

Electronic version of an article published in Net.ObjectDays (Hrsg) Tagungsband
Net.ObjectDays 2005, pp. 213-226

Copyright © [2005] tranSIT GmbH

http://www.old.netobjectdays.org/node05/de/conf/proceedings.html

Testing Mobile Component Based Systems

Dima Suliman1, Barbara Paech1, and Lars Borner1

1University of Heidelberg
Institute of Computer Science

Software Engineering
 Im Neuenheimer Feld 326

D-69120 Heidelberg, Germany
{suliman, paech, borner}@informatik.uni-heidelberg.de

http://www.informatik.uni-heidelberg.de

Abstract. Using components in building software systems is a popular
approach in software engineering. Testing component based systems (CBS),
however is still a challenging task. Additional problems arise, if the tested CBS
is a mobile system. Mobile systems offer more challenges, because their
structure is dynamic: Components may be added or removed at any time. Thus,
testing is required at run time. In this paper we present criteria that a testing
approach of mobile CBS has to satisfy. We investigate to what extent common
CBS testing approaches fulfill these criteria: For each approach we explore how
the particular test steps (test cases, test inputs and test oracles) are created or
generated. Although many approaches introduced in the literature assume that
testing is needed only at deployment time, we found many interesting features
that can be applied in testing mobile CBS, but no existing approach can be
taken as it is.

Keywords: testing mobile systems, component testing, mobile systems,
component based systems

1 Introduction

Building software systems from components can save time and effort. One of the
domains that use this approach is the domain of mobile systems. A mobile system
consists of mobile devices. On each mobile device many components may be
installed. Each component belongs to one mobile device. When testing mobile
component based systems (mobile CBS) two questions are important:
1. Do we have a good connection to a component?
2. Do we have a connection to a good component? In other words: Does the
component perform as expected?
This paper deals with the answer to the second question, whether the participating
components “share” a mutual understanding of their functionality.
In general, testing of CBS is difficult, because the user (the component buyer) has
limited information about the components. For example, in most cases the source

2 Dima Suliman, Barbara Paech, and Lars Borner

code of the components is not delivered. And even if the source code is available, it is
very difficult and very time-consuming for the user to analyze and understand the
code, and to create test cases. Testing mobile CBS is more challenging, since mobile
systems have special requirements (e.g. the computing and storage capacity of mobile
devices are limited, the environment is steadily changing). In this paper we
investigate the issue of testing mobile systems, because mobile systems will play an
essential role in modern technology. Thus, developing testing approaches for mobile
CBS is not only an interesting problem; it is a major demand. This paper is structured
as follows: in section 2 the criteria for mobile test approaches are explained, in section
3 popular CBS testing approaches are examined. And in section 4 the features
transferable from CBS testing approaches to mobile CBS testing approaches are
discussed. Finally a conclusion is presented in section 5.

2 Criteria for test approaches for mobile CBS

A testing approach for mobile CBS has to overcome difficulties that a general CBS
testing approach does not face. In a general CBS the testing approach is usually
needed only at deployment time: At deployment time the system builder uses the test
approach to check whether the components can work with each other, and whether
they perform as expected. If this is the case, the software system can be released.
Mobile CBS complicate the situation, because the systems are built dynamically.
Thus, the participating components are not known in advance. Strictly spoken there is
no deployment time, since at any time components may be added or removed from
the system. Thus, testing is required at run time. In a mobile CBS the components are
running on mobile devices, and mobile devices have special properties that have to be
considered while testing. In particular, their limited resources play an essential role. In
this section the challenges that a mobile testing approach has to overcome, are
explained. We justify our choice of criteria with a general scenario:
Suppose a component A with functionality f is available on a mobile device Z.
Another component B (possibly on another mobile device) needs this functionality.
Before functionality f is used, B wants to test, whether f fulfils its expectations –
analogously to a human tester who would like to test f before it is used. Now, which
challenges must the run time testing approach overcome, and which criteria must be
fulfilled?
The first criterion is inherent in the concept of run time testing: In contrast to testing
at deployment time, testing at run time needs to run as much as possible without
human intervention. Involving a human user of a mobile device (on which the
component is running) in the testing approach is not practical. For example, it is
unrealistic to assume that the human user of the mobile device (on which component
B is running) can create test cases for the needed functionality f of component A,
since this requires professional knowledge:

Testing Mobile Component Based Systems 3

C.1 The test cases of a component should be either:
a. available at run time,
b. or they can be generated at run time.

Other test activities (e.g. test case execution, test results evaluation) should
also, as much as possible, be executed automatically without the need of
human intervention.

Further criteria can be justified while discussing the different test activities (they
are marked by Roman numbers). First the difficulties are explained followed by the
implied criteria (the criteria are marked by Arabic numbers):

I - Starting the test:
The tested component A may be involved, for example, in other testing
processes: Another component D may also send a testing request at the same time
as component B. Thus, at the same time many test requests from many testers
with different test inputs may be received. Therefore, the following criterion
concerning the starting time can be identified:

C.2 The testing approach has to detect the right moment for testing
(Scheduling).

II - Execution of the test:

Having found the right starting time for testing, the resource constraints of the test
case have to be initialised: There are resource constraints that may indirectly affect
the results of the test case e.g. bandwidth. These resource constraints can not be set at
run time: When testing occurs at deployment time we have control over almost all
resource constraints. In contrast, when testing occurs within a mobile CBS, many
resource constraints are determined at runtime. The computing resources of a mobile
device are always changing:

C.3 Executing the test case in a mobile system has also to consider
steadily changing resource constraints.

At run time testing processes are running and “normal” functionalities may run

simultaneously. Thus, the testing approach has to manage:

C.4 Concurrency of testing and normal behaviour on system level: The
tested component A may be in use by other components, when the test
begins: The functionality of the tested component should not be affected
by the test. That means the functionality of all other components in the
system that use the functionality f should not be affected by the testing
process.

C.5 Concurrency of testing and normal behaviour on component level:
A component may offer several functionalities; suppose the component
A also offers functionality f ` which operates with data that is also used
by the tested functionality f. In order to avoid confusion, the test has to

4 Dima Suliman, Barbara Paech, and Lars Borner

be set up so that the other functionalities of the component are not
affected.

The testing approach should also guarantee system reliability:

C.6 Robustness in respect of testing effects: Neither the tested component
is damaged nor an unintended system crash is caused, because of the
testing process.

Component A is installed on a mobile device Z. The location of Z may be
changed at any moment, so that component A and component B can not
communicate anymore. That means, the testing process may be interrupted at any
time: Thus, the testing approach has to guarantee:

C.7 Robustness in respect of changes of the testing context.

The testing approach also has to take into account the special properties of
mobile devices:

C.8 The testing approach has to be very efficient, that means that the
approach should use the available resources very efficiently, e.g. :

a. the storage capacity of mobile devices is limited
b. the computation capacity of mobile devices is limited,
c. power consumption and bandwidth is limited.

III - End of the test:
How to evaluate the test results? What does it mean, if no error is detected? If the
test fails, how should the system react to the result? Detected defects can not be
repaired at run time, thus they have to be logged. What does this mean for the
tester (again the tester is not a person) and the tested component?

C.9 The testing approach also has to provide a mechanism for:

a. error logging
b. and error handling.

Table 1. The common approaches and the mobile testing criteria

C1 C8 C9
Develop. Deployment/

Run time
C3 C5 a b c Error

Handling
Error

Logging
Meta
Data - (X) - - - - - - -
CBSFG - (X) - - - - - - -
Reflective
Wrapper X - - - - - - - -
Retrosp. (X) - - - - - - - (X)
BIT (X) (X) X ? - X X X X
STECC - (X) - - X - - - -
Test
Bench - (X) - - - - - - X

Testing Mobile Component Based Systems 5

3 Exploring common approaches for testing CBS

Many CBS testing approaches are presented in the literature. A detailed overview of
CBS testing approaches is presented in [1], [2]. In [2] Beydeda and Gruhn
distinguish between approaches that tackle the absence of information required for
testing and those who try to test the component, although information is not available.
In Memon’s article “A Process and Role-Based Taxonomy of Techniques to Make
Testable COTS Components” in [1] a taxonomy is presented: For each approach the
role of the developer and the role of the user are investigated. We present another
overview of popular approaches: Each approach is shortly introduced and evaluated
against the criteria mentioned in Sec. 2. Our ambition is to detect the criteria that are
already supported by the popular CBS testing approaches and can be applied in the
context of testing mobile CBS. Table 1 presents an overview of the approaches.
Criteria that are not supported by any approach are not listed in Table 1. An X is used
to indicate that the approach fulfills or supports the criterion. An (X) indicates that the
approach may support this criterion under certain conditions. The testing approaches
realize testing steps in various ways. Some approaches fulfill some criteria partially.
For example, an approach may support error logging, but not error handling. Thus, we
split some criteria into subcriteria, in Table 1, in order to investigate to which extent
this criterion is fulfilled: The subcriteria of criterion 1: An X in column Development
indicates that the test cases for the approach in this row are created or generated at
development time. Whether the test cases are created manually or generated
automatically makes no difference for our purpose. In the second column: As
mentioned in Sec. 2 there is no deployment time in mobile systems, therefore
deployment and run time are merged in this column. An X in this column indicates
that the test cases can automatically be generated at deployment resp. runtime. An
(X) indicates that the test cases can not always be generated (i.e. sometimes a human
intervention is needed). The subcriteria of criterion 8 are already explained in Sec. 2.
We distinguish with Criterion 9 whether the testing supports error logging and/or
error handling. The other columns C3 and C5 do not need subcriteria.
 For every approach the features that can be transferred into a mobile CBS testing
approach are pointed out. In Sec. 4 we discuss these features.

3.1 Meta data approach

In [12] a framework is introduced to help the developer of the component (in our
scenario the developer of component X) to add meta data to the component. In this
approach the developer enhances the component with information about the static and
dynamic aspects of the component the so-called “meta data”. Since different meta
data in different contexts are needed, and the user may not need all given meta data,
the meta data can be generated on demand, or remotely stored. The developer may
deliver as meta data: state machine, pre-conditions, post-conditions, invariants, test
inputs and test oracle. The developer can also extend the meta data. The user (in our
scenario component B) can query the meta data, and the user can then (automatically
or manually) generate test cases depending on the meta data given. The user effort for
generating and processing of tests depends on the amount and quality of the delivered
meta data. In the worst case the component user is responsible for most test steps:

6 Dima Suliman, Barbara Paech, and Lars Borner

e.g., test inputs, test oracles. Thus, we have an (X) in Table 1, under Dev/Run time in
this row. If the delivered meta data are insufficient, the user (component B) cannot
generate the test cases automatically at run time.

3.2 Component-based software flow graph (CBSFG)

Another approach for testing components is presented in the article “Testing
Component-Based Systems Using FSMs” in [1]. The user (component B) of
component (A) is able to create test cases by using a graphical representation of the
component the so-called component-based software flow graph (CBSFG). A CBSFG
combines information of finite state machines and control/data flow graphs. Thus, it is
possible to combine black-box-testing und white-box-testing. First the developer (of
component A) models the behaviour of the component by using finite state machines.
One of the main focuses of the modeled state machines is the transition between the
states. The information contained in the transitions is transformed into Java code by
using nested if-then-else constructs. Within the if-then-else construct it is possible to
check if the component is in the right state, and to call the corresponding action, if the
guards are fulfilled. In the second step the Java Code for the transitions is built into
the source code of the component. After the successful integration, the developer (of
A) can create the CBSFG out of the source code and it contains all the information
about the control/data flow and about the states and state transitions of the
component. Using the CBSFG the user (component B) can create test cases. All steps
mentioned above can be automatically executed except the test case generation step.
The authors [1] are working on the automation of the test case generation. This is
indicated in Table 1 by an (X) in the second column.

3.3 Reflective Wrapper

In this approach [9] specification and verification information is delivered and
encapsulated within another component the so-called reflective wrapper component.
The execution of the delivered information is carried out through a standardized
reflection-based interface. In this component many information may be encapsulated:
simple information about the formal specifications, verification history, violation
checking services, and even self-testing services. In [9] the authors decided to remove
the wrapper component after the development, because of the increased size of the
component (A), since every component would then be delivered with one or more
reflective wrapper components. The generation of wrappers can be automated,
however, if the wrapper component supports all mentioned features, manual
modification by the developer is required. For example, in the case of constructing
test suites for self-testing services, or violation checking services. Assuming that the
reflective wrapper components are not removed after the development phase, we
entered an X in the second column, since the test cases are then available at run time
(they are delivered from the developer of component A). The storage capacity
demand in this approach is not practical for mobile CBS (Criterion 8.a). Since this
approach is not intended for run time, there is no mechanism to manage the deected
defects automatically.

Testing Mobile Component Based Systems 7

3.4 Retro-components

Retro-components [11] are components provided with retrospectors. A retrospector is
a software entity that records all test and execution activities, and makes them
accessible to the user (component B). For example, a retrospector provides the user
with information about already executed tests, recommended test cases, and coverage.
A retrospector can be written by the developer (of component A). A default
retrospector may also be automatically generated, if the developer adheres to a certain
programming style. The developer (of A) and the buyer (of A) can customize the
default retrospector. If the retrospector is kept after deployment, it offers a great
possibility for the developer to trace the errors found in the functionality of the
component (this indicates the (X) in the last column in Table 1). Thus, in this
approach the information may be exchanged in two directions: from the developer (of
A) to the user (component B) and vice versa. However, this requires a huge amount of
mutual confidence between the buyer of the component and the developer. On the
basis of the information stored in the retrospector, the user (B) can detect which test
cases are recommended, and he or she can create the tests. Thus, retrospectors provide
the user with information about the test cases. The recommended test cases can be
manually created by the developer (of X) or the user (B). The test cases in this
approach can not be automatically generated by the user (B).

3.5 Built In Test

The main idea in this approach is to extend the component (A) into a BIT component.
A BIT component is a component with test interface(s) which increase(s) its
testability [14]. The main characteristics of a BIT component are:

1- It has at least one testing interface, to support access to activities.
2- If test cases are available, a BIT component possesses two modes:

• Normal mode: In this mode the BIT component acts like any other
component.

• Maintenance mode: in this mode the user can access test cases. In
the maintenance mode the user (B) may validate, set or change
internal component states. Such access is not possible in the normal
mode; either because the interior states of a component are invisible
outside the component or because the manipulation of interior states
is forbidden as this may affect the whole system.

A BIT component may possess complete test cases (that’s the reason of entry (X)
in Table 1). The test cases may be generated [17] (this indicates the (X) in Table 1). In
order to avoid the problems of large overhead, the authors [14] suggest that the test
cases can be stored in an extra component the so-called “tester”. They also defined an
extra component that handles the detected errors (handler component). The BIT
approach may be realized in two ways:

1) Wang et al. [16] suggest that the test cases with their implementations are
provided by the developer (of A) for the developed component. The test cases for the
component may be contained in the component or produced on demand. With these
test cases the component (A) can test itself. The user (B) can execute the delivered
test cases through the testing interface.

8 Dima Suliman, Barbara Paech, and Lars Borner

2) Gross [10] suggests that a BIT component (B) should possess test cases not for
its own functionality, but for the functionalities of other components. With this
feature the component (B) can test whether the other components (A), respectively the
whole environment, fulfill its expectations. The other components in the environment
can check via their test cases, whether the component (B) fulfills their expectations.
This approach is called “contract testing”.

If a BIT component contains test cases, they are defined at development time. This
indicates the X in the first column in Table 1. Test cases may also be generated (on
demand) at run time, but only if the required information is delivered by the
developers. This indicates the (X) in column 2. Thus, the delivered test cases are static
and cannot be changed. The BIT approach is the only approach where we found
attempts to use it at run time explicitly. For example, in [13] a BIT testing architecture
for run time environment is suggested. Error propagation is managed via the
configuration interface (CIF) (thus, we have an X under Error handling, and Error
logging). The authors suggest mechanisms to detect failures on the component’s and
system’s level. The suggested architecture can also detect resources deadlocks (this
indicates the X in Column 8.c). In [13] resource competition problems are solved. No
concurrency problems (testing and normal processes operate with the same data) on
component level are mentioned, this indicates the question mark under C5 in Table
1.This work is an extension of the work of Wang et al. [15]. The suggested
architecture contains many useful features that can be applied by a testing approach
for mobile CBS.

3.6 The Self-Testing COTS Components (STECC)

This approach was developed by Beydeda [7], [3]. In this approach the developer
augments the component with test tool functionality. Thus, the component (A) can
test itself without the need to export its source code. Each component encapsulates an
ordinary control flow graph that models the source code information. The white-box
oriented test cases are generated and conducted in the STECC framework. If a class
specification implementation graph (CSIG) [5] is used instead of a normal control
flow graph, white box and black-box oriented test cases can be generated [4], as the
CSIG combines the specification and implementation view of a class. In this case the
component has to be implemented as a class. Concerning the adequacy criterion
specified by the user (B), the framework determines which paths have to be traversed.
The test cases are generated via the binary search-based test case generation
algorithm [6]. Whether the expected results are provided automatically or manually
depend on the specification of the component. If the component needs some results
from other components to complete its calculation, the user (B) has to embed the
component in the context or has to provide stubs to replace the functionality of absent
components. The test cases are generated dynamically. Thus, this approach needs
considerable computation time. The test cases may be generated nearly full
automatically, this indicates the (X) in the second column in Table 1.

Testing Mobile Component Based Systems 9

3.7 The Component Test Bench

In this approach [8] the developer enhances the component (A) with the specification
of test cases. The specified test cases are stored in XML format in the so-called test-
descriptor. This simplifies the exchanging and parsing of the data. The user (B) can
generate the test case code from the specification using the verify pattern module. A
verify pattern module is a stand alone module that generates the test cases
implementation using the given specification. The component (A) may be
implemented in many programming languages, and it may also supply multiple
interfaces. There are many ways to specify test cases; the developer may specify the
test cases using: a text editor, an XML editor, a GUI with input boxes for each
element or a data flow editor etc.

The specification of test cases may be generated automatically using the symbolic
execution approach. Unfortunately there are some difficulties using this method in a
number of programming languages. Thus, automatic generation of test cases
specification is not always possible. If the specification of the test case is available, it
can be generated at run time. This indicates the (X) in the second column. After each
execution of the test case code, the test descriptor file is updated with the executed
results (this indicates the X in the last column in Table 1). Thus, a history of the
calculated results is available, but no error handling mechanism is available.

4 Discussion

All approaches mentioned above require more or less human intervention. Some of
them are not applicable at run time. Even in these approaches we found useful
features. For example, the retrospector approach offers a mechanism for error
logging; this mechanism can be used, in order to log detected error at run time.
Enhancing the component with adequate meta data (meta data approach) enables the
generation of test cases at run time. We may extend the meta data with the reaction to
test results, in order to react on test results at run time. We found, however more
interesting features in the following approaches: BIT, reflective wrapper, and
Component Test Bench. In the following, we summarize the features we identified:

The BIT approach: The contract testing suggested in [10] can be used to answer
our main question in testing mobile CBS: “Do we have a connection to a good
component?”. Using periodic executing of “self-testing in [16]” can detect failures
caused by resource fluctuation or by topological changes (e.g. a component is
removed or added) in the environment. A BIT testing architecture for run time
environment is suggested in [13]. The authors in [13] assume that the system is static.
That means, the system knows its components in advance. Although the architecture
in [13] is designed for static systems, it contains many useful features that can be
applied for mobile CBS. As we see in Table 1 the BIT approach fulfills “most”
criteria listed in the table, but not all criteria mentioned in Sec. 2: The BIT approach
needs a big storage for the test cases. This problem can be circumvented by
generating the test cases on demand, or storing them in a remote component [14].

10 Dima Suliman, Barbara Paech, and Lars Borner

Since this approach fulfils most criteria, it is evident to use it as a base for an
approach for testing mobile CBS.

The reflective wrapper approach: The authors [9] suggest removing the
reflective wrappers after development and deployment because of the storage cost. If
the reflective wrapper is kept after deployment, the approach is still not applicable for
testing mobile CBS, but it offers interesting features: verification history can be used
for logging the detected defects; self testing can be periodically executed to check the
functionality within a changing environment.

The Test Bench approach: This approach offers a logging mechanism, and tools
for encoding test cases in a portable format (XML). The used specification of test
cases can be used and enhanced: For example, it can be enhanced with reactions to
test results.

As mentioned in Sec. 2 mobile systems have special needs. An approach for testing
such systems has to accomplish many aspects. Many of the required criteria are
available, but not in one testing approach. Sometimes one approach (BIT) has more
than one attempt (in [10] and [16]) and each attempt fulfills a part of the criteria in
Sec.2. We believe that an approach that is built on the BIT approach in combination
with the identified features by other approaches in a resource customized form will
satisfy all the requirements for testing mobile CBS mentioned in Sec. 2.

5 Conclusion

In this paper we presented essential criteria that a testing approach for mobile CBS
has to satisfy considering the:

• limited resources of mobile devices
• scheduling problems
• robustness requirements
• problems with error handling.

Most of these criteria are needed, because the tests are executed at run time in a
steadily changing environment. For the most popular approaches we investigated to
what extent they fulfil these criteria. Unfortunately neither of the investigated
approaches fulfils all the required criteria. But we have to remember that these
approaches have not been developed for steadily changing systems, and most of them
assume that testing is needed only at deployment time. This applies to software
systems with static structure, but not for dynamically built systems like mobile CBS.
We found many features that can be applied in testing mobile CBS. We believe, it is
possible to develop a testing approach for mobile CBS which satisfies all criteria
mentioned in Sec. 2. In our project MORABIT (Mobile Resource Adaptive Built In
Test) we are working with our partners (Mannheim University and the EML Research
gGmbH) on a testing approach built on the features already realized by other
approaches. As the name says, the BIT approach plays a central role in our project, as
it satisfies most criteria (see Table 1). But we are also working on the integration of
the features found in other approaches.

Testing Mobile Component Based Systems 11

Acknowledgements

This work is funded by the Landesstiftung Baden-Württemberg in the project
MORABIT.
We want to thank our partners from the EML Research gGmbH, and Mannheim
University for their discussion and support. We also want to thank Carsten Binnig,
Timea Illes, Andrea Hermann, and Jürgen Rückert for their comments and advice.

References

1. Beydeda, S, Gruhn, V. (eds.): Testing Commercial-off-the-Shelf Components and Systems.
Springer Verlag, Berlin Heidelberg New York (2004)
2. Beydeda, S., Gruhn, V.: State of the Art in Testing Components. IEEE Computer Society
Press, (2003) 146-153
3. Beydeda, S., Gruhn, V.: The Self-Testing COTS Components (STECC) Strategy – a new

form of improving component testability. ACTA Press, USA (2003) 222-227
4. Beydeda, S., Gruhn, V.: Black – and White-Box Self-testing COTS Components. IEEE
Computer Society Press, Canada (2004)
5. Beydeda, S., Gruhn, V., Stachorski, M.: A graphical representation of classes for integrated
black- and white-box testing. IEEE Computer Society Press, Italy (2001) 706-715
6. Beydeda, S, Gruhn, V.: BINTEST – Binary Search-based Test Case Generation. IEEE
Computer Society Press, USA (2003) 28-33
7. Beydeda, S.: The Self-Testing COTS Components (STECC) Method. PhD thesis, Universität
Leipzig (2003)
8. Bundell,G.A., Lee, G., Morris, J., Parker, K., Lam, P.: A software verification tool. IEEE
Computer Society Press, (2000) 137-146
9. Edwards, S.H.: Toward reflective metadata wrappers for formally specified software
components. OOPSLA workshop, USA (2001)
10. Gross, H.G.: Component –Based Software Testing with UML. Springer Verlag, Berlin
Heidelberg New York (2004)
11. Liu, C., Richardson, D.: Software components with restrospectors. International workshop
on the Role of Software Architecture, Italy (1998) 63-68
12. Orso, A., Harrold, M.J., Rosenbluhm, D.: Component metadata for software engineering
tasks. LNC, Springer Verlag, USA (2000) 129-144
13. Vincent, J., King, G., Lay, P., Kinghorn, J.: Principles of Built-In-Test for Run-Time-
Testability in Component-Based Software Systems. Software Quality Journal, Springer Science
+Business Media B.V., Formerly Kluwer Academic Publishers B.V, (2002) 115-133
14. Vincent, J.: BUILT IN TEST VADE MECUM –PART I A common BIT Architecture.
Component+ Project Report, http://www.component-plus.org/sidor/reports.htm, (2002)
15. Wang, Y., King, G., Patel, D., Patel, S., Dorling, A.: On Coping with Real-Time Software
Dynamic Inconsistency by Built-in Tests. Annals of Software Engineering, Oxford (1999) 283-
296
16. Wang, Y., King, G., Wickburg, H.: A method for built-in tests in component-based
software maintenance. IEEE Computer Science Press, Netherlands (1999) 186-189
17. Wang, Y., King, G.: A European COTS Architecture with Built-in Tests. LNCS, Springer
Verlag, Germany (2002) 336-347

http://www.component-plus.org/sidor/reports.htm

	Meta data approach
	Component-based software flow graph (CBSFG)
	Reflective Wrapper
	Retro-components
	Built In Test
	The Self-Testing COTS Components (STECC)
	The Component Test Bench

