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Zusammenfassung: Seit der Einführung von Use Cases 
hat deren Bedeutung zur Spezifikation von 
Anforderungen stetig zugenommen. Die Qualität der 
Use Cases ist ein entscheidender Faktor für den Erfolg 
des Entwicklungsprozesses, da die meisten 
Entwicklungsschritte auf den Use Cases aufbauen. 
Trotz der extremen Wichtigkeit der Qualität der Use 
Cases stellen die meisten use-case-basierten 
Entwicklungsansätze keine oder nur unzureichende 
integrierte qualitätssichernde Maßnahmen bereit (z.B. 
ad-hoc Empfehlungen, Erstellungsrichtlinien, einige 
Checklisten zur Inspektion von Use Cases). Diese 
Techniken werden in den meisten Fällen unabhängig 
voneinander eingesetzt, so dass bestimmte 
Fehlerklassen in den Use Cases durch mehrere 
Techniken, andere Fehlerklassen überhaupt nicht 
adressiert werden. In diesem Artikel wird ein 
integrierter Ansatz vorgestellt, in dem Use Case 
Erstellungsrichtlinien, Inspektionen und Simulation in 
systematischer Weise miteinander verknüpft werden. 
Der Ansatz basiert auf einer Fehlerklassifikation für 
Use Cases, die als Grundlage dient, die verschiedenen 
Techniken auf bestimmte Fehlerarten zu fokussieren.   
 
Keywords: Anforderungen, Use Cases, Richtlinien, 
Qualitätssicherung, Inspektionen, Perspektiven-
basiertes Lesen Fehlerklassifikation, Qualität 
 
Abstract: Since their introduction, use cases (UCs) 
have become increasingly important for the 
specification of software requirements. High quality 
UCs are a prerequisite for project success. Despite the 
high importance of their quality, UC driven approaches 
often lack systematic and integrated quality assurance 
techniques. Only ad-hoc recommendations, creation 
guidelines, and a few checklists for inspection are 
available in the literature. If at all, these techniques are 
developed and used separately, so that one class of 
defects is addressed by several techniques and other 
classes are not addressed at all. In this paper, we present 
an integrated approach that combines UC creation 
guidelines, UC inspections, and simulation in a 
systematic way. We base our combined approach on a 
defect classification for use cases. This classification 
enables the requirements engineer to focus the different 
techniques on different types of defects.  

Keywords: Requirements, Use Cases, Guidelines, 
Quality Assurance, Inspections, Perspective-based 
Reading, Defect Classification, Quality 

1  Introduction 

 Since the introduction of the unified modeling language 
(UML) [BSJ99] as a de-facto standard in industrial 
software development, use cases (UCs) have become 
one of the most important techniques for specifying 
software requirements. As recommended by the 
Rational Unified Process (RUP), UCs often drive the 
whole software development life cycle; that is, all 
development steps are based on UCs. A UC driven 
development approach encompasses several advantages. 
According to [Kru99], UCs link the requirements to 
other software artifacts such as design, implementation, 
and test cases. Thus, they help to synchronize the 
content of the various models. UCs provide a common 
basis for communication between the different 
stakeholders (users, customers, management, designers, 
and testers), which is fundamental for understanding the 
system and building it right. Moreover, UCs provide a 
means for project planning purposes such as iteration 
planning and effort estimation. 
 
However, specifying system requirements with UCs is 
not as easy as it might look. Common challenges are 
that the UCs do not represent the system behavior 
required by the customer, that the UCs are 
incomprehensible to some stakeholders, that too much 
effort is spent on the UC specification, that different 
UCs are not clearly separated with respect to the 
described system functionality or that some UCs are 
infeasible (i.e. not implementable). If these challenges 
are not addressed, poor quality of the UCs threatens the 
whole software development process: In case that 
defects remain undetected in the UCs, they can 
propagate via analysis and design into the code and thus 
cause undesired and incorrect behavior resulting in 
costly rework activities. The cost of a defect increases 
by a factor of 3 – 10 [Boe81][BB01] per development 
phase, depending on the type of the defect. Thus, the 
detection and correction of defects in the UCs is one of 



the most cost-efficient quality assurance techniques 
[Kru99].  
 
Despite the importance of high-quality UCs, there are 
only few approaches that focus on quality assurance for 
UCs. Most common are creation guidelines for UCs that 
should ensure high quality in a constructive way 
[Coc01] [AM01] [BS03]. In addition, recommendations 
can be found in the literature on how to avoid certain 
quality flaws in the UCs [Lil99]. Also, some inspection 
approaches define checklists that can be used to detect 
defects in UCs [AS02] [Pet02]. All of these approaches 
address some, but not all potential defects types. 
Furthermore, they are developed as if they were applied 
as the only quality assurance technique. This can lead to 
redundant effort, in the sense that different techniques 
double check the same types of defects. Finally, 
developers are often left alone with the question of 
when to use which technique. 
 
To overcome these problems, we developed an 
integrated quality assurance approach for UC-based 
requirements specifications. We especially concentrate 
on textual UCs as they are most common in industrial 
practice. The main idea of our approach is that we base 
the quality assurance activities for UCs on a defect 
classification scheme that captures common defects in-, 
and challenges of UCs modeling. Based on an analysis 
of the defects, we developed tailored quality assurance 
techniques that focus on special types of defects and 
challenges. We combined constructive UC creation 
guidelines with UC inspections and simulation in such a 
way that they form an integrated quality assurance 
approach. The idea of our approach is that one 
technique is more efficient than the other in detecting 
certain classes of defects. For example, constructive 
guidelines are more appropriate to ensure structural 
aspects of the UC (e.g., naming conventions and use of 
active voice in the UC scenarios). On the other hand, 
inspections are appropriate for identifying subtle, 
logical defects in the UCs (e.g. infeasible requirements 
or poor maintainability) which is almost impossible 
with creation guidelines. Applying simulation allows 
efficient identification of defects in the dynamic 
behavior and improves the understanding of the 
interplay of the different use cases, which would be 
extremely time-consuming in an inspection. Focusing 
the techniques on different defect classes increases the 
coverage and reduces the overlap (i.e., one quality 
aspect is addressed in the ideal case by one and only 
one technique). This increases the effectiveness and 
efficiency of the overall quality assurance approach; 
that is, more (major) defects can be found with less 
effort.  
 
The remainder of this paper is structured as follows. In 
Section 2, the basic ideas of and the motivation for 
defect classes is given and a defect classification for UC 
modeling is defined. Section 3 describes the integrated 
quality assurance approach we developed and how this 
approach addresses the identified defects. The approach 

is discussed with respect to related work in this area. In 
Section 4, some results of the preliminary evaluation of 
our approach are presented. Section 5 gives a 
conclusion and briefly describes future work.   

2 A Defect Classification Scheme for UCs  

In order to systematically combine different quality 
assurance techniques, we consider the types of defects 
that can be detected with a particular technique. Since a 
single technique alone cannot address all types of 
defects equally well, several techniques should be 
integrated in a way that (1) all kind of defects are 
targeted by the most suitable technique, and (2) the 
overlap between types of defects found by different 
techniques is reduced. 
 
The core of this approach is consequently to derive an 
appropriate classification of defect types that enables 
such a systematic integration. To motivate the selection 
of our defect classification scheme, we first discuss  
general aspects of defect classification and then, we 
present our approach to define a defect classification 
scheme for UCs. In this approach we start with common 
defects and pitfalls that affect UC quality and therefore 
should be addressed by an integrated quality assurance 
approach.  

2.1 Basics of Defect Classification  

Defect classification plays an important role when 
measuring software processes. This importance is 
explained by the fact that defects carry a lot of 
information that can be analyzed in order to characterize 
the quality of the development processes, of the quality 
assurance processes, and of the resulting products.  
 
A defect classification scheme in general contains one 
or more defect classification attributes that capture 
various aspects of a defect. For example, [Mel92] 
proposes a framework of eight high-level key attributes 
that capture different defect aspects. Each of these 
defect classification attributes is measured on a nominal 
or ordinal scale with a set of pre-defined values, the so-
called defect classes. The challenge in designing a 
defect classification is therefore to select an appropriate 
aspect and corresponding defect classes. 
 
Generally, there are many aspects of a defect: Defects 
are inserted due to a particular reason into a particular 
piece of software at a particular point in time. Defects 
are detected at a specific time with a specific technique 
by noting some sort of symptom and they are corrected 
in a specific way. Consequently, there are many 
different defect classification schemes that target 
different defect aspects for different purposes. For 
example, the IEEE Standard Classification for Software 
Anomalies [IEEE94] aims at tracking the progress of 
defects through the Defect Resolution Process. The 



Hewlett-Packard Scheme [Gra92] aims at deriving 
process improvement proposals, and the often-used 
Orthogonal Defect Classification (ODC) Scheme 
[Chi92] aims at controlling the progress of a 
development project. In addition to these well-known 
schemes, defect classification schemes have been 
developed for specific quality assurance techniques: 
[Por95] used the set {Missing Functionality, Missing 
Performance, Missing Environment, Missing Interface, 
Ambiguous Information, Inconsistent Information, 
Incorrect or Extra Functionality, Wrong Section} to 
characterize defects found in requirements inspections, 
while [BGL96] used the set {Omission, Incorrect Fact, 
Inconsistency, Ambiguity, Extraneous Information}. 
[AS02] used this scheme to develop a UC defect 
taxonomy. The basic idea of the taxonomy is to link UC 
elements (Actors, Use Cases, Event Flow, Variations, 
Relations, Triggers) to this defect classification, i.e., to 
define what the classes mean for the elements (e.g., 
omission means for actor that not all actors where 
specified in the UC diagram or the UC description). 
 
[Fre01] presents a process for developing defect 
classification schemes as well as quality criteria for a 
good defect classification scheme, which we followed 
in order to derive a defect classification for UCs. In 
short, the process is as follows: In a first step it is 
necessary to decide, based on the indented usage of the 
scheme, which aspects of a defect are to be captured in 
a defect classification attribute. In order to make this 
aspect explicit, it is recommended to define the meaning 
of the attribute, for example in the form of a question. 
In a second step, an appropriate set of defect classes are 
to be derived (for each attribute). This set of defect 
classes should be tested with a sample of real defects in 
order to ensure its applicability. In addition it should be 
checked if the set of defect classes is orthogonal (i.e., 
for a given defect one class at most is possible) and 
complete (i.e., for a given defect at least one class is 
possible). In a third step, all defect classes should be 
documented with a definition that states, when a defect 
is to be assigned to a given defect class. This definition 
helps data collectors to select the right defect classes 
and therefore contributes strongly to data quality. 

2.2 A Defect Classification for UCs 

Following the process for developing defect 
classification schemes presented above, it is first 
necessary to select a relevant defect aspect that is to be 
captured. Since the basic assumption of our integrated 
approach is that there are different types of defects and 
that different quality assurance techniques focus on 
different types of defects, we wanted to capture the 
aspect of how a defect is detected. A survey of the 
existing schemes revealed that the attribute Defect 
Trigger of the ODC scheme addresses this aspect. In 
particular, this attribute addresses the question What 
were you checking when you detected the defect and 
represents thus a question crucial for distinguishing 

defects found or prevented with different techniques. In 
the original definition the attribute values are 
specifically tailored to the IBM domain and are not 
directly usable for UCs. Thus, we derived a new set of 
attribute values for this attribute by adhering to the 
original definition of the Defect Trigger. Our rationale 
was that the set of attribute values should contain 
quality criteria of a high-quality UC. Since developers 
check the document against these criteria in order to 
find defects or prevent these upfront, these quality 
criteria are appropriate defect classes for the Defect 
Trigger. With this rationale in mind, the integration of 
quality assurance techniques can ensure that all 
necessary quality criteria are addressed.  
 
In order to define the set defect classes we identified a 
set of quality criteria. In particular, we used the IEEE 
standard for requirements specification [IEEE98] as a 
basis. This standard lists a general set of quality criteria 
for specifications, namely: consistency, completeness, 
correctness, unambiguity, verifiability (testability), 
changeability, traceability, and prioritisation. The first 
four are general criteria for documents, the last four 
address specific concerns of developers using the 
specification: verifiability is important for the testers, 
changeability is important for maintenance, traceability 
for maintenance and project management, and 
prioritisation for project management. To cover all 
stakeholder concerns and address all relevant quality 
criteria, we have extended this general scheme with 
comprehensibility (easy to read for all stakeholders) and 
feasibility (necessary for designers) as well as adequate 
level of detail (avoiding over- and under-specification). 
Table 1 shows in the first column the defect class, 
which is a negation of the quality criteria. In the second 
column, a definition for the defect class is given that is 
specific for UCs, and the third column provides an 
example for a defect of the defect class. The latter two 
columns ensure that every defect class is well-defined. 
Note that incomprehensibility typically affects all other 
quality criteria. Also, we address traceability under 
comprehensibility, as both relate to structuring means. 
 
This detailed defect classification gives an initial 
overview of the potential defects that can occur in UC 
modeling (diagram and textual description). 
 

Defect 
Class 

Description Example  

In- 
correct-
ness 

The UC does not match 
the expected or 
intended behavior; that 
is, the information 
presented in the UC is 
wrong and does not 
represent the user 
requirements. 

The flow of a UC 
does not represent 
the flow of 
activities expected 
by the user. 

Incom-
plete- 
ness 

The UC does not 
contain all necessary 
scenarios. The UC set 

An important 
exception is not 
specified, a 



Defect 
Class 

Description Example  

does not contain all 
necessary UCs. 
Information that is 
required for subsequent 
activities is not present. 

certain actor is not 
considered.   

Incon- 
sisten-
cy 

A piece of  information 
of a single UC or of 
different UCs is 
described in at least 
two different, 
incompatible ways so 
that there is a 
contradiction between 
them. 

The quality 
constraints of a 
UC contradict the 
event flow. One 
user action in two 
different UCs 
requires 
contradictory 
system behavior.   

Ambi-
guity 

Elements of the UC 
can be interpreted in 
two or more ways. 
Thus, it is not clear 
which of the 
interpretations are true. 

A condition 
containing “and” 
and “or” does not 
explicitly state the 
required 
bracketing. 

Incom-
prehen-
sibility 
/in-
tracea-
bility  

The UC is difficult to 
understand and 
comprehend. The UC 
is not specified 
according to a 
template. 

The event flow 
described in the 
UC is too 
complex due to 
many “include” 
relationships. The 
template is not 
adhered to. 

Intest-
ability 

The behavior described 
in the UC cannot be 
validated by means of 
test cases due to logical 
or physical constraints. 
That means there is no 
way to check whether 
the system fulfills the 
UC. 

It is impossible to 
derive the system 
response to a 
certain user input. 

In-
change-
ability  

The UC is difficult to 
change. 

Details of the user 
interface are 
mixed with 
essential 
behavior. 

Infeasi-
bility 

The behavior described 
in the UC cannot be 
implemented. 

It is not possible 
to derive an initial 
design of the 
system from the 
UCs. 

Over-
specifi-
cation 

The information given 
in the UC is irrelevant 
or too detailed in the 
sense that it prescribes 
an implementation. 

Details of internal 
system behavior  
are described in 
the UC. An actor 
not necessary for 
the system 
behavior is 
described in the 
UC.  

Table 1: UC Defect Classification 

In order to check whether the defect classification 
scheme is applicable, we used pitfalls typical for UCs 
that are mentioned in the literature [Lil99][Fir] and 
classified them according to our classification scheme 
(Table 1). In the following the results of this mapping 
are presented. First, the pitfalls described in the 
literature and then the matching defect class of our 
classification are mentioned. 
Pitfalls_1: System boundary is not defined. 
Associations between UCs and actors do not fully 
describe who can do what with the system (e.g. only 
focus on objects or on user interface). UC modeling is 
stopped too early (difficult to determine when UC 
modeling is finished).  Incompleteness 
Pitfalls_2: System boundary varies for different UCs 
(that means UCs are on different abstraction levels). 
Actors are named inconsistently. UCs interfere with 
each other (as they have been developed focusing on 
single flows).  Inconsistency  
Pitfalls_3:  UCs are written from the system point of 
view, not the actor’s point of view; e.g., UC names 
describe system reactions, not actor goals. UC model 
looks like a dataflow or process model due to the use of 
‘extends’ and ‘uses’ relationships. There are too many 
UCs, because the actor goals are too fine-grained. There 
are too many relationships between actors and UCs, 
because the actor roles are too coarse-grained. Text is 
too long, because UC covers too many instances. UC 
contains too many if-branches and loops. UCs lack 
contexts. UC terminology is not adequate for users.  
Incomprehensibility 
Pitfalls_4:  UCs are associated with user interface 
structure.  Inchangeability 
Pitfalls_5: Steps of the UC describe internal 
functionality rather than interaction.  
Overspecification 
 
This mapping shows that our classification scheme is 
indeed usable with typical defects and is therefore a 
sound starting point for a profound planning of quality 
assurance techniques. Based on the defect classification, 
quality assurance techniques most suitable to address a 
certain defect class can be identified. 

2.3 Existing Quality Assurance Approaches for 
UCs 

The literature also gives hints on how to cope with these 
quality problems. It provides templates [Coc01] 
[Lil99][Fir], guidelines for creating UCs [BS03], and 
checklists for inspecting UCs [AS02][Pet02]. The 
recommendations are typical for guidelines and 
checklists. However, they do not cover all possible 
defects that can be dealt with through guidelines and 
checklists. For instance, guidelines or checklists that 
give advice on how to use natural language in an 
unambiguous way only address ambiguity defects. Also, 
the described techniques were developed independently 
from each other. Therefore, they often address similar 
or the same defects resulting in an overlap of the 



addressed defect classes. Finally, the recommendations 
and guidelines at hand do not provide help for the 
prevention or detection of the really difficult defects 
like infeasibility, intestability, and serious inconsistency 
defects resulting from interference between UCs. Most 
of the guidelines and checklists focus on pure structural 
and syntactical defects, but the real expensive defects 
are on a more subtle (logical) level. Thus, additional 
quality assurance techniques are required that address 
such defects. We show how to combine approaches that 
address structural defects with those that focus on more 
subtle defects in the next section. 

3 An Integrated Quality Assurance 
Approach 

The focus of this section is the integration of UC 
creation guidelines, inspections, and simulation.  We 
briefly describe the basic concepts and show how each 
technique contributes to the quality of UCs with respect 
to the defect classes described in the last section. In 
addition, we show how the quality assurance techniques 
are combined into an integrated approach. We use 
“quality assurance techniques” as an umbrella term for 
constructive quality assurance techniques such as the 
use of guidelines and templates and analytic quality 
assurance techniques such as inspections and 
simulations. The main difference between these two 
facets of quality assurance is that constructive 
techniques build in the quality during the creation of an 
artifact, in our case the requirements. Analytic 
techniques take an existing artifact as an input and 
evaluate its quality. However, whenever we do not want 
to explicitly stress the different meanings we will use 
the term quality assurance technique for both facets. 

3.1 Guidelines for Creating UCs 

UC creation guidelines can mainly deal with 
structuring-related defect classes such as 
incomprehensibility, ambiguity, and incompleteness. 
Our guidelines focus on UCs as part of the requirements 
specification. In that context UCs are used as input for 
deriving a more refined system specification. In general, 
we do not recommend including all details of the 
system specification into the UCs, since they will get 
too long. In any case, one should make sure that the 
system details are separated from the main UC 
description.  
 
We have collected the guidelines from literature, e.g., 
[Coc01][RA98], and from our experiences regarding 
requirements engineering projects. Guidelines that are 
reported in the literature are referenced. Due to space 
limitations, we can only sketch the guidelines; the full 
approach can be found in [DPB03]. Our guidelines 
comprise four main steps, which are briefly described in 
the following paragraphs based on the example of a 
door control unit for a car. The door control unit (DCU) 

allows several actors (driver, co-driver) to position their 
windows and their seats. Moreover, the DCU allows the 
driver to position the outside mirrors, and it controls the 
central locking system. Passengers in the back can also 
position their windows. Note that we use an embedded 
system example. This shows that our approach is not 
only valid for business systems, which is often the case 
for UC guidelines. 
 
Step 1: Identify Actors and their Tasks 
Identify the most important actors of the system. Actors 
are roles not persons, for example, the driver is an actor 
while Bob would be a person, playing the role of the 
driver. Identify the tasks of these actors. Tasks are 
characterized through goals that actors want to achieve, 
for example, the driver wants to move his or her seat in 
a convenient position. In order to capture the user’s 
point of view, it is important to abstract as much as 
possible from technical solutions. Tasks, their 
relationships to each other and to the actors are 
visualized in UC diagrams. In contrast to ordinary UC 
diagrams, we distinguish two kinds of task: Those tasks 
that are mainly influenced by the user and tasks that 
manly concern the system reaction. The two types of 
UCs are visualized in different ways. The first are 
shown as bubbles crossing the border between the 
system and the environment. The second are shown 
inside the border (e.g. the UC “Control windowposition 
partially”). In this step, only the former are elicited. The 
UC diagram connects the tasks and the actors. 
 
Step 2: Identify the Input and Output of the System 
(i.e., its Context) 
Distinguish monitored and controlled variables. 
Controlled variables describe the system parts 
controlled in the UCs as well as system data created. 
Monitored variables capture the different possibilities 
actors have to trigger the system reaction as well as 
other system data needed in the UCs. Create a list of 
monitored and controlled variables, which captures the 
name and the description. Do not separate inputs that 
are needed to trigger one task (that is, both inputs are 
needed to trigger the same task). “Internal identification 
input”, for example, includes the selection of the 
“Position seat” function as well as the “Identification” 
given by the actor. 
 

 

passenger 

control own window 
 

control other 
window 

control window position 
totally 

control window position 
partially 

driver

include
include

Excerpt: window movement 

include include

co-driver 

 
Figure 1: Use case diagram for the position window 

functionality 



 
Abstract from user interface details [Coc01], e.g., do not 
use “seat_position_button” unless it is required that this 
is a button (e.g., instead of a touch screen). These inputs 
and outputs help to delineate the system boundary 
[Lil99], but do not fix the details of the man – machine 
interface. It is important to keep these details separate 
from the UC description, because the interface  often 
changes over time and between different releases. Thus, 
abstraction supports changeability of the UC 
description. 
 
Step 3: Refine the Tasks According to Variations  
Give special considerations to variations of the tasks. 
Variations are often due to slightly different handling of 
input and output (e.g. reaching extreme values), to 
changing system data, problems in carrying out the 
system reaction, and major modes of operation. If the 
variation is quite likely and results in significantly 
different behavior of actor or system, then define new 
UCs for the different variations. These new UCs should 
be included in the general UC.  In Figure 1 two UCs are 
added which distinguish the partial and the total 
movement. If the variation is quite likely, but can easily 
be described as a case distinction, include this 
distinction in the UCs. If the variation is not likely, 
include it as an exception in the UCs. Avoid too many 
UCs in order to support comprehensibility of the UC 
model. 
 
Step 4: Fill in the UC Template   
We provide a template for the textual UC description to 
ensure their completeness. Table 2 shows such a 
template. Name and actor can directly be taken from the 
UC diagram. Then, the name is elaborated with the 
actor’s goal. This goal is further detailed with the 
precondition and the postcondition. Preconditions 
capture conditions needed for successful execution of 
the UC and are typically established by other UCs. 
Postconditions define the system state after the UC has 
executed successfully; that is what is achieved when the 
UC scenario is performed without exceptions. Next, the 
monitored and controlled variables relevant for the UC 
are collected. They can be taken from the lists created in 
step 2. The explicit collection of monitored and 
controlled variables supports traceability between UCs 
that overlap on variables.  
 
The main step is to describe the normal course of 
interaction between actor and system in the description 
facet. Here, we use the essential UCs from [CL99]. To 
achieve completeness, we focus the requirements 
engineer on four types of exceptions resulting from:  

1. actor inputs outside of the UC (e.g., exception 
2.1 in Table 2), 

2. boundary values of controlled variables such as  
limit positions  

3. system behaviour outside of the UC, but visible 
to it (e.g., exception 2.3, safety opening in Table 
2), or 
 

4. problems in carrying out the system reaction 
(e.g., exception 2.2,  technical problem in Table 
2) 
 

To support comprehensibility of the main flow, details 
of the system reaction are captured in the rules facet. 
The rules facet gives additional information to specific 
aspects in the main flow, for example, in which case the 
system will activate the safety opening of the window 
control (see Table 2).  
 
The separation of the requirements into different facets 
is an important prerequisite for the efficient derivation 
of the system specification. 

Table 2: Filled UC Template for UC "Control 
window position totally" 

Use Case Control window position totally 
Actors Passenger, driver or co-driver 
Intent Actor positions window to the upper 

or lower limit 
Precondition None 
Description 1. Actor inputs request for total 

movement up or down 
2. System reacts accordingly 

[Exception 2.1. Actor inputs 
request for partial movement] 
[Exception 2.2. Technical 
problem] 
[Exeception 2.3. Safety 
Opening] 

Exceptions 2.1 Partial movement => UC 
“Control window position partially” 
2.2 Technical problem => System 
does not react completely 
2.3. Safety Opening => System 
opens the window totally 

Rules The system activates the “Safety 
Opening” if the actor request upward 
window movement, but the window 
does not move 

Mon. Var. Window_Position, Actor_Input: 
movement_type (partial, total) and 
movement_direction (up, down) 

Cont. Var. Window_Position 
Quality requ. None 
Postcondition Window has requested position 

3.2 Inspection of Use Cases  

Inspections are one of the most efficient quality 
assurance techniques. Especially in the early life cycle 
phases, inspections are highly valuable, as each defect 
that is removed from the requirements cannot cause 
follow up defects in later phases. Further, the cost for 
detecting and removing a defect increase with each 
development phase [BB01]. Inspections add new views 
on a software artifact by involving different 
stakeholders in the inspection process. As discussed in 



[P+04] there are many stakeholders involved in the 
development of complex products and it is very 
important to support their communication. Therefore, 
we integrate inspections in our approach as an analytic 
quality assurance technique for UCs. In particular, we 
use the perspective-based reading (PBR) approach 
[BGL96][Lai00]. The idea of PBR is that the UCs are 
inspected from the perspectives of the most important 
stakeholders. Stakeholders of the UCs are all roles in 
the development process that are potential users or 
creators of the UCs. If all these stakeholders agree on 
the quality of the UCs, it is probable that they are in fact 
of good quality. Typical stakeholders/perspectives are: 
(1) test engineers who use UCs as input for acceptance 
test planning and test case creation, (2) designers who 
derive high level design diagrams from UCs, (3) users 
who take the UC to check whether all their 
requirements on the system are captured, (4) 
maintainers who have to perform changes on the UCs 
(5) domain experts who take the UCs as a reference 
document to decide whether the final system can be 
build within budget, time, and whether the UCs address 
the state of the market, and (6) project managers who 
take the UCs for project planning purposes (e.g. assign 
working tasks for different iterations of the 
development). 
 
We chose these perspectives in order to complement our 
UC creation guidelines. The perspectives focus on those 
defects that are difficult to address in a constructive 
way. The user and the domain expert perspectives 
address incompleteness and incorrectness defects in the 
sense that all requirements are captured in the UCs. We 
address intestability defects with the tester perspective, 
and infeasibility and overspecification defects with the 
designer perspective. The maintainer perspective 
addresses inchangeability defects and the project 
manager perspective analyzes the UCs with respect to 
the possibility to create a feasible project plan for 
further system development. Other perspectives might 
also be useful, but in combination with the creation 
guidelines the above mentioned perspectives are the 
most valuable ones., 
 
 One major problem with inspections in general is that 
often the inspectors do not know how to search a 
document for defects. Often, the requirements engineers 
are trained in defining UCs but not in reading them for 
defects. To overcome this issue, the PBR approach 
provides reading scenarios. These scenarios provide a 
step-by-step description of the activities an inspector 
should perform when searching for defects in the UCs. 
For each of the identified perspectives on the UCs a 
tailored reading scenario is defined [Lai00]. A reading 
scenario consists of three main parts: introduction, 
instructions, and questions. 
 
In the introduction, the goal of the scenario is described 
and the quality aspects that are most important in the 
particular scenario are defined. Thus, the focus of the 
inspector is set; that is, it is clarified what should be 

inspected. The quality concern that is addressed is 
related to the perspective that is assumed. An example 
for such an introduction would be: “Imagine you are 
inspecting the UCs from the perspective of a tester. One 
of your tasks is the definition of a test plan and the 
creation of test cases based on the UCs. Therefore, you 
are interested in the testability of the UCs.”  
 
In the instruction, an inspector gets concrete guidance 
on how to perform certain activities while searching for 
defects. The instructions define exactly which 
documents an inspector should use during the 
inspection and how to read them. Following these 
instructions the inspectors get an understanding of the 
document and can start to perform the inspection. One 
important aspect of the PBR approach is that the 
instructions require the inspectors to create real work 
products relevant tfor the assumed perspective. For 
example, the designer perspective requires the inspector 
to derive high-level statecharts from the UCs. Thus, the 
result of the inspection is not only a list of defects, but 
also a certain set of state charts that can be used as a 
starting point for later development activities. Creating 
real work products makes the inspection more feasible, 
as the amount of additional effort is not too high (as the 
effort for later activities can be reduced). However, as 
in many cases the inspections cannot cover all UCs 
(especially when the system is too complex, i.e. there 
are too many UCs to inspect), the derived artifacts must 
be viewed as an initial basis for later activities. The 
inspections cannot substitute these activities [Lai00] 
 
The third element of the reading scenarios are the 
questions. The questions support the inspectors in 
judging whether the document (i.e. the UCs) fulfills the 
required quality properties. The inspectors should 
answer the questions while following the instructions 
given in the scenario. In Figure 2, an excerpt of the 
reading scenario of the designer perspective is shown. 
 
The motivation for providing such guidance and 
different perspectives for inspectors is three-fold 
[BL02]: First, the instructions help an inspector to gain 
a focused understanding of the UCs. Understanding is a 
necessary prerequisite for detecting more subtle defects. 
Detecting subtle defects is the most important aspect of 
any inspection, as subtle defects are often the most 
costly defects. By focusing the inspectors on specific 
aspects (with the perspectives) and give them active 
guidance more subtle defects can be identified with the 
PBR approach and in consequence, the inspection 
becomes more effective. Second, the instructions 
require an inspector to actively work with the UCs 
rather than passively scanning them, which is a 
prerequisite for a profound understanding and results in 
the creation of reusable artifacts. This is the most 
decisive aspect of this inspection technique, compared 
to other approaches such as checklists. Third, the 
attention of an inspector is focused on the information 
most interesting for a particular stakeholder. Thus, the 
inspector is not overwhelmed by the amount of 



information he or she has to inspect. Further, the 
inspectors are focused on different quality aspects. This 
reduces the overlap between them and makes the 
inspection more efficient.  
 
An additional advantage of this inspection technique is 
that it supports the communication of different 
stakeholders of the UCs. Thus, we address 
incomprehensibility defects, by bringing together the 
views of the important stakeholders. The inspections are 
especially valuable to make the different stakeholders 
more sensible for the concerns and problems of each 
other and to transfer/share knowledge between the 
involved inspectors. In case that other inspection 
approaches are used (e.g., checklists) it has to be 
analyzed which quality aspects are addressed with the 
checklist questions and to balance this with those 
quality aspects already assured with the guidelines. 
Further, one would loose the benefits of the PBR 
approach described in the last paragraph. Note that 
inspections must in any case be tailored to the context 
of the company and the project they are applied in. 
Inspection reading scenarios or checklists that worked 
for one company might not work for another  company 
due to different context settings. 
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3. Find the first action of the Use Case within the Use Case description. Starting from the 
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result of the action, and from this to the state that represents the result of the next action 
and so forth, until the state of the post condition is reached
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Figure 2: Excerpt of the reading scenario from the 
perspective of a designer  
 
Note that depending on the experience level of the 
inspectors, different levels of details are required in the 
scenarios. A highly experienced designer or tester does 
not need a detailed description on how to derive a high 
level design or test cases from the use cases. On the 
other hand, a less experienced inspector who has less 
experience in performing a certain task (such as the 
derivation of test cases) requires a detailed description 
on how to do the task. It is obvious that the more 
experts of the different perspectives are involved in the 
inspection process, the more defects can be found. 
Experienced inspectors will in most of the cases 
perform better than inexperienced ones. However, the 
experts are those people that are in most cases not 
available for an inspection. Then, the reading scenarios 
provide a means to include also less experiences 

inspectors and still perform an effective and efficient 
inspection process.  

3.3 Simulation of Requirements 

The most difficult defects to detect by inspections or to 
prevent by creation guidelines are inconsistency and 
interference defects. Inexperienced inspectors often do 
not detect these defects or only with much effort. 
Therefore, we integrate simulation as a third quality 
assurance technique that addresses such defects more 
efficiently. Simulation means that UCs are “executed” 
in an simulation model. That is, the actor inputs are  
triggered on the UCs and the system reaction is 
observed. To apply this approach the textual UCs must 
first be transformed into a formal, simulatable model. 
Here one can use sequence diagrams. However, this 
only allows the simulation of individual UCs. Critical 
defects are often observed when it comes to the 
interplay of different functionalities. In consequence, a 
formal model is needed that allows for simulation of the 
complete system behavior. In the domain of embedded 
systems and the automotive industry statechart (SC) 
models are frequently used for that purpose [Har98]. 
Typical approaches for transforming UCs into SCs 
require already formal UCs in terms of sequence 
diagrams, e.g. [RG99]. To avoid formal sequence 
diagrams as an intermediate between textual UCs and 
SCs, we go directly from UC to SC. We perceive this 
process as more efficient, as we omit an intermediate 
step which would not provide relevant additional 
information for the SC creation. The full guidelines are 
published in [DKK03]. Here we only sketch the main 
idea.  
 
To keep the guidelines simple we preserve the structure 
of the UCs in the SCs. So we map input and output as 
well as UCs to different classes and define SCs for each 
of these classes. The SCs for the variables are quite 
straightforward and reflect the major states of these 
variables (e.g., door locked, door open). The SCs for the 
UC start in an idle state and react to the trigger of the 
UCs, with transitions to other states. Exceptions and 
preconditions are reflected in these reactions (for 
example in guard conditions on the transitions or as 
additional transitions). The main behaviour described in 
the SCs reflects the different steps of the UCs.  
 
To model the formal SCs one can use tools like 
Rhapsody [Rha]. These tools should be able to 
“execute” i.e. simulate the SCs in order to allow the 
validation of the dynamic behavior of the system. On 
the one hand, this helps to detect incorrectness defects, 
as the user can directly see how the specified system 
behaves. Moreover, the transformation and simulation 
allows to check for inconsistency defects in the SCs and 
thus in the UCs regarding the dynamic behavior. 
Inconsistency is often detected during transformation 
from textual UC to the SC, when it is not possible to 
define a clear system reaction, for example, for certain 



interaction UCs. Further inconsistencies are detected 
through simulation when the system does not react as 
expected. In particular, interference defects can also be 
detected, since it is easy to simulate several UCs 
concurrently by means of simulating their 
corresponding SCs. Further, some of these tools provide 
automatic checks of the SCs (e.g., consistency checks) 
based on formal model proofs. To optimize our 
combination approach, we will have to investigate the 
power of these automated checkers. If no tools are 
available, the reading scenarios of the inspection have 
to be adapted to cover inconsistency and interference 
issues. 
 
It is important to note that transformation of the UCs 
into the more formal SCs takes additional effort. In 
addition the transformation is a manual step in which 
defects might be introduced. Here we perceive our 
guidelines as a means to help to prevent the introduction 
of new defects as they clearly describe the 
transformation steps to be performed. In case that 
sufficient effort is available, an inspection should be 
planned in addition to verify the consistency between 
the UCs and the SCs (i.e., to check that the 
transformation was done correctly). At this point in time 
we cannot prove the return on investment of using the 
simulation in a statistically significant way but we have 
some indications that show that the simulation of the 
SCs (i.e. the UCs) pays of (see section 4). The 
definition of good simulation scenarios, i.e. the 
definition of input sequences that are used to simulate 
the UCs, is essential.  

3.4 Summarizing the Integrated Approach 

By combining constructive and analytic quality 
assurance techniques, we are able to address all the 
classes of the defect classification introduced in the 
beginning of this article, and thus all important quality 
criteria. In Table 3, we summarize how each of our 
techniques contributes to the fulfillment of a high 
quality requirements specification: 
 

 Creation 
Guidelines 

Inspections Simulation 

Incompleteness X (X)  
Incorrectness  X X 
Inconsistency  (X) X 
Ambiguity X (X) (X) 
Incomprehensibility X (X)  
Intestability  X (X) 
Inchangeability (X) X  
Infeasability  X  
Overspecification X X  

Table 3: Quality Assurance Technique - Defect Matrix 

An “X” in the table indicates that defects related to a 
certain quality aspect (as described in Table 1) are 
addressed with a quality assurance technique. An “(X)” 

indicates that defects are indirectly addressed with the 
quality assurance technique. One example here is the 
use of inspections. When searching for defects limiting 
feasibility or testability, the inspector might also 
identify defects related to other classes (e.g., 
completeness, ambiguity).  
 
Our integrated approach combines the techniques, so 
that the UC creation guidelines focus on structural 
aspects related to completeness (e.g., all important 
exceptions are considered, all template elements are 
filled in). Moreover, the guidelines address aspects 
related to the use of natural language (understandability 
of sentences, use of unambiguous terminology). The 
inspection focuses on those aspects that are difficult to 
address in creation guidelines, such as feasibility, 
testability, and changeability analysis. It also focuses on 
more subtle (logical) defects that are not necessarily 
related to structural aspects. Moreover, our inspection 
approach helps to involve all the important stakeholders 
of the UCs through tailored perspectives and, therefore, 
supports communication about and a common 
understanding of the requirements. Simulation is 
integrated so that serious correctness and consistency 
defects and especially defects resulting from 
interrelationships between UCs (interference aspects) 
are addressed. Such defects are extremely difficult to 
identify in an inspection. The combination of the 
different techniques in such a way is a promising 
approach to reduce quality assurance effort and achieve 
higher efficiency.  
 
The main drawback of our approach is the additional 
effort. The development of the formal SC and the 
performance of the inspections require some effort. We 
therefore recommend to utilize the effort in a most 
beneficial way, that is to identify those requirements 
that are most critical for the success of the system and 
that bear the highest risks of later losses. These 
requirements should then be first in the line, i.e. our 
quality assurance approach should be applied on these 
requirements. For the less important requirements it 
might be more efficient to use less sophisticated 
techniques. For example, a less relevant UC is not 
simulated, but only inspected from the tester 
perspective.  
We believe that  SCs with a structure close to the UC 
structure  are better suited for requirements engineering 
than a structure that focuses on design optimization. We 
allow redundancies in the SC models and the class 
diagram. Thus, it is necessary to restructure the class 
diagram and the SCs during system design. So one has 
to trade-off the extra effort for the late restructuring 
with the ease of simulation and understanding which 
helps to detect defects more effectively. 
 
Another drawback is that the reading scenarios of our 
inspection approach need to be tailored to the concrete 
development context and the specific stakeholders. It 
might happen that additional perspectives need to be 
considered or that the focus of the described 



perspectives needs to be changed. If stakeholders are 
not considered or the existing perspectives are not 
sufficient, the inspection would be inefficient and not 
effective. However, tailoring the perspective-based 
inspection approach is possible by carefully identifying 
the stakeholders of the UCs and analysing their quality 
needs and the way these perspectives look for defects in 
the UCs.  
 
Finally, our approach is focused on UCs and thus on 
initially informal requirements specifications. We do 
not take formal requirements specifications like SCR 
[HBD95] into account. As many stakeholders with 
different technical backgrounds are involved in the 
requirements engineering process, we perceive it as an 
inevitable necessity to start from a more informal 
specification such as UCs and proceed from there to 
more formal notations. As SCs are one of those 
techniques used in the automotive domain we focused 
our approach around this notation, omitting others like 
SCR. 

4 Evaluation of the Approach 

We evaluated several parts of our approach in case 
studies with students. So far, we have focused on the 
value of the single techniques; i.e., the UC creation 
guidelines and the inspection approach. For the 
simulation we  collected qualitative statements about 
their usefulness. We have not yet evaluated the 
integration of the different techniques into a combined 
approach. In the following, we outline the results of the 
different evaluation parts.  
 
We validated the UC creation guidelines and the UC 
inspection approach in a case study at the Technical 
University of Kaiserslautern. Both techniques were used 
in the practical course “Software Engineering 1” in the 
summer of 2003. In this course, the students had to 
develop a building automation system that regulates the 
temperature and the lights in the rooms and floors of a 
university building. 12 students participated in the 
study. All students had limited experience with the 
application domain., The students had some experience 
in performing systematic requirements inspections. Due 
to teaching regulations we could not design an 
experiment with a control group not using the 
guidelines.. The control group would have used an ad-
hoc approach. This would have contradicted the 
teaching goals of the practical course that all students 
should learn adequate techniques. In addition, this 
would have reduced the number of people giving 
feedback to our approach. Clearly, with a number of 12 
students we cannot provide any statistically significant 
evaluations. However, making students apply the 
approach and collecting their feedback is, in our view, 
an important first step towards a more thorough 
evaluation.  
 

The software used in the practical course is a reactive 
system for house automation that was created for and 
evolved within the course. The system was divided into 
three subsystems. (1) The graphical user interface (GUI) 
that offers an interface to control the system. (2) The 
light control system (Light) that switches lights on and 
off depending on the presence of people in a room and a 
floor. (3) The temperature control system (Temp) that 
controls the room temperature, depending on the 
presence of people in a room and the current daytime.  
 
A group of 4 people was responsible for the 
development of each sub-system. The Temp system 
comprised 21 UCs and the related textual descriptions 
(scenarios), the Light system comprised 15 UCs and 
scenarios and the GUI system 34 UCs and scenarios. 
Based on the problem description, each group had to 
develop UCs for its sub-system with our UC creation 
guidelines. To evaluate the usefulness of the guidelines, 
we used a questionnaire that was given to the students 
after they completed the UC creation step. It was 
designed following the model recommended by Davis 
[Dav89]. Initially the model was used to evaluate the 
usefulness of a tool in supporting certain tasks. 
Laitenberger indicated in a study that this model can 
also be used to evaluate the usefulness of software 
engineering techniques, after some tailoring of the 
questionnaire. The basics of the model are three 
categories: Perceived usefulness “the degree to which a 
person believes that using a particular technique would 
enhance his or her job performance”; Perceived ease of 
use (applicability) “the degree to which a person 
believes that using a particular technique would be free 
of effort”; Self-predicted future use “the degree to 
which a person would use a particular technique again 
in the future”. For each category, the students had to 
state their degree of agreement to certain statements 
(e.g., “the guidelines accelerate the UC creation or the 
guidelines improve the effectiveness of the UC 
creation”) on a scale from 1 (total disagreement) to 6 
(total agreement). Based on the student rates it is 
possible to evaluate the degree of agreement to the 
questions in each category (build the median of all 
student answers of the question of this category) and 
then judge the overall usefulness of the technique by 
interpreting the medians of the three categories. 
 
Regarding applicability, three statements had to be 
rated. Thus, the maximum value (most positive case) is 
18. We measured a median of 12. Therefore, the 
students perceive the guidelines as applicable, but there 
is still improvement potential, as we did not reach the 
maximum value. The second element of the evaluation 
model is the perceived usefulness of the guidelines. The 
summarized results again show a positive perception of 
the usefulness of the guidelines. Five statements had to 
be rated in this category (maximum value 30). We 
measured a median of 23 and therefore conclude that 
the subjects agree that the guidelines are useful for 
performing their task. Again we perceived improvement 
potential for this category. Regarding the self-predicted 



future use, the subjects had to agree with one statement. 
10 out of 12 subjects (83.3%) agreed that they would 
use the guidelines again in a future project. Only two 
subjects would not use the guidelines again.  
 
To summarize, the overall impression of the guidelines 
is positive. The evaluation indicates that the guidelines 
are useful and applicable to create the UCs. Most of the 
subjects would use the guidelines again in a future 
project. However, the results also indicate that the 
guidelines can still be improved A more detailed 
presentation of the results can be found in [DPB03].  
 
After the students created the UCs, they had to perform 
inspections on the UCs. In this task the students used 
our perspective-based inspection approach. We 
evaluated the impact of the detailed descriptions 
provided by our inspection approach (usefulness of the 
reading scenarios) in a controlled case study. In detail, 
we analyzed the following hypothesis: 

Hypothesis H1—Team Effectiveness: Inspection 
teams find more defects with the help of the 
reading scenarios than with a comparable checklist  
Hypothesis H2—Team Efficiency: Inspection 
teams find more defects per time unit with the help 
of the reading scenarios than with a comparable 
checklist 
 

The subjects had to use different reading techniques: 
perspective based reading and a checklist based 
inspection approach. In the case of PBR, three 
perspectives were used as explained in section 3: a 
tester perspective, a designer perspective and a 
customer/user perspective. The inspector assuming the 
tester perspective had to derive a set of test cases. The 
designer perspective had to derive initial SCs, and the 
user perspective had to create use cases from the 
problem description and compare these to the use cases 
under inspection.  
 
To investigate the influence of the perspective based 
reading approach, we created focused checklists that 
were comparable to the reading scenarios (this is called 
CBR in the following). We defined three checklists, 
each representing one of the perspectives, using similar 
or the same questions as the corresponding reading 
scenario. Thus, the focus of each checklist was the same 
as the focus of the related reading scenario and the 
checklist provided the same separation of concerns.  
We chose a partial factorial design (see Table 4) in 
which each group participated in two inspections (Run 1 
and 2) using some combination of the reading technique 
(focused CBR and PBR) and inspected artifact (the 
three subsystems). The inspection teams were similar to 
the teams that build the different sub-systems (e.g. 
Group_Light build the sub-system Light and therefore 
reviewed the other two sub-systems). Thus, in each 
inspection team 4 students were included. Each sub-
system was reviewed by two groups (8 subjects), one 
group using CBR (4 subjects) and one group using PBR 
(also 4 subjects).  

 
In each run, the inspection teams used different 
techniques and different perspectives. For example, the 
team that used CBR in the first run used PBR in the 
second run and vice versa. In addition a subject that 
used the tester perspective in the first run used the 
designer or the customer perspective in the second run.  

Table 4: Design of the controlled case study 

PBR Focused CBR 
Run 1 Group_Light 

inspects Sys_Temp 
Group_GUI inspects 
Sys_Temp 
Group_Temp 
inspects Sys_Light  

Run 2 Group_Temp 
inspects Sys_GUI 
Group_GUI inspects 
Sys_Light 

Group_Light 
inspects Sys_GUI 

 
In addition to these questions, we analyzed the subjects’ 
perception regarding the support provided by the PBR 
approach, again using a questionnaire.   
 
The results of the study provide weak tendencies that 
our inspection approach results in more effective 
inspections and is perceived as very helpful to support 
individual defect detection. In detail, the study showed: 
For the Temp and GUI subsystems, the teams using 
PBR, respectively, found 23% and 40% more defects 
than the teams using focused CBR. However, for the 
subsystem Light the team using focused CBR found 
32% more defects than the team using PBR (see 
following table). 
 

Table 5: Effectiveness at the team level 

 
% of defects found 
by CBR-team 

% of defects 
found  
by PBR-team 

Temp 50% 65% 
GUI 44% 73% 
Light 83% 57% 

 
Regarding the efficiency (measured in defects found per 
hour) the study showed that the checklist-based 
approach is more efficient for the Temp and the Light 
subsystems (by 27% and 52%, respectively). For the 
GUI subsystem, the PBR team was 70% more efficient 
than the CBR team (see following table) 

Table 6: Efficiency of the approaches 

 
Efficiency of  
 CBR-team 

Efficiency of 
PBR-team 

Temp 1.93 1.52 
GUI 1.14 1.94 
Light 2.00 1.31 

 



In summary, the results of our controlled case study do 
not follow a common pattern. Our analysis showed that 
the PBR approach improved the effectiveness of defect 
detection in the GUI system but not in the Light and the 
Temp system. Our results do not appear conclusive 
mainly because the very small sample size of the study 
(12 inspectors organized in 3 teams with 4 inspectors 
each) hampers running reliable tests for differences. 
However, there are some hints that the complexity of 
the subsystems can explain the discrepancy in the 
results: One possible interpretation for this is that the 
effort spent in the PBR approach, which focuses on a 
profound understanding of the document under 
inspection, pays of only in more complex systems. As 
the GUI system was the most complex system (it 
contained the most UCs), the PBR approach performed 
best for this subsystem. In the two other subsystems the 
effort of the PBR approach was too high as they were 
not that complex, i.e., the checklist was sufficient to 
gain the understanding of the system. Only in complex 
documents a systematic approach to gain a profound 
understanding of the inspected artifact pays off. 
However, this is a hypothesis that needs to be validated 
in future research activities.  With the similar 
argumentation we interpret the not conclusive results 
regarding the efficiency of the two approaches. 
 
The evaluation of the questionnaire showed that the 
PBR approach is perceived to be as applicable as the 
checklist-based approach but harder to understand. The 
subjects’ stated that the PBR approach is more useful 
compared to a checklist approach and that the reading 
scenarios, especially, are perceived as highly valuable. 
Eight out of eleven students (72.2%) agree that the 
reading scenarios are helpful in performing the defect 
detection. Even though we could not prove our 
hypothesis, the results indicate that our inspection 
approach is a valuable means for improving the quality 
of the UCs and that it is perceived more useful than 
traditional approaches. More detailed results of the 
inspection case studies can be found in [DCL04]. 
 
There are several threats to validity that should be 
considered with respect to the presented results. Threats 
to validity influence the outcome of an empirical study 
(they have an impact on the dependable variables, in our 
case the number of defects found and the time needed to 
find them). First there are learning effects, i.e. the 
students get to know how to perform inspections and 
perform better in the second run of the case study. We 
controlled this thread by assigning different reading 
techniques in the different runs and in addition we 
varied the perspective the inspectors use in the two runs. 
For example an inspector that assumed the tester 
perspective in the PBR inspection can only use the 
designer or user/customer checklist in the second run. 
Moreover there are threats that the student did not 
follow the checklist or the PBR approach while doing 
the inspection. We controlled this threat by briefing the 
students after the case study. The results indicate that 
the students followed the different approaches. To 

prevent selection effects we chose the students 
randomly to certain perspectives. In addition we 
ensured the quality of the checklists and the reading 
scenarios of the PBR approach by reviewing them by 
inspection experts. This prevents that the case study 
results are biased due to poorly designed checklists and 
reading scenarios.  Finally, the usage of students in as 
subjects in a class experiment is a threat to external 
validity (i.e., the generalizability of the results). It has 
been shown that the differences between graduate 
students and professionals  is often not very large 
[Pre01]. Moreover, according to [Run03] the difference 
between graduate students and professional software 
developers is small compared to freshman and graduate 
students. The UCs that had to be inspected represented 
UCs of a real system and the number of the designed 
UCs and related scenarios shows that this is not a pure 
toy-example. We therefore believe that the results still 
can be interpreted in a broader sense. 
 
In addition, we “evaluated” the usefulness of the 
simulation approach in a seminar at the Technical 
University of Kaiserslautern. 4 students used the 
simulation to detect defects in UCs of the door control 
unit of a car. We got positive feedback regarding the 
simulation. The detection of more subtle defects and 
defects regarding the dynamic interaction of UCs are 
perceived as the main advantages. Some additional 
findings with respect to the simulation approach can 
also be found in [DO04]. 
 
Again we want to note that the presented results are not 
statistically significant. They can only serve as initial 
results that are a first step towards more formal 
empirical evaluations. In addition, the results are based 
on case studies with students which limits their 
generalizability even more. Therefore, these studies 
have to be followed with industrial case studies to 
achieve more generalizability. However, performing 
initial studies with students is a necessary and important 
step in the empirical evaluation of any technology. This 
is due to the fact that a sound case has to be built in 
order to justify and motivate studies with professional, 
and therefore more expensive, developers [SCT01]. In 
future activities the integrated approach has to be 
compared to an approach that does not combine the 
different techniques in a systematic way, and the 
techniques need to be analyzed in controlled 
experiments. 

5 Conclusion 

In this paper we have described an integrated quality 
assurance approach for UCs. The core aspect of our 
approach is the combination of constructive techniques 
(UC creation guidelines) with analytic quality assurance 
techniques (inspections and simulation) for UCs. The 
combination is based on a defect classification for UC 
models. This classification enables systematic 
combination such that guidelines, inspections, and 



simulation address different kinds of defect classes. We 
showed that guidelines are valuable for the prevention 
of structural and syntactic defects, and inspections are 
suitable for detecting subtle logical defects. Simulation 
is integrated so that serious consistency defects 
resulting from the interference between UCs can be 
efficiently detected. With this approach we hope to 
improve the overall efficiency and effectiveness of 
quality assurance in the requirements engineering 
phase. The evaluation of our approach gives first 
evidence that each part contributes to the overall quality 
improvement of the UCs. However, a detailed analysis 
of our integration approach needs to be performed in 
future empirical studies, particularly in industry. The 
aim of this study would be to show that the overlap of 
detected defects can be reduced with the combined use 
of the different techniques. The results of our evaluation 
motivate us to continue working in that direction. 
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