 Fallstricke und wie man sie überwindet,
www.imbus.de, 2002.

9. INCOSE: „INCOSE Requirements Management Tool Survey “, http://www.paper-
review.com/tools/rms/read.php (last visited: January 2005)

10. International Standard ISO/IEC 9126: Information technology -- Software product
evaluation -- Quality characteristics and guidelines for their use, International Organization
for Standardization, International Electrotechnical Commission, Geneva. (1991)

11. i-TV-T: i-TV-T product overview, http://www.i-tv-t.de, (last visited: January 2005)
12. Linz, T. Daigl, M,: How to Automate Testing of Graphical User Interfaces, Results of the

ESSI PIE 24306, http://www.imbus.de/forschung/pie24306/gui/aquis-full_paper-1.3.html,
(last visited: July 2005)

13. Mercury: WinRunner product overview, http://www.mercury.com/de/products/quality-
center/functional-testing/winrunner/, (last visited: July 2005)

14. Mosley, D. J. and Posey, B. A.: Just Enough Software Test Automation, Prentice Hall, July
2002

15. Ovum Evaluates: Software Testing Tools, http://store.ovum.com/detail.aspx?ID=1257, (last
visited: July 2005)

16. Paech, B., Kohler, K.: Task-driven Requirements in object-oriented Development, In J.
Leite, J. Doorn, (eds.) Perspectives on Requirements Engineering, Kluwer Academic
Publishers, 2003

17. Pol, M., Koomen, T., Spillner, A.: Management und Optimierung des Testprozesses,
Dpunkt Verlag, 2. Aufl., 2002.

18. Poston, R.M.; Sexton, M.P.: Evaluating and selecting testing tools, IEEE Software,
Volume: 9 Issue: 3, May 1992,S. 33 -42.

19. Robinson, Ray: Automation Test Tools, www.stickyminds.com, (last visited: July 2005),
2001

20. Spillner, A. and Linz, T.: Basiswissen Softwaretest, dpunkt.verlag, (2004)
21. Spillner, A.: From V-Model to W-Model – Establishing the Whole Test Process.

Proceedings Conquest 2000 – 4th Conference on Quality Engineering in Software
Technology, Nürnberg, 2000, S. 222-231

