

Electronic version of an article published as Informatik - Forschung und Entwicklung, Vol. 20, Issue 1-2, 2005, pp.

11-23

[doi: 10.1007/s00450-005-0198-4]

© [2005] Springer Berlin/Heidelberg

Die Originalpublikation ist unter folgendem Link verfügbar:

http://www.springerlink.com/content/w3638m61431p0wju/

Achieving High Quality of Use-Case-Based Requirements

Christian Denger
Fraunhofer Institute for
Experimental Software

Engineering
Sauerwiesen 6

67661 Kaiserslautern
Germany

denger@iese.fhg.de
+49 6301 707 196

Barbara Paech
University of Heidelberg

Institute for Computer
Science

Im Neuenheimer Feld 348
69120 Heidelberg

Germany
paech@informatik.uni-

heidelberg.de
+49 6221 54 58 10

Bernd Freimut
Fraunhofer Institute

for Experimental
Software

Sauerwiesen 6
67661 Kaiserlautern

Germany
freimut@iese.fhg.de
+49 6301 707 253

Zusammenfassung: Seit der Einführung von Use Cases
hat deren Bedeutung zur Spezifikation von
Anforderungen stetig zugenommen. Die Qualität der
Use Cases ist ein entscheidender Faktor für den Erfolg
des Entwicklungsprozesses, da die meisten
Entwicklungsschritte auf den Use Cases aufbauen.
Trotz der extremen Wichtigkeit der Qualität der Use
Cases stellen die meisten use-case-basierten
Entwicklungsansätze keine oder nur unzureichende
integrierte qualitätssichernde Maßnahmen bereit (z.B.
ad-hoc Empfehlungen, Erstellungsrichtlinien, einige
Checklisten zur Inspektion von Use Cases). Diese
Techniken werden in den meisten Fällen unabhängig
voneinander eingesetzt, so dass bestimmte
Fehlerklassen in den Use Cases durch mehrere
Techniken, andere Fehlerklassen überhaupt nicht
adressiert werden. In diesem Artikel wird ein
integrierter Ansatz vorgestellt, in dem Use Case
Erstellungsrichtlinien, Inspektionen und Simulation in
systematischer Weise miteinander verknüpft werden.
Der Ansatz basiert auf einer Fehlerklassifikation für
Use Cases, die als Grundlage dient, die verschiedenen
Techniken auf bestimmte Fehlerarten zu fokussieren.

Keywords: Anforderungen, Use Cases, Richtlinien,
Qualitätssicherung, Inspektionen, Perspektiven-
basiertes Lesen Fehlerklassifikation, Qualität

Abstract: Since their introduction, use cases (UCs)
have become increasingly important for the
specification of software requirements. High quality
UCs are a prerequisite for project success. Despite the
high importance of their quality, UC driven approaches
often lack systematic and integrated quality assurance
techniques. Only ad-hoc recommendations, creation
guidelines, and a few checklists for inspection are
available in the literature. If at all, these techniques are
developed and used separately, so that one class of
defects is addressed by several techniques and other
classes are not addressed at all. In this paper, we present
an integrated approach that combines UC creation
guidelines, UC inspections, and simulation in a
systematic way. We base our combined approach on a
defect classification for use cases. This classification
enables the requirements engineer to focus the different
techniques on different types of defects.

Keywords: Requirements, Use Cases, Guidelines,
Quality Assurance, Inspections, Perspective-based
Reading, Defect Classification, Quality

1 Introduction

 Since the introduction of the unified modeling language
(UML) [BSJ99] as a de-facto standard in industrial
software development, use cases (UCs) have become
one of the most important techniques for specifying
software requirements. As recommended by the
Rational Unified Process (RUP), UCs often drive the
whole software development life cycle; that is, all
development steps are based on UCs. A UC driven
development approach encompasses several advantages.
According to [Kru99], UCs link the requirements to
other software artifacts such as design, implementation,
and test cases. Thus, they help to synchronize the
content of the various models. UCs provide a common
basis for communication between the different
stakeholders (users, customers, management, designers,
and testers), which is fundamental for understanding the
system and building it right. Moreover, UCs provide a
means for project planning purposes such as iteration
planning and effort estimation.

However, specifying system requirements with UCs is
not as easy as it might look. Common challenges are
that the UCs do not represent the system behavior
required by the customer, that the UCs are
incomprehensible to some stakeholders, that too much
effort is spent on the UC specification, that different
UCs are not clearly separated with respect to the
described system functionality or that some UCs are
infeasible (i.e. not implementable). If these challenges
are not addressed, poor quality of the UCs threatens the
whole software development process: In case that
defects remain undetected in the UCs, they can
propagate via analysis and design into the code and thus
cause undesired and incorrect behavior resulting in
costly rework activities. The cost of a defect increases
by a factor of 3 – 10 [Boe81][BB01] per development
phase, depending on the type of the defect. Thus, the
detection and correction of defects in the UCs is one of

the most cost-efficient quality assurance techniques
[Kru99].

Despite the importance of high-quality UCs, there are
only few approaches that focus on quality assurance for
UCs. Most common are creation guidelines for UCs that
should ensure high quality in a constructive way
[Coc01] [AM01] [BS03]. In addition, recommendations
can be found in the literature on how to avoid certain
quality flaws in the UCs [Lil99]. Also, some inspection
approaches define checklists that can be used to detect
defects in UCs [AS02] [Pet02]. All of these approaches
address some, but not all potential defects types.
Furthermore, they are developed as if they were applied
as the only quality assurance technique. This can lead to
redundant effort, in the sense that different techniques
double check the same types of defects. Finally,
developers are often left alone with the question of
when to use which technique.

To overcome these problems, we developed an
integrated quality assurance approach for UC-based
requirements specifications. We especially concentrate
on textual UCs as they are most common in industrial
practice. The main idea of our approach is that we base
the quality assurance activities for UCs on a defect
classification scheme that captures common defects in-,
and challenges of UCs modeling. Based on an analysis
of the defects, we developed tailored quality assurance
techniques that focus on special types of defects and
challenges. We combined constructive UC creation
guidelines with UC inspections and simulation in such a
way that they form an integrated quality assurance
approach. The idea of our approach is that one
technique is more efficient than the other in detecting
certain classes of defects. For example, constructive
guidelines are more appropriate to ensure structural
aspects of the UC (e.g., naming conventions and use of
active voice in the UC scenarios). On the other hand,
inspections are appropriate for identifying subtle,
logical defects in the UCs (e.g. infeasible requirements
or poor maintainability) which is almost impossible
with creation guidelines. Applying simulation allows
efficient identification of defects in the dynamic
behavior and improves the understanding of the
interplay of the different use cases, which would be
extremely time-consuming in an inspection. Focusing
the techniques on different defect classes increases the
coverage and reduces the overlap (i.e., one quality
aspect is addressed in the ideal case by one and only
one technique). This increases the effectiveness and
efficiency of the overall quality assurance approach;
that is, more (major) defects can be found with less
effort.

The remainder of this paper is structured as follows. In
Section 2, the basic ideas of and the motivation for
defect classes is given and a defect classification for UC
modeling is defined. Section 3 describes the integrated
quality assurance approach we developed and how this
approach addresses the identified defects. The approach

is discussed with respect to related work in this area. In
Section 4, some results of the preliminary evaluation of
our approach are presented. Section 5 gives a
conclusion and briefly describes future work.

2 A Defect Classification Scheme for UCs

In order to systematically combine different quality
assurance techniques, we consider the types of defects
that can be detected with a particular technique. Since a
single technique alone cannot address all types of
defects equally well, several techniques should be
integrated in a way that (1) all kind of defects are
targeted by the most suitable technique, and (2) the
overlap between types of defects found by different
techniques is reduced.

The core of this approach is consequently to derive an
appropriate classification of defect types that enables
such a systematic integration. To motivate the selection
of our defect classification scheme, we first discuss
general aspects of defect classification and then, we
present our approach to define a defect classification
scheme for UCs. In this approach we start with common
defects and pitfalls that affect UC quality and therefore
should be addressed by an integrated quality assurance
approach.

2.1 Basics of Defect Classification

Defect classification plays an important role when
measuring software processes. This importance is
explained by the fact that defects carry a lot of
information that can be analyzed in order to characterize
the quality of the development processes, of the quality
assurance processes, and of the resulting products.

A defect classification scheme in general contains one
or more defect classification attributes that capture
various aspects of a defect. For example, [Mel92]
proposes a framework of eight high-level key attributes
that capture different defect aspects. Each of these
defect classification attributes is measured on a nominal
or ordinal scale with a set of pre-defined values, the so-
called defect classes. The challenge in designing a
defect classification is therefore to select an appropriate
aspect and corresponding defect classes.

Generally, there are many aspects of a defect: Defects
are inserted due to a particular reason into a particular
piece of software at a particular point in time. Defects
are detected at a specific time with a specific technique
by noting some sort of symptom and they are corrected
in a specific way. Consequently, there are many
different defect classification schemes that target
different defect aspects for different purposes. For
example, the IEEE Standard Classification for Software
Anomalies [IEEE94] aims at tracking the progress of
defects through the Defect Resolution Process. The

Hewlett-Packard Scheme [Gra92] aims at deriving
process improvement proposals, and the often-used
Orthogonal Defect Classification (ODC) Scheme
[Chi92] aims at controlling the progress of a
development project. In addition to these well-known
schemes, defect classification schemes have been
developed for specific quality assurance techniques:
[Por95] used the set {Missing Functionality, Missing
Performance, Missing Environment, Missing Interface,
Ambiguous Information, Inconsistent Information,
Incorrect or Extra Functionality, Wrong Section} to
characterize defects found in requirements inspections,
while [BGL96] used the set {Omission, Incorrect Fact,
Inconsistency, Ambiguity, Extraneous Information}.
[AS02] used this scheme to develop a UC defect
taxonomy. The basic idea of the taxonomy is to link UC
elements (Actors, Use Cases, Event Flow, Variations,
Relations, Triggers) to this defect classification, i.e., to
define what the classes mean for the elements (e.g.,
omission means for actor that not all actors where
specified in the UC diagram or the UC description).

[Fre01] presents a process for developing defect
classification schemes as well as quality criteria for a
good defect classification scheme, which we followed
in order to derive a defect classification for UCs. In
short, the process is as follows: In a first step it is
necessary to decide, based on the indented usage of the
scheme, which aspects of a defect are to be captured in
a defect classification attribute. In order to make this
aspect explicit, it is recommended to define the meaning
of the attribute, for example in the form of a question.
In a second step, an appropriate set of defect classes are
to be derived (for each attribute). This set of defect
classes should be tested with a sample of real defects in
order to ensure its applicability. In addition it should be
checked if the set of defect classes is orthogonal (i.e.,
for a given defect one class at most is possible) and
complete (i.e., for a given defect at least one class is
possible). In a third step, all defect classes should be
documented with a definition that states, when a defect
is to be assigned to a given defect class. This definition
helps data collectors to select the right defect classes
and therefore contributes strongly to data quality.

2.2 A Defect Classification for UCs

Following the process for developing defect
classification schemes presented above, it is first
necessary to select a relevant defect aspect that is to be
captured. Since the basic assumption of our integrated
approach is that there are different types of defects and
that different quality assurance techniques focus on
different types of defects, we wanted to capture the
aspect of how a defect is detected. A survey of the
existing schemes revealed that the attribute Defect
Trigger of the ODC scheme addresses this aspect. In
particular, this attribute addresses the question What
were you checking when you detected the defect and
represents thus a question crucial for distinguishing

defects found or prevented with different techniques. In
the original definition the attribute values are
specifically tailored to the IBM domain and are not
directly usable for UCs. Thus, we derived a new set of
attribute values for this attribute by adhering to the
original definition of the Defect Trigger. Our rationale
was that the set of attribute values should contain
quality criteria of a high-quality UC. Since developers
check the document against these criteria in order to
find defects or prevent these upfront, these quality
criteria are appropriate defect classes for the Defect
Trigger. With this rationale in mind, the integration of
quality assurance techniques can ensure that all
necessary quality criteria are addressed.

In order to define the set defect classes we identified a
set of quality criteria. In particular, we used the IEEE
standard for requirements specification [IEEE98] as a
basis. This standard lists a general set of quality criteria
for specifications, namely: consistency, completeness,
correctness, unambiguity, verifiability (testability),
changeability, traceability, and prioritisation. The first
four are general criteria for documents, the last four
address specific concerns of developers using the
specification: verifiability is important for the testers,
changeability is important for maintenance, traceability
for maintenance and project management, and
prioritisation for project management. To cover all
stakeholder concerns and address all relevant quality
criteria, we have extended this general scheme with
comprehensibility (easy to read for all stakeholders) and
feasibility (necessary for designers) as well as adequate
level of detail (avoiding over- and under-specification).
Table 1 shows in the first column the defect class,
which is a negation of the quality criteria. In the second
column, a definition for the defect class is given that is
specific for UCs, and the third column provides an
example for a defect of the defect class. The latter two
columns ensure that every defect class is well-defined.
Note that incomprehensibility typically affects all other
quality criteria. Also, we address traceability under
comprehensibility, as both relate to structuring means.

This detailed defect classification gives an initial
overview of the potential defects that can occur in UC
modeling (diagram and textual description).

Defect
Class

Description Example

In-
correct-
ness

The UC does not match
the expected or
intended behavior; that
is, the information
presented in the UC is
wrong and does not
represent the user
requirements.

The flow of a UC
does not represent
the flow of
activities expected
by the user.

Incom-
plete-
ness

The UC does not
contain all necessary
scenarios. The UC set

An important
exception is not
specified, a

Defect
Class

Description Example

does not contain all
necessary UCs.
Information that is
required for subsequent
activities is not present.

certain actor is not
considered.

Incon-
sisten-
cy

A piece of information
of a single UC or of
different UCs is
described in at least
two different,
incompatible ways so
that there is a
contradiction between
them.

The quality
constraints of a
UC contradict the
event flow. One
user action in two
different UCs
requires
contradictory
system behavior.

Ambi-
guity

Elements of the UC
can be interpreted in
two or more ways.
Thus, it is not clear
which of the
interpretations are true.

A condition
containing “and”
and “or” does not
explicitly state the
required
bracketing.

Incom-
prehen-
sibility
/in-
tracea-
bility

The UC is difficult to
understand and
comprehend. The UC
is not specified
according to a
template.

The event flow
described in the
UC is too
complex due to
many “include”
relationships. The
template is not
adhered to.

Intest-
ability

The behavior described
in the UC cannot be
validated by means of
test cases due to logical
or physical constraints.
That means there is no
way to check whether
the system fulfills the
UC.

It is impossible to
derive the system
response to a
certain user input.

In-
change-
ability

The UC is difficult to
change.

Details of the user
interface are
mixed with
essential
behavior.

Infeasi-
bility

The behavior described
in the UC cannot be
implemented.

It is not possible
to derive an initial
design of the
system from the
UCs.

Over-
specifi-
cation

The information given
in the UC is irrelevant
or too detailed in the
sense that it prescribes
an implementation.

Details of internal
system behavior
are described in
the UC. An actor
not necessary for
the system
behavior is
described in the
UC.

Table 1: UC Defect Classification

In order to check whether the defect classification
scheme is applicable, we used pitfalls typical for UCs
that are mentioned in the literature [Lil99][Fir] and
classified them according to our classification scheme
(Table 1). In the following the results of this mapping
are presented. First, the pitfalls described in the
literature and then the matching defect class of our
classification are mentioned.
Pitfalls_1: System boundary is not defined.
Associations between UCs and actors do not fully
describe who can do what with the system (e.g. only
focus on objects or on user interface). UC modeling is
stopped too early (difficult to determine when UC
modeling is finished). Incompleteness
Pitfalls_2: System boundary varies for different UCs
(that means UCs are on different abstraction levels).
Actors are named inconsistently. UCs interfere with
each other (as they have been developed focusing on
single flows). Inconsistency
Pitfalls_3: UCs are written from the system point of
view, not the actor’s point of view; e.g., UC names
describe system reactions, not actor goals. UC model
looks like a dataflow or process model due to the use of
‘extends’ and ‘uses’ relationships. There are too many
UCs, because the actor goals are too fine-grained. There
are too many relationships between actors and UCs,
because the actor roles are too coarse-grained. Text is
too long, because UC covers too many instances. UC
contains too many if-branches and loops. UCs lack
contexts. UC terminology is not adequate for users.
Incomprehensibility
Pitfalls_4: UCs are associated with user interface
structure. Inchangeability
Pitfalls_5: Steps of the UC describe internal
functionality rather than interaction.
Overspecification

This mapping shows that our classification scheme is
indeed usable with typical defects and is therefore a
sound starting point for a profound planning of quality
assurance techniques. Based on the defect classification,
quality assurance techniques most suitable to address a
certain defect class can be identified.

2.3 Existing Quality Assurance Approaches for
UCs

The literature also gives hints on how to cope with these
quality problems. It provides templates [Coc01]
[Lil99][Fir], guidelines for creating UCs [BS03], and
checklists for inspecting UCs [AS02][Pet02]. The
recommendations are typical for guidelines and
checklists. However, they do not cover all possible
defects that can be dealt with through guidelines and
checklists. For instance, guidelines or checklists that
give advice on how to use natural language in an
unambiguous way only address ambiguity defects. Also,
the described techniques were developed independently
from each other. Therefore, they often address similar
or the same defects resulting in an overlap of the

addressed defect classes. Finally, the recommendations
and guidelines at hand do not provide help for the
prevention or detection of the really difficult defects
like infeasibility, intestability, and serious inconsistency
defects resulting from interference between UCs. Most
of the guidelines and checklists focus on pure structural
and syntactical defects, but the real expensive defects
are on a more subtle (logical) level. Thus, additional
quality assurance techniques are required that address
such defects. We show how to combine approaches that
address structural defects with those that focus on more
subtle defects in the next section.

3 An Integrated Quality Assurance
Approach

The focus of this section is the integration of UC
creation guidelines, inspections, and simulation. We
briefly describe the basic concepts and show how each
technique contributes to the quality of UCs with respect
to the defect classes described in the last section. In
addition, we show how the quality assurance techniques
are combined into an integrated approach. We use
“quality assurance techniques” as an umbrella term for
constructive quality assurance techniques such as the
use of guidelines and templates and analytic quality
assurance techniques such as inspections and
simulations. The main difference between these two
facets of quality assurance is that constructive
techniques build in the quality during the creation of an
artifact, in our case the requirements. Analytic
techniques take an existing artifact as an input and
evaluate its quality. However, whenever we do not want
to explicitly stress the different meanings we will use
the term quality assurance technique for both facets.

3.1 Guidelines for Creating UCs

UC creation guidelines can mainly deal with
structuring-related defect classes such as
incomprehensibility, ambiguity, and incompleteness.
Our guidelines focus on UCs as part of the requirements
specification. In that context UCs are used as input for
deriving a more refined system specification. In general,
we do not recommend including all details of the
system specification into the UCs, since they will get
too long. In any case, one should make sure that the
system details are separated from the main UC
description.

We have collected the guidelines from literature, e.g.,
[Coc01][RA98], and from our experiences regarding
requirements engineering projects. Guidelines that are
reported in the literature are referenced. Due to space
limitations, we can only sketch the guidelines; the full
approach can be found in [DPB03]. Our guidelines
comprise four main steps, which are briefly described in
the following paragraphs based on the example of a
door control unit for a car. The door control unit (DCU)

allows several actors (driver, co-driver) to position their
windows and their seats. Moreover, the DCU allows the
driver to position the outside mirrors, and it controls the
central locking system. Passengers in the back can also
position their windows. Note that we use an embedded
system example. This shows that our approach is not
only valid for business systems, which is often the case
for UC guidelines.

Step 1: Identify Actors and their Tasks
Identify the most important actors of the system. Actors
are roles not persons, for example, the driver is an actor
while Bob would be a person, playing the role of the
driver. Identify the tasks of these actors. Tasks are
characterized through goals that actors want to achieve,
for example, the driver wants to move his or her seat in
a convenient position. In order to capture the user’s
point of view, it is important to abstract as much as
possible from technical solutions. Tasks, their
relationships to each other and to the actors are
visualized in UC diagrams. In contrast to ordinary UC
diagrams, we distinguish two kinds of task: Those tasks
that are mainly influenced by the user and tasks that
manly concern the system reaction. The two types of
UCs are visualized in different ways. The first are
shown as bubbles crossing the border between the
system and the environment. The second are shown
inside the border (e.g. the UC “Control windowposition
partially”). In this step, only the former are elicited. The
UC diagram connects the tasks and the actors.

Step 2: Identify the Input and Output of the System
(i.e., its Context)
Distinguish monitored and controlled variables.
Controlled variables describe the system parts
controlled in the UCs as well as system data created.
Monitored variables capture the different possibilities
actors have to trigger the system reaction as well as
other system data needed in the UCs. Create a list of
monitored and controlled variables, which captures the
name and the description. Do not separate inputs that
are needed to trigger one task (that is, both inputs are
needed to trigger the same task). “Internal identification
input”, for example, includes the selection of the
“Position seat” function as well as the “Identification”
given by the actor.

passenger

control own window

control other
window

control window position
totally

control window position
partially

driver

include
include

Excerpt: window movement

include include

co-driver

Figure 1: Use case diagram for the position window

functionality

Abstract from user interface details [Coc01], e.g., do not
use “seat_position_button” unless it is required that this
is a button (e.g., instead of a touch screen). These inputs
and outputs help to delineate the system boundary
[Lil99], but do not fix the details of the man – machine
interface. It is important to keep these details separate
from the UC description, because the interface often
changes over time and between different releases. Thus,
abstraction supports changeability of the UC
description.

Step 3: Refine the Tasks According to Variations
Give special considerations to variations of the tasks.
Variations are often due to slightly different handling of
input and output (e.g. reaching extreme values), to
changing system data, problems in carrying out the
system reaction, and major modes of operation. If the
variation is quite likely and results in significantly
different behavior of actor or system, then define new
UCs for the different variations. These new UCs should
be included in the general UC. In Figure 1 two UCs are
added which distinguish the partial and the total
movement. If the variation is quite likely, but can easily
be described as a case distinction, include this
distinction in the UCs. If the variation is not likely,
include it as an exception in the UCs. Avoid too many
UCs in order to support comprehensibility of the UC
model.

Step 4: Fill in the UC Template
We provide a template for the textual UC description to
ensure their completeness. Table 2 shows such a
template. Name and actor can directly be taken from the
UC diagram. Then, the name is elaborated with the
actor’s goal. This goal is further detailed with the
precondition and the postcondition. Preconditions
capture conditions needed for successful execution of
the UC and are typically established by other UCs.
Postconditions define the system state after the UC has
executed successfully; that is what is achieved when the
UC scenario is performed without exceptions. Next, the
monitored and controlled variables relevant for the UC
are collected. They can be taken from the lists created in
step 2. The explicit collection of monitored and
controlled variables supports traceability between UCs
that overlap on variables.

The main step is to describe the normal course of
interaction between actor and system in the description
facet. Here, we use the essential UCs from [CL99]. To
achieve completeness, we focus the requirements
engineer on four types of exceptions resulting from:

1. actor inputs outside of the UC (e.g., exception
2.1 in Table 2),

2. boundary values of controlled variables such as
limit positions

3. system behaviour outside of the UC, but visible
to it (e.g., exception 2.3, safety opening in Table
2), or

4. problems in carrying out the system reaction
(e.g., exception 2.2, technical problem in Table
2)

To support comprehensibility of the main flow, details
of the system reaction are captured in the rules facet.
The rules facet gives additional information to specific
aspects in the main flow, for example, in which case the
system will activate the safety opening of the window
control (see Table 2).

The separation of the requirements into different facets
is an important prerequisite for the efficient derivation
of the system specification.

Table 2: Filled UC Template for UC "Control
window position totally"

Use Case Control window position totally
Actors Passenger, driver or co-driver
Intent Actor positions window to the upper

or lower limit
Precondition None
Description 1. Actor inputs request for total

movement up or down
2. System reacts accordingly

[Exception 2.1. Actor inputs
request for partial movement]
[Exception 2.2. Technical
problem]
[Exeception 2.3. Safety
Opening]

Exceptions 2.1 Partial movement => UC
“Control window position partially”
2.2 Technical problem => System
does not react completely
2.3. Safety Opening => System
opens the window totally

Rules The system activates the “Safety
Opening” if the actor request upward
window movement, but the window
does not move

Mon. Var. Window_Position, Actor_Input:
movement_type (partial, total) and
movement_direction (up, down)

Cont. Var. Window_Position
Quality requ. None
Postcondition Window has requested position

3.2 Inspection of Use Cases

Inspections are one of the most efficient quality
assurance techniques. Especially in the early life cycle
phases, inspections are highly valuable, as each defect
that is removed from the requirements cannot cause
follow up defects in later phases. Further, the cost for
detecting and removing a defect increase with each
development phase [BB01]. Inspections add new views
on a software artifact by involving different
stakeholders in the inspection process. As discussed in

[P+04] there are many stakeholders involved in the
development of complex products and it is very
important to support their communication. Therefore,
we integrate inspections in our approach as an analytic
quality assurance technique for UCs. In particular, we
use the perspective-based reading (PBR) approach
[BGL96][Lai00]. The idea of PBR is that the UCs are
inspected from the perspectives of the most important
stakeholders. Stakeholders of the UCs are all roles in
the development process that are potential users or
creators of the UCs. If all these stakeholders agree on
the quality of the UCs, it is probable that they are in fact
of good quality. Typical stakeholders/perspectives are:
(1) test engineers who use UCs as input for acceptance
test planning and test case creation, (2) designers who
derive high level design diagrams from UCs, (3) users
who take the UC to check whether all their
requirements on the system are captured, (4)
maintainers who have to perform changes on the UCs
(5) domain experts who take the UCs as a reference
document to decide whether the final system can be
build within budget, time, and whether the UCs address
the state of the market, and (6) project managers who
take the UCs for project planning purposes (e.g. assign
working tasks for different iterations of the
development).

We chose these perspectives in order to complement our
UC creation guidelines. The perspectives focus on those
defects that are difficult to address in a constructive
way. The user and the domain expert perspectives
address incompleteness and incorrectness defects in the
sense that all requirements are captured in the UCs. We
address intestability defects with the tester perspective,
and infeasibility and overspecification defects with the
designer perspective. The maintainer perspective
addresses inchangeability defects and the project
manager perspective analyzes the UCs with respect to
the possibility to create a feasible project plan for
further system development. Other perspectives might
also be useful, but in combination with the creation
guidelines the above mentioned perspectives are the
most valuable ones.,

 One major problem with inspections in general is that
often the inspectors do not know how to search a
document for defects. Often, the requirements engineers
are trained in defining UCs but not in reading them for
defects. To overcome this issue, the PBR approach
provides reading scenarios. These scenarios provide a
step-by-step description of the activities an inspector
should perform when searching for defects in the UCs.
For each of the identified perspectives on the UCs a
tailored reading scenario is defined [Lai00]. A reading
scenario consists of three main parts: introduction,
instructions, and questions.

In the introduction, the goal of the scenario is described
and the quality aspects that are most important in the
particular scenario are defined. Thus, the focus of the
inspector is set; that is, it is clarified what should be

inspected. The quality concern that is addressed is
related to the perspective that is assumed. An example
for such an introduction would be: “Imagine you are
inspecting the UCs from the perspective of a tester. One
of your tasks is the definition of a test plan and the
creation of test cases based on the UCs. Therefore, you
are interested in the testability of the UCs.”

In the instruction, an inspector gets concrete guidance
on how to perform certain activities while searching for
defects. The instructions define exactly which
documents an inspector should use during the
inspection and how to read them. Following these
instructions the inspectors get an understanding of the
document and can start to perform the inspection. One
important aspect of the PBR approach is that the
instructions require the inspectors to create real work
products relevant tfor the assumed perspective. For
example, the designer perspective requires the inspector
to derive high-level statecharts from the UCs. Thus, the
result of the inspection is not only a list of defects, but
also a certain set of state charts that can be used as a
starting point for later development activities. Creating
real work products makes the inspection more feasible,
as the amount of additional effort is not too high (as the
effort for later activities can be reduced). However, as
in many cases the inspections cannot cover all UCs
(especially when the system is too complex, i.e. there
are too many UCs to inspect), the derived artifacts must
be viewed as an initial basis for later activities. The
inspections cannot substitute these activities [Lai00]

The third element of the reading scenarios are the
questions. The questions support the inspectors in
judging whether the document (i.e. the UCs) fulfills the
required quality properties. The inspectors should
answer the questions while following the instructions
given in the scenario. In Figure 2, an excerpt of the
reading scenario of the designer perspective is shown.

The motivation for providing such guidance and
different perspectives for inspectors is three-fold
[BL02]: First, the instructions help an inspector to gain
a focused understanding of the UCs. Understanding is a
necessary prerequisite for detecting more subtle defects.
Detecting subtle defects is the most important aspect of
any inspection, as subtle defects are often the most
costly defects. By focusing the inspectors on specific
aspects (with the perspectives) and give them active
guidance more subtle defects can be identified with the
PBR approach and in consequence, the inspection
becomes more effective. Second, the instructions
require an inspector to actively work with the UCs
rather than passively scanning them, which is a
prerequisite for a profound understanding and results in
the creation of reusable artifacts. This is the most
decisive aspect of this inspection technique, compared
to other approaches such as checklists. Third, the
attention of an inspector is focused on the information
most interesting for a particular stakeholder. Thus, the
inspector is not overwhelmed by the amount of

information he or she has to inspect. Further, the
inspectors are focused on different quality aspects. This
reduces the overlap between them and makes the
inspection more efficient.

An additional advantage of this inspection technique is
that it supports the communication of different
stakeholders of the UCs. Thus, we address
incomprehensibility defects, by bringing together the
views of the important stakeholders. The inspections are
especially valuable to make the different stakeholders
more sensible for the concerns and problems of each
other and to transfer/share knowledge between the
involved inspectors. In case that other inspection
approaches are used (e.g., checklists) it has to be
analyzed which quality aspects are addressed with the
checklist questions and to balance this with those
quality aspects already assured with the guidelines.
Further, one would loose the benefits of the PBR
approach described in the last paragraph. Note that
inspections must in any case be tailored to the context
of the company and the project they are applied in.
Inspection reading scenarios or checklists that worked
for one company might not work for another company
due to different context settings.

Questions
1. Which states do not occur in the statechart or the Use Cases, although they could

occur?
2. Which event flows are unclear?

Instructions
Build the statechart for the Use Cases. For each Use Case

1. Draw the initial state and the final state with great distance to each other
2. Find the precondition of the Use Case and draw a state that represent it
3. Find the first action of the Use Case within the Use Case description. Starting from the

state of the precondition, draw a state transition (arrow) to the state representing the
result of the action, and from this to the state that represents the result of the next action
and so forth, until the state of the post condition is reached

4. For each exception described in the Use Case insert a state and a state transition in the
suitable place.....

Introduction
Imagine you are the developer. As part of your work you have to gain an overview of the use case
document. It is very important for the success of your activity to be able to derive a state graph
from the use case model. For you the main quality aspect of the use cases is the feasability of the
single use cases

Questions
1. Which states do not occur in the statechart or the Use Cases, although they could

occur?
2. Which event flows are unclear?

Instructions
Build the statechart for the Use Cases. For each Use Case

1. Draw the initial state and the final state with great distance to each other
2. Find the precondition of the Use Case and draw a state that represent it
3. Find the first action of the Use Case within the Use Case description. Starting from the

state of the precondition, draw a state transition (arrow) to the state representing the
result of the action, and from this to the state that represents the result of the next action
and so forth, until the state of the post condition is reached

4. For each exception described in the Use Case insert a state and a state transition in the
suitable place.....

Introduction
Imagine you are the developer. As part of your work you have to gain an overview of the use case
document. It is very important for the success of your activity to be able to derive a state graph
from the use case model. For you the main quality aspect of the use cases is the feasability of the
single use cases

Figure 2: Excerpt of the reading scenario from the
perspective of a designer

Note that depending on the experience level of the
inspectors, different levels of details are required in the
scenarios. A highly experienced designer or tester does
not need a detailed description on how to derive a high
level design or test cases from the use cases. On the
other hand, a less experienced inspector who has less
experience in performing a certain task (such as the
derivation of test cases) requires a detailed description
on how to do the task. It is obvious that the more
experts of the different perspectives are involved in the
inspection process, the more defects can be found.
Experienced inspectors will in most of the cases
perform better than inexperienced ones. However, the
experts are those people that are in most cases not
available for an inspection. Then, the reading scenarios
provide a means to include also less experiences

inspectors and still perform an effective and efficient
inspection process.

3.3 Simulation of Requirements

The most difficult defects to detect by inspections or to
prevent by creation guidelines are inconsistency and
interference defects. Inexperienced inspectors often do
not detect these defects or only with much effort.
Therefore, we integrate simulation as a third quality
assurance technique that addresses such defects more
efficiently. Simulation means that UCs are “executed”
in an simulation model. That is, the actor inputs are
triggered on the UCs and the system reaction is
observed. To apply this approach the textual UCs must
first be transformed into a formal, simulatable model.
Here one can use sequence diagrams. However, this
only allows the simulation of individual UCs. Critical
defects are often observed when it comes to the
interplay of different functionalities. In consequence, a
formal model is needed that allows for simulation of the
complete system behavior. In the domain of embedded
systems and the automotive industry statechart (SC)
models are frequently used for that purpose [Har98].
Typical approaches for transforming UCs into SCs
require already formal UCs in terms of sequence
diagrams, e.g. [RG99]. To avoid formal sequence
diagrams as an intermediate between textual UCs and
SCs, we go directly from UC to SC. We perceive this
process as more efficient, as we omit an intermediate
step which would not provide relevant additional
information for the SC creation. The full guidelines are
published in [DKK03]. Here we only sketch the main
idea.

To keep the guidelines simple we preserve the structure
of the UCs in the SCs. So we map input and output as
well as UCs to different classes and define SCs for each
of these classes. The SCs for the variables are quite
straightforward and reflect the major states of these
variables (e.g., door locked, door open). The SCs for the
UC start in an idle state and react to the trigger of the
UCs, with transitions to other states. Exceptions and
preconditions are reflected in these reactions (for
example in guard conditions on the transitions or as
additional transitions). The main behaviour described in
the SCs reflects the different steps of the UCs.

To model the formal SCs one can use tools like
Rhapsody [Rha]. These tools should be able to
“execute” i.e. simulate the SCs in order to allow the
validation of the dynamic behavior of the system. On
the one hand, this helps to detect incorrectness defects,
as the user can directly see how the specified system
behaves. Moreover, the transformation and simulation
allows to check for inconsistency defects in the SCs and
thus in the UCs regarding the dynamic behavior.
Inconsistency is often detected during transformation
from textual UC to the SC, when it is not possible to
define a clear system reaction, for example, for certain

interaction UCs. Further inconsistencies are detected
through simulation when the system does not react as
expected. In particular, interference defects can also be
detected, since it is easy to simulate several UCs
concurrently by means of simulating their
corresponding SCs. Further, some of these tools provide
automatic checks of the SCs (e.g., consistency checks)
based on formal model proofs. To optimize our
combination approach, we will have to investigate the
power of these automated checkers. If no tools are
available, the reading scenarios of the inspection have
to be adapted to cover inconsistency and interference
issues.

It is important to note that transformation of the UCs
into the more formal SCs takes additional effort. In
addition the transformation is a manual step in which
defects might be introduced. Here we perceive our
guidelines as a means to help to prevent the introduction
of new defects as they clearly describe the
transformation steps to be performed. In case that
sufficient effort is available, an inspection should be
planned in addition to verify the consistency between
the UCs and the SCs (i.e., to check that the
transformation was done correctly). At this point in time
we cannot prove the return on investment of using the
simulation in a statistically significant way but we have
some indications that show that the simulation of the
SCs (i.e. the UCs) pays of (see section 4). The
definition of good simulation scenarios, i.e. the
definition of input sequences that are used to simulate
the UCs, is essential.

3.4 Summarizing the Integrated Approach

By combining constructive and analytic quality
assurance techniques, we are able to address all the
classes of the defect classification introduced in the
beginning of this article, and thus all important quality
criteria. In Table 3, we summarize how each of our
techniques contributes to the fulfillment of a high
quality requirements specification:

 Creation
Guidelines

Inspections Simulation

Incompleteness X (X)
Incorrectness X X
Inconsistency (X) X
Ambiguity X (X) (X)
Incomprehensibility X (X)
Intestability X (X)
Inchangeability (X) X
Infeasability X
Overspecification X X

Table 3: Quality Assurance Technique - Defect Matrix

An “X” in the table indicates that defects related to a
certain quality aspect (as described in Table 1) are
addressed with a quality assurance technique. An “(X)”

indicates that defects are indirectly addressed with the
quality assurance technique. One example here is the
use of inspections. When searching for defects limiting
feasibility or testability, the inspector might also
identify defects related to other classes (e.g.,
completeness, ambiguity).

Our integrated approach combines the techniques, so
that the UC creation guidelines focus on structural
aspects related to completeness (e.g., all important
exceptions are considered, all template elements are
filled in). Moreover, the guidelines address aspects
related to the use of natural language (understandability
of sentences, use of unambiguous terminology). The
inspection focuses on those aspects that are difficult to
address in creation guidelines, such as feasibility,
testability, and changeability analysis. It also focuses on
more subtle (logical) defects that are not necessarily
related to structural aspects. Moreover, our inspection
approach helps to involve all the important stakeholders
of the UCs through tailored perspectives and, therefore,
supports communication about and a common
understanding of the requirements. Simulation is
integrated so that serious correctness and consistency
defects and especially defects resulting from
interrelationships between UCs (interference aspects)
are addressed. Such defects are extremely difficult to
identify in an inspection. The combination of the
different techniques in such a way is a promising
approach to reduce quality assurance effort and achieve
higher efficiency.

The main drawback of our approach is the additional
effort. The development of the formal SC and the
performance of the inspections require some effort. We
therefore recommend to utilize the effort in a most
beneficial way, that is to identify those requirements
that are most critical for the success of the system and
that bear the highest risks of later losses. These
requirements should then be first in the line, i.e. our
quality assurance approach should be applied on these
requirements. For the less important requirements it
might be more efficient to use less sophisticated
techniques. For example, a less relevant UC is not
simulated, but only inspected from the tester
perspective.
We believe that SCs with a structure close to the UC
structure are better suited for requirements engineering
than a structure that focuses on design optimization. We
allow redundancies in the SC models and the class
diagram. Thus, it is necessary to restructure the class
diagram and the SCs during system design. So one has
to trade-off the extra effort for the late restructuring
with the ease of simulation and understanding which
helps to detect defects more effectively.

Another drawback is that the reading scenarios of our
inspection approach need to be tailored to the concrete
development context and the specific stakeholders. It
might happen that additional perspectives need to be
considered or that the focus of the described

perspectives needs to be changed. If stakeholders are
not considered or the existing perspectives are not
sufficient, the inspection would be inefficient and not
effective. However, tailoring the perspective-based
inspection approach is possible by carefully identifying
the stakeholders of the UCs and analysing their quality
needs and the way these perspectives look for defects in
the UCs.

Finally, our approach is focused on UCs and thus on
initially informal requirements specifications. We do
not take formal requirements specifications like SCR
[HBD95] into account. As many stakeholders with
different technical backgrounds are involved in the
requirements engineering process, we perceive it as an
inevitable necessity to start from a more informal
specification such as UCs and proceed from there to
more formal notations. As SCs are one of those
techniques used in the automotive domain we focused
our approach around this notation, omitting others like
SCR.

4 Evaluation of the Approach

We evaluated several parts of our approach in case
studies with students. So far, we have focused on the
value of the single techniques; i.e., the UC creation
guidelines and the inspection approach. For the
simulation we collected qualitative statements about
their usefulness. We have not yet evaluated the
integration of the different techniques into a combined
approach. In the following, we outline the results of the
different evaluation parts.

We validated the UC creation guidelines and the UC
inspection approach in a case study at the Technical
University of Kaiserslautern. Both techniques were used
in the practical course “Software Engineering 1” in the
summer of 2003. In this course, the students had to
develop a building automation system that regulates the
temperature and the lights in the rooms and floors of a
university building. 12 students participated in the
study. All students had limited experience with the
application domain., The students had some experience
in performing systematic requirements inspections. Due
to teaching regulations we could not design an
experiment with a control group not using the
guidelines.. The control group would have used an ad-
hoc approach. This would have contradicted the
teaching goals of the practical course that all students
should learn adequate techniques. In addition, this
would have reduced the number of people giving
feedback to our approach. Clearly, with a number of 12
students we cannot provide any statistically significant
evaluations. However, making students apply the
approach and collecting their feedback is, in our view,
an important first step towards a more thorough
evaluation.

The software used in the practical course is a reactive
system for house automation that was created for and
evolved within the course. The system was divided into
three subsystems. (1) The graphical user interface (GUI)
that offers an interface to control the system. (2) The
light control system (Light) that switches lights on and
off depending on the presence of people in a room and a
floor. (3) The temperature control system (Temp) that
controls the room temperature, depending on the
presence of people in a room and the current daytime.

A group of 4 people was responsible for the
development of each sub-system. The Temp system
comprised 21 UCs and the related textual descriptions
(scenarios), the Light system comprised 15 UCs and
scenarios and the GUI system 34 UCs and scenarios.
Based on the problem description, each group had to
develop UCs for its sub-system with our UC creation
guidelines. To evaluate the usefulness of the guidelines,
we used a questionnaire that was given to the students
after they completed the UC creation step. It was
designed following the model recommended by Davis
[Dav89]. Initially the model was used to evaluate the
usefulness of a tool in supporting certain tasks.
Laitenberger indicated in a study that this model can
also be used to evaluate the usefulness of software
engineering techniques, after some tailoring of the
questionnaire. The basics of the model are three
categories: Perceived usefulness “the degree to which a
person believes that using a particular technique would
enhance his or her job performance”; Perceived ease of
use (applicability) “the degree to which a person
believes that using a particular technique would be free
of effort”; Self-predicted future use “the degree to
which a person would use a particular technique again
in the future”. For each category, the students had to
state their degree of agreement to certain statements
(e.g., “the guidelines accelerate the UC creation or the
guidelines improve the effectiveness of the UC
creation”) on a scale from 1 (total disagreement) to 6
(total agreement). Based on the student rates it is
possible to evaluate the degree of agreement to the
questions in each category (build the median of all
student answers of the question of this category) and
then judge the overall usefulness of the technique by
interpreting the medians of the three categories.

Regarding applicability, three statements had to be
rated. Thus, the maximum value (most positive case) is
18. We measured a median of 12. Therefore, the
students perceive the guidelines as applicable, but there
is still improvement potential, as we did not reach the
maximum value. The second element of the evaluation
model is the perceived usefulness of the guidelines. The
summarized results again show a positive perception of
the usefulness of the guidelines. Five statements had to
be rated in this category (maximum value 30). We
measured a median of 23 and therefore conclude that
the subjects agree that the guidelines are useful for
performing their task. Again we perceived improvement
potential for this category. Regarding the self-predicted

future use, the subjects had to agree with one statement.
10 out of 12 subjects (83.3%) agreed that they would
use the guidelines again in a future project. Only two
subjects would not use the guidelines again.

To summarize, the overall impression of the guidelines
is positive. The evaluation indicates that the guidelines
are useful and applicable to create the UCs. Most of the
subjects would use the guidelines again in a future
project. However, the results also indicate that the
guidelines can still be improved A more detailed
presentation of the results can be found in [DPB03].

After the students created the UCs, they had to perform
inspections on the UCs. In this task the students used
our perspective-based inspection approach. We
evaluated the impact of the detailed descriptions
provided by our inspection approach (usefulness of the
reading scenarios) in a controlled case study. In detail,
we analyzed the following hypothesis:

Hypothesis H1—Team Effectiveness: Inspection
teams find more defects with the help of the
reading scenarios than with a comparable checklist
Hypothesis H2—Team Efficiency: Inspection
teams find more defects per time unit with the help
of the reading scenarios than with a comparable
checklist

The subjects had to use different reading techniques:
perspective based reading and a checklist based
inspection approach. In the case of PBR, three
perspectives were used as explained in section 3: a
tester perspective, a designer perspective and a
customer/user perspective. The inspector assuming the
tester perspective had to derive a set of test cases. The
designer perspective had to derive initial SCs, and the
user perspective had to create use cases from the
problem description and compare these to the use cases
under inspection.

To investigate the influence of the perspective based
reading approach, we created focused checklists that
were comparable to the reading scenarios (this is called
CBR in the following). We defined three checklists,
each representing one of the perspectives, using similar
or the same questions as the corresponding reading
scenario. Thus, the focus of each checklist was the same
as the focus of the related reading scenario and the
checklist provided the same separation of concerns.
We chose a partial factorial design (see Table 4) in
which each group participated in two inspections (Run 1
and 2) using some combination of the reading technique
(focused CBR and PBR) and inspected artifact (the
three subsystems). The inspection teams were similar to
the teams that build the different sub-systems (e.g.
Group_Light build the sub-system Light and therefore
reviewed the other two sub-systems). Thus, in each
inspection team 4 students were included. Each sub-
system was reviewed by two groups (8 subjects), one
group using CBR (4 subjects) and one group using PBR
(also 4 subjects).

In each run, the inspection teams used different
techniques and different perspectives. For example, the
team that used CBR in the first run used PBR in the
second run and vice versa. In addition a subject that
used the tester perspective in the first run used the
designer or the customer perspective in the second run.

Table 4: Design of the controlled case study

PBR Focused CBR
Run 1 Group_Light

inspects Sys_Temp
Group_GUI inspects
Sys_Temp
Group_Temp
inspects Sys_Light

Run 2 Group_Temp
inspects Sys_GUI
Group_GUI inspects
Sys_Light

Group_Light
inspects Sys_GUI

In addition to these questions, we analyzed the subjects’
perception regarding the support provided by the PBR
approach, again using a questionnaire.

The results of the study provide weak tendencies that
our inspection approach results in more effective
inspections and is perceived as very helpful to support
individual defect detection. In detail, the study showed:
For the Temp and GUI subsystems, the teams using
PBR, respectively, found 23% and 40% more defects
than the teams using focused CBR. However, for the
subsystem Light the team using focused CBR found
32% more defects than the team using PBR (see
following table).

Table 5: Effectiveness at the team level

% of defects found
by CBR-team

% of defects
found
by PBR-team

Temp 50% 65%
GUI 44% 73%
Light 83% 57%

Regarding the efficiency (measured in defects found per
hour) the study showed that the checklist-based
approach is more efficient for the Temp and the Light
subsystems (by 27% and 52%, respectively). For the
GUI subsystem, the PBR team was 70% more efficient
than the CBR team (see following table)

Table 6: Efficiency of the approaches

Efficiency of
 CBR-team

Efficiency of
PBR-team

Temp 1.93 1.52
GUI 1.14 1.94
Light 2.00 1.31

In summary, the results of our controlled case study do
not follow a common pattern. Our analysis showed that
the PBR approach improved the effectiveness of defect
detection in the GUI system but not in the Light and the
Temp system. Our results do not appear conclusive
mainly because the very small sample size of the study
(12 inspectors organized in 3 teams with 4 inspectors
each) hampers running reliable tests for differences.
However, there are some hints that the complexity of
the subsystems can explain the discrepancy in the
results: One possible interpretation for this is that the
effort spent in the PBR approach, which focuses on a
profound understanding of the document under
inspection, pays of only in more complex systems. As
the GUI system was the most complex system (it
contained the most UCs), the PBR approach performed
best for this subsystem. In the two other subsystems the
effort of the PBR approach was too high as they were
not that complex, i.e., the checklist was sufficient to
gain the understanding of the system. Only in complex
documents a systematic approach to gain a profound
understanding of the inspected artifact pays off.
However, this is a hypothesis that needs to be validated
in future research activities. With the similar
argumentation we interpret the not conclusive results
regarding the efficiency of the two approaches.

The evaluation of the questionnaire showed that the
PBR approach is perceived to be as applicable as the
checklist-based approach but harder to understand. The
subjects’ stated that the PBR approach is more useful
compared to a checklist approach and that the reading
scenarios, especially, are perceived as highly valuable.
Eight out of eleven students (72.2%) agree that the
reading scenarios are helpful in performing the defect
detection. Even though we could not prove our
hypothesis, the results indicate that our inspection
approach is a valuable means for improving the quality
of the UCs and that it is perceived more useful than
traditional approaches. More detailed results of the
inspection case studies can be found in [DCL04].

There are several threats to validity that should be
considered with respect to the presented results. Threats
to validity influence the outcome of an empirical study
(they have an impact on the dependable variables, in our
case the number of defects found and the time needed to
find them). First there are learning effects, i.e. the
students get to know how to perform inspections and
perform better in the second run of the case study. We
controlled this thread by assigning different reading
techniques in the different runs and in addition we
varied the perspective the inspectors use in the two runs.
For example an inspector that assumed the tester
perspective in the PBR inspection can only use the
designer or user/customer checklist in the second run.
Moreover there are threats that the student did not
follow the checklist or the PBR approach while doing
the inspection. We controlled this threat by briefing the
students after the case study. The results indicate that
the students followed the different approaches. To

prevent selection effects we chose the students
randomly to certain perspectives. In addition we
ensured the quality of the checklists and the reading
scenarios of the PBR approach by reviewing them by
inspection experts. This prevents that the case study
results are biased due to poorly designed checklists and
reading scenarios. Finally, the usage of students in as
subjects in a class experiment is a threat to external
validity (i.e., the generalizability of the results). It has
been shown that the differences between graduate
students and professionals is often not very large
[Pre01]. Moreover, according to [Run03] the difference
between graduate students and professional software
developers is small compared to freshman and graduate
students. The UCs that had to be inspected represented
UCs of a real system and the number of the designed
UCs and related scenarios shows that this is not a pure
toy-example. We therefore believe that the results still
can be interpreted in a broader sense.

In addition, we “evaluated” the usefulness of the
simulation approach in a seminar at the Technical
University of Kaiserslautern. 4 students used the
simulation to detect defects in UCs of the door control
unit of a car. We got positive feedback regarding the
simulation. The detection of more subtle defects and
defects regarding the dynamic interaction of UCs are
perceived as the main advantages. Some additional
findings with respect to the simulation approach can
also be found in [DO04].

Again we want to note that the presented results are not
statistically significant. They can only serve as initial
results that are a first step towards more formal
empirical evaluations. In addition, the results are based
on case studies with students which limits their
generalizability even more. Therefore, these studies
have to be followed with industrial case studies to
achieve more generalizability. However, performing
initial studies with students is a necessary and important
step in the empirical evaluation of any technology. This
is due to the fact that a sound case has to be built in
order to justify and motivate studies with professional,
and therefore more expensive, developers [SCT01]. In
future activities the integrated approach has to be
compared to an approach that does not combine the
different techniques in a systematic way, and the
techniques need to be analyzed in controlled
experiments.

5 Conclusion

In this paper we have described an integrated quality
assurance approach for UCs. The core aspect of our
approach is the combination of constructive techniques
(UC creation guidelines) with analytic quality assurance
techniques (inspections and simulation) for UCs. The
combination is based on a defect classification for UC
models. This classification enables systematic
combination such that guidelines, inspections, and

simulation address different kinds of defect classes. We
showed that guidelines are valuable for the prevention
of structural and syntactic defects, and inspections are
suitable for detecting subtle logical defects. Simulation
is integrated so that serious consistency defects
resulting from the interference between UCs can be
efficiently detected. With this approach we hope to
improve the overall efficiency and effectiveness of
quality assurance in the requirements engineering
phase. The evaluation of our approach gives first
evidence that each part contributes to the overall quality
improvement of the UCs. However, a detailed analysis
of our integration approach needs to be performed in
future empirical studies, particularly in industry. The
aim of this study would be to show that the overlap of
detected defects can be reduced with the combined use
of the different techniques. The results of our evaluation
motivate us to continue working in that direction.

Acknowledgements
We thank our project partners at Fraunhofer FIRST and
colleagues at DaimlerChrysler for fruitful discussions.
This approach was developed in the QUASAR project
supported by the BMBF under the label VFG0004A.

References

[AM01] Amour, F.; Miller, G.; Advanced UC Modelling;
Addison Wesley, 2001

[AS02] Anda, B.; Sjøberg, D. I. K.; Towards an inspection
technique for UC models; In: Proceedings of the 14th
International Conference on Software Engineering and
Knowledge Engineering (SEKE), pages 127 – 134, Italy,
2002

 [BB01] Boehm, B.; Basili V. R.; Software Defect Reduction
Top 10 List; IEEE Computer, Vol. 34, No. 1, January 2001

 [BGL96] Basili, V.R.; Green, S.; Laitenberger, O.; Lanubile,
F.; Shull, F.; Sorumgard, S.; Zelkowitz M.; The Empirical
Investigation of Perspective-based Reading; Empirical
Software Engineering, vol. 1, no. 2, pages 133–164, 1996

[BL02] Bunse, C.; Laitenberger, O.; Improving Component
Quality Through the Systematic Combination of
Construction and Analysis; In: Proceedings of Software
Quality Week Europe, Belgium, 2002

[Boe81] Boehm B. W.; Software Engineering Economics;
Advances in Computer Science and Technology; Prentice
Hall, 1981

[BRJ99] Booch, G.; Rumbaugh, J.; Jacobson, I.; The Unified
Modelling Language User Guide; Addison-Wesley, 1999

[BS03] Bittner, K.; Spence, I.; UC Modeling; Addison
Wesley, 2003

[Chi92] Chillarege, R; Bhandari, I; Chaar, J; Halliday, M;
Moebus, D; Ray, B; Wong, M; Or-thogonal defect
classification -- A concept for in-process measurements,
IEEE Transactions on Software Engineering, vol. 18, pp.
943--956, Nov. 1992

[CL99] Constantine, L.; Lockwood,L.: Software for Use,
Addison Wesley, 1999

[Coc01] Cockburn, A.; Writing Effective UCs; Addison
Wesley, 2001

[Dav89] Davis, F. D.; Perceived usefulness, perceived ease
of use, and user acceptance of Information technology;
MIS Quarterly, pages 319–340, 1989

[DCL04] Denger, C; Ciolkowski M; Lanubile, F: Does Active
Guidance Improve Software Inspections? A Preliminary
Empirical Study; IASTED conference 2004, Innsbruck,
Austria

[DKK03] Denger, C.; Kerkow, D.; Knethen, von A.; Paech B.;
A Comprehensive Approach for Creating High-Quality
Requirements and Specifications in Automotive Projects,
16th International Conference "Software & Systems
Engineering and their Applications" Paris - December 2, 3
& 4, 2003

[DO04] Denger, C; Olsson, T; Simulating Textual Scenarios
using State charts, 3rd International Workshop on Scenarios
and State Machines. Models, Algorithms, and Tools.
SCESM04. (2004), 21-26 : Ill., Lit.

[DPB03] Denger, C.; Paech, B.; Benz, S.; Guidelines –
Creating UCs for Embedded Systems; IESE Report No.
078.03/E, 2003

[Frei01] Freimut, B., Developing and Using Defect
Classification Schemes, IESE Report No. 072.01/E, 2001

[Fir] Firesmith, G.; UCs: the Pros and Cons;
http://www.ksc.com/article7.html

[Gra92] Grady, R; Practical Software Metrics for Project
Management and Process Improvement. Prentice Hall,
1992.

[Har98] Harel, D.; Modeling Reactive Systems with
Statecharts; McGraw-Hill; 1998

[HBD95] Heitmeyer, C.; Labaw, B.; Kiskis, D.; Consistency
Checking of SCR-Style Requirements Specifications, in
Proceedings of the Second International Symposium on
Requirements Engineering,March, 1995.

[IEEE94] IEEE Standard Classification for Software
Anomalies, IEEE Std. 1044-1993, 1994

[IEEE98] IEEE Recommended Practice for Software
Requirements Specification, Standard 830-1998, 1998

[Kru99] Kruchten P.; The Rational Unified Process, An
Introduction; Addison Wesley; 1999

[Lai00] Laitenberger, O.; Cost-effective Detection of
Software Defects through Perspective-based Inspections;
PhD Thesis in Experimental Software Engineering;
Fraunhofer IRB Verlag, 2000

[Lil99] Lilly, S.; UC Pitfalls: Top 10 Problems from Real
Projects Using UCs; Proceedings Technology of object-
oriented languages and systems (TOOLS), pp. 174-183,
1999

[Mel92] Mellor, P; Failures, faults and changes in
dependability measurement, Information and Software
Technology, vol. 34, pp. 640--654, Oct. 1992.

[P+04] Paech, B: Denger, Ch.; Kerkow, D., von Knethen, A.;
Requirements engineering for technical products –
integrating specification, validation and change
management, to appear in Silva A. (ed.) Requirements
Engineering for socio-technical systems,

[Pet02] Pettit, R.; Establishing Inspection Criteria for UML
Models; tutorial at the 5th Conference of the Unified
Modelling Language (UML 2002); Germany 2002

[Por96] Porter, A; Votta, L; Basili,V; Comparing Detection
Methods for Software Requirements Inspections: A
Replicated Experiment, IEEE Transactions on Software
Engineering, 1996, pp 563-575.

[Pre01] Prechelt, L.; Kontrollierte Experimente in der
Softwaretechnik, Springer 2001 (in German).

[RA98] Rolland, C.; Achour, C. B.; Guiding the
Construction of Textual UC Specifications, Data &
Knowledge Engineering Journal, Vol 25, N°1-2, pages
125-160, North Holland, Elsevier Science Publishers,
March 1998

[Run03] Runeson, P.; Using Students as Experiment Subjects
– An Analysis obn Graduate and Freshmen Student Data,
Proceedings 7th International Conference on Empirical
Assessment and Evalutation in Software Engineering,
2003.

[RG99] J. Ryser, M. Glinz: A Practical Approach to
Validating and Testing Software Systems Using Scenarios,
Proceedings Quality Week Europe, 1999

[Rha] http://www.ilogix.com/products/rhapsody/index.cfm
[SCT01] Shull, F.; Carver, J.; Travassos, G.; An Empirical

Methodology for Introducing Software Processes,
Proceedings 8th European Software Engineering
Conference, pp.288-296, 2001.

