

Copyright © [2006] IEEE.
Reprinted from Proceedings of the 10th IEEE International Enterprise Distributed
Object Computing Conference (EDOC'06) - Volume 00, pp. 175-184

This material is posted here with permission of the IEEE. Internal or personal use of this
material is permitted. However, permission to reprint/republish this material for advertising
or promotional purposes or for creating new collective works for resale or redistribution must
be obtained from the IEEE by writing to pubs-permissions@ieee.org

By choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

Reducing Verification Effort in Component-Based Software Engineering
through Built-In Testing

Daniel Brenner1, Colin Atkinson1, Barbara Paech2,
Rainer Malaka3, Matthias Merdes3, and Dima Suliman2

1- Institute of Computer Science, University of Mannheim, 68131 Mannheim, Germany,
E-mail: {dbrenner|atkinson}@informatik.uni-mannheim.de

2- Institute of Computer Science, University of Heidelberg, 69120 Heidelberg, Germany,
E-mail: {paech|suliman}@informatik.uni-heidelberg.de
3- EML Research gGmbH, 69118 Heidelberg, Germany,

E-mail: matthias.merdes@eml-r.villa-bosch.de, rainer.malaka@eml-d.villa-bosch.de

Abstract

Today component- and service-based technologies

play a central role in many aspects of enterprise
computing. However, although the technologies used
to define, implement, and assemble components have
improved significantly over recent years, techniques
for verifying systems created from them have changed
very little. The correctness and reliability of
component-based systems are still usually checked
using the traditional testing techniques that were in use
before components and services became widespread,
and the associated costs and overheads still remain
high. This paper presents an approach which
addresses this problem by making the system
verification process more component-oriented. Based
on the notion of built-in tests – tests that are packaged
and distributed with prefabricated, off-the-shelf
components – the approach and supporting
infrastructure help to automate some of the testing
process, thereby significantly reduces system testing
effort. After providing an introduction to the principles
behind component-based verification, and explaining
the main features of the approach, we show by means
of a small example how it can reduce system
verification effort.

1. Introduction

Because they can significantly reduce the levels of
effort involved in building and developing systems [1],
components and services today play a central role in
most software engineering projects, particularly
enterprise computing projects. However, in their
currently most widely used form, component and

service technologies have little or no impact on the
level of effort needed to verify such systems once
created. Component-based systems are still typically
verified using the same system testing techniques that
were used before the notions of components or services
became widespread. These techniques are not only
very expensive, they are also unable to use knowledge
about a system’s component structure to pin-point the
source of failures because they treat them as
monolithic, black boxes. As a result, many of the
benefits of component-based development are defeated
by the costs involved in verifying the systems using
traditional techniques. This problem is not unique to
enterprise systems, but is much acuter at the enterprise
level because of the shear sizes and number of
components involved. Finding better verification
techniques is thus a central challenge in enterprise
computing.

For small systems under carefully controlled
conditions it is theoretically possible to prove or
calculate the correctness or reliability of a system
given the correctness or reliability of its components
[2]. However, such mathematically rigorous techniques
rarely if ever scale up to enterprise systems, and are
only applicable to relatively static architectures.
Systems which are continually changing their
configuration, such as those serving dynamically
changing sets of users or those composed of ad hoc
collections of components, cannot be analyzed using
these techniques

Until rigorous methods for analyzing enterprise
scale systems become available, dynamic testing
techniques will remain the only practical way of
gaining some confidence of their fitness for purpose.
The challenge is thus to enhance the traditional,

component-agnostic testing techniques available today
to make them more component-friendly. One of the
most promising ways of doing this is the notion of
built-in testing (BIT), first suggested by Wang [3] and
later refined in the Component+ project [4]. The basic
idea behind this approach is to build into components
the ability to test their environments at run-time so that
they can perform much of the required system
validation work “themselves”. Although the
Component+ project defined many of the basic ideas
behind the approach, however, it did not take the issue
of resource-awareness into consideration or fully
elaborate how traditional development practices need
to be enhanced.

Because testing is a resource intensive activity
which by definition involves the execution of a
component’s normal functional code, it is only
practicable if the tests are executed when the load on
the system is sufficiently low. In other words, built-in
tests should only be executed when they will have a
minimal, or at least an acceptable, impact on the
performance of the component. This implies the need
for an intelligent run-time infrastructure (or component
container) which is able to coordinate the built-in
testing process and orchestrate the testing of the
various components.

To further investigate the feasibility of built-in, run-
time testing, particularly in the domain of mobile-
accessible enterprise systems where its potential
benefits are at their highest, we have built a prototype
version of the required run-time testing infrastructure
as part of the MORABIT project [5]. In the paper we
explain how this infrastructure can be used to partially
automate the verification of a component that is a core
part of a mobile business system. This approach
promises to significantly reduce the effort involved in
verifying enterprise system components and thus to
lower the overall costs and time associated with
enterprise systems engineering.

The remainder of the paper is structured as follows.
In section 2 we present the case study which we use to
illustrate the approach. In section 3 we discuss the
main issues involved in developing a component-
oriented approach to system verification and introduce
some of our new terminology. Then in section 4 we
present a high level overview of the MORABIT
approach. Section 5 follows with detailed examples of
how this approach might be used in the context of the
case study. Section 6 discusses related work and
Section 7 concludes.

2. The Auction House Example

The case study we use to illustrate the approach is
an Auction House System whose job is to enable
auction participants to interact electronically using
mobile devices. Unlike fully electronic auction
applications like e-bay, the users of this system need to
be actually present at a physical auction. The system
supports the auctioneer by allowing users to offer and
bid for items, use infrastructure facilities such as e-mail
and conduct payment transactions electronically.

The overall architecture of the Auction House
System is illustrated schematically in Figure 1. Each of
the nodes in this figure is a distributed component
executing on an independent device. Each of the edges
represents a remote interaction. The central component
in the system is the Auction House. This is the central
server which mediates requests from auction
participants - the clients - usually hosted on mobile
devices such as PDAs. The other components in the
system assist the Auction House in delivering its
service. The Activity Logger is responsible for storing
a log of all the main activities in an auction, such as
auction initiation, the offering of items, the placing of
bids, the completion of auctions etc. The Auction and
Participant Managers are responsible for storing the
important data involved in an auction. The Mail Server
is responsible for dispatching mails and the Bank takes
care of handling payments.

Auction House

Activity
Logger

Bank Mail
Server

Participant
Manager

Auction
Manager

Auction
Participant

Auction
Participant

Auction
Participant

…

Auction
Participant

Figure 1. Auction House System architecture

Figure 1 depicts a sketch of a typical configuration
of the system. The actual configuration of the system at
any given point in time is highly dynamic and changes
as new participants join and leave an auction. The Mail
Server and Bank component may also change if
compatibility or reliability problems are detected. This
architecture is suitable for implementation in a variety
of component technologies such as .NET, CORBA,
EJBs, and Web Services.

Since it plays the central coordinating role in the
architecture, the Auction House also plays the main
role in determining the dependability of the system. In
fact, from the point of view of auction participants the
Auction House (AH) is the system. Determining the
reliability of the AH is a non-trivial tasks because it is
itself also uses components whose identity is
determined at run-time. Establishing whether the AH is
capable of fulfilling its contract is therefore a
challenging task which would take a great deal of time
and effort if performed in the traditional way. To
understand how MORABIT built-in test technology
addresses this problem we need to clarify the provided
and required interfaces of the component, and the
methods which each of these provides.

AL

AM

AuctionManager
PMB

MailServer

MS

ParticipantManagerBank

ActivityLogger

AuctionHouse
AuctionHouse

Figure 2. AH Interfaces –Plugs/Sockets Notation

Figure 2 illustrates the different interfaces of the
Auction House component (provided and required)
using the plugs and sockets notation of the UML, while
Figure 3 shows them in a more complete form using
the class notation.

register()
login()
logout()
joinAuction()
leaveAuction()
bid()
offerItem()
authorizePayment()

<<interface>>
AuctionHouse
LogicController

register()
login()
logout()
joinAuction()
leaveAuction()
bid()
offerItem()
authorizePayment()

<<interface>>
AuctionHouse
LogicController

joinAuction()
leaveAuction()
bid()

<<interface>>
AuctionManager

joinAuction()
leaveAuction()
bid()

<<interface>>
AuctionManager

addParticipant()
getParticipant()

<<interface>>
ParticipantManager

addParticipant()
getParticipant()

<<interface>>
ParticipantManager

addAccount()
getBalance()
transferMoney()
convertCurrency()

<<interface>>
Bank

addAccount()
getBalance()
transferMoney()
convertCurrency()

<<interface>>
Bank

logBid()
logLogin()
logRegister()

<<interface>>
ActivityLogger

logBid()
logLogin()
logRegister()

<<interface>>
ActivityLogger

send()
receive()

<<interface>>
MailServer

send()
receive()

<<interface>>
MailServer

Figure 3. AH Interfaces – Class Notation

The services offered by the AH system as a whole
are realized by algorithms (i.e. code) within the AH
component together with the services of the other
components that it uses through its required interfaces.
This, in turn, means that the “correctness” of the
service offered by the AH component depends on two

things – the “correctness” of the functionality (i.e.
code) within the component itself and the “correctness”
of the component’s servers (i.e. the components
delivering the services that it uses through its required
interface. Verifying the correctness therefore involves
checking of both of these elements. To check the first,
it is necessary to know the algorithms used to realize
the functionality of the AH component’s methods,
either in the form of code or in the form of design
models. An example is shown in Figure 4 in the form
of a collaboration diagram. This collaboration diagram
shows how the Auction House components invokes
operations of the Participant Manager, Mail Server,
and Activity Logger component to implement the
Auction House’s register() operation.

AuctionHouseLogicController

ActivityLogger

ParticipantManager

MailServer

2: [success == false] send()

1: success = getParticipant()
3: [success == false] addParticipant()

4: logRegister()

Figure 4. Algorithm for the register operation

Each operations is realized in a similar fashion.

3. Testing Component-Based Systems

In traditional development approaches two basic
testing notions are used to check the quality of systems
assembled from separate modules - the notions of
“integration testing” and “acceptance testing”.
“Integration testing” is a technique for verification that
focuses on the testing of successively larger groupings
of modules, leading up to the system as a whole, in the
context of the development environment1. According
to the terminology of Boehm [6], integration testing
aims to verify that “we are building the system right”
according to some well defined description of what the
system should do. “Acceptance testing”, in contrast,
focuses on validation and essentially involves the
testing of a deployed instance of the system in the
target execution environment before it is put into
service. In Boehm’s terminology [6] acceptance testing
aims to validate that “we are building the right system”
based on the expectations of the customer or users.

When systems are assembled from components at
deployment-time and may have their configurations

1 For the purposes of this paper we regard “system” testing as

special case of integration testing. It is the concluding case where the
integrated unit under test happens to be the complete system.

changed dynamically, these notions of testing are no
longer adequate. In particular, integration testing no
longer makes sense in its traditional form because the
precise composition of a system is not known at
development-time when integration testing is
traditionally performed. In the case of the Auction
House system the specific set of components making
up an instance of the system is chosen when instances
of its components are deployed, and these can originate
from numerous vendors.

The notion of testing “the system” as an integrated
whole at development-time no longer applies in the
traditional sense therefore. Testing at development-
time is still important, but its role is to test the code
that implements a component’s provided interface in
terms of representative implementations of its required
services. In terms of the auction house example, this
corresponds to the testing of the AH component (which
contains the algorithms implementing the AH’s
provided interface) using representative
implementations of the other components (e.g. Mail
Server etc.) which realize the AH’s required interfaces.
A “representative implementation” of a required
component can either be a full working version of the
component or a stub which mimics the component for
a few chosen test cases. Since these tests are performed
at development-time and are exclusively focused on
verification against a specification, we simply use the
term development-time testing for this activity.

In the context of component-based development
neither the notion of integration testing nor the notion
of acceptance testing is fully appropriate in its
traditional form. The former is not appropriate because
integration can and should no longer be fully
performed at development-time as has hitherto been
the case. The latter is not appropriate because the
testing that is performed at deployment-time should no
longer focus just on validation as has traditionally been
the case. Instead, the testing activities that are
performed at deployment-time also need to include
tests to verify the assembly of components against the
system’s specification. It therefore makes sense to
combine the notions of integration and acceptance
testing into a single activity known as deployment-time
testing (where, as in our example, a component can be
the system in the traditional sense). Such a
deployment-time, component testing activity serves the
dual roles of validation and verification of the
assembled system in its run-time environment.

For systems whose structure remains constant after
initial deployment there is clearly no need to revalidate
the system once it has been placed in service because
any tests that have been performed will not be able to
uncover new problems. However, many component-
based systems do not have a constant structure. On the

contrary, an important benefit of component-based
development is that it allows the structure of a system
to be changed while it is in service. In our auction
house case study, for example, the external
components that are used to realize the AH’s required
interfaces, such as the Mail Server or the Activity
Logger etc., may be changed dynamically at any time.
If a change is made, then clearly any results of tests
performed at deployment-time may no longer be valid.

The notions of development-time and deployment-
time testing are therefore not sufficient to cover the full
spectrum of testing scenarios in dynamically
reconfigurable component-based systems. We need to
add the notion of service-time testing as well. Service-
time tests are carried out once a system has entered
service and is delivering value to users (i.e. is being
used to fulfill its purpose). Deployment-time and
service-time testing both take place at “run-time” in the
sense that they are applied to a “running” system in its
final execution environment.

development-time run-time

deployment-time service-time

Figure 5. Life-cycle phases

The relationship and role of these different phases
in the life-cycle of a component-based system are
summarized in Figure 5. At the highest level of
abstraction, two different phases exist, the
development phase, in which the system is developed
and tested using representative service providers in the
development environment, and the run-time phase in
which an instance of the system is connected to actual
service providers and is running in its final execution
environment. The run-time phase is divided into two
subphases – the deployment phase and the service
phase. In the deployment phase, the system is set up in
its initial configuration and starts to run in its execution
environment, but it is not yet delivering service to
users. This is important because it allows testing
activities to be performed under controlled conditions
under certain specific sets of assumptions. In the
service phase the system has been put into service and
is delivering value to users. During service-time the
assumptions that held during deployment-time may no
longer be valid.

3.1. Built-in Tests

Having established the basic notions of when
testing makes sense in component-based development

and reinterpreted the goal of testing at different stages
in a component-based system’s life-cycle, we now turn
to the question of how the tests are performed. Since
they essentially replace the integration and acceptance
testing activities of traditional development approaches
(albeit with difference emphases) development- and
deployment-time testing can be performed using some
suitable mix of traditional integration and acceptance
testing techniques. The difference between whether
tests focus on validation or verification is manifested in
the nature of the test cases rather than in the actual
activities or technologies used.

Traditional testing technologies (whether for
validation or verification) are primarily manual
activities. Although certain aspects can be automated
under certain circumstances, the main steps in the
testing process are driven by humans. In particular,
human engineers are responsible for putting the system
into an appropriate state, judging when tests can and
should be executed, analyzing the results to identify
unexpected behavior and working out how to respond.
It is precisely because these activities require such a
large amount of human involvement that verification is
such an expensive part of traditional development
processes. Moreover, the problem is exacerbated when
traditional techniques are used to test dynamically
assembled component-based systems at deployment-
time because, as explained above, much of the
verification work that was done as part of integration
testing has to be postponed to deployment-time. As a
result, the amount of testing that has to be done at
deployment-time to reach a given quality confidence
level in component-based systems is higher than for
traditionally developed systems. This, in turn,
significantly reduces the plug and play benefits of
component-based development because the cost and
time benefits gained though rapid application assembly
are largely lost due to the extended validation effort.

The MORABIT built-in testing technology was
developed to address this problem and significantly
reduce the amount of manual effort needed to attain a
given level of confidence in a system’s quality. It can
be viewed as an enhancement of the “built-in testing”
approach developed in the Component+ project [4].
The basic idea behind built-in testing is to equip
prefabricated components with the ability to perform
their own automated tests of their environments
whenever necessary to determine whether they are able
to fulfill their own responsibilities. They can also be
equipped with the ability to perform an appropriate
reaction to any detected problems and/or to report
perceived problems to human operators. The term
“built-in” does not mean that code for executing and
reacting to test is necessarily bound into the normal
application code of a component. Rather, it indicates

that components purchased from third party vendors
are packaged with the necessary run-time test and
reaction definitions.

As well as reducing the human effort required to
reach a given level of confidence in a component’s
quality at deployment-time, built-in testing has another
significant benefit. It also enables the dependability of
component-based systems to be tested at service-time
whenever changes may affect the validity of results
derived from previously executed tests. For example,
whenever an external server of the Auction House
component is changed the validity of results derived
from hitherto executed tests is no longer guaranteed. In
order to maintain the same level of confidence in the
Auction House system’s reliability it is necessary to
execute some, if not all, of the tests that were
performed at deployment-time. However, this is easier
said than done for two reasons. Unless one takes the
component out of service temporarily (which
effectively represents a temporary return to the
deployment phase), the service-time tests have to be
performed and reacted to at a time which

- is meaningful with respect to the component’s
thread of execution. Test reactions, in
particular, need to be synchronized with the
component’s activities to ensure that any
changes are made consistently.

- does not unduly affect the component’s ability
to deliver its service. Tests are not only highly
resource intensive, they also require certain
conditions to exist such as private access to
server components to be available, or server
components to be in specific states etc.

Thus, in order to support service-time as well as
deployment-time testing, run-time time testing
technology needs to have two additional
characteristics: it needs to be context-sensitive and it
needs to be resource-aware. These are the novel
characteristics of the MORABIT run-time testing
technology which are presented in this paper.

3.2. Qualitative versus Quantitative Testing

We have so far discussed the different life-cycle
phases which determine when tests are performed and
the built-in test notion which determines how they are
performed, but we have not yet addressed what it is
that the tests are aimed at discovering. Generally
speaking tests can be performed with two goals in
mind. One goal is to establish in a “black and white”
manner whether a component or a system of
components satisfies a given set of test cases. The
other goal is to measure the reliability of a component

or system of components based on its satisfaction of a
set of test cases. We refer to the former as qualitative
testing since it yields a binary pass/fail result and the
latter as quantitative testing since it delivers numeric
measures of the reliability of a component.

Qualitative test suites usually have a much smaller
number of test cases than quantitative test suites. In
qualitative testing, the test cases are chosen according
to carefully developed criteria derived from classic
testing coverage principles. In contrast, with traditional
defect testing, however, test cases are not chosen solely
based on their likelihood of uncovering
implementation errors, since it is assumed that all
components have undergone extensive development-
time testing in which the normal coverage criteria were
used to define test cases. Rather, the test cases are
chosen with a view to uncovering the most likely
causes of “misunderstandings” in the nature of the
service to be delivered. Typical examples are the
orders of parameters or the sequencing of operations.
In essence, therefore, qualitative run-time tests are
driven more from the perspective of validation than of
verification, since the goal is to check whether one
component meets another’s expectations rather than its
specification. A reaction to qualitative tests is based
solely on whether the component fails or passes the
tests. If the component passes no action is usually
taken, but if it fails, a variety of actions can be taken.

Quantitative test cases are developed to provide a
statistically significant sampling of the usage pattern
that a component is likely to experience in a particular
run-time environment. There are therefore usually
many more test cases in quantitative tests than in
qualitative tests in order to attain statistical
significance. Instead of a binary pass/fail value, two
qualitative measures are returned – one the measured
reliability of the component derived from the ratio of
test case in which the component passed to those in
which it failed, the other the statistical level of
confidence which can be attached to the first value.
The precise way in which these values are calculated
depends on the assumptions and sampling model
which is used, of which there can be several [7]. All
approaches, however, rely on a model of the usage
profile of the component. Such profiles describe the
distributions of various invocation properties such as
relative method invocation frequency, parameter
values, and method invocation sequences [8]. The
basic goal of the test case selection process is to pick a
statistically significant set of test cases which most
closely resembles the usage profile of the component,
and thus give the best estimate of its reliability.

Both forms of testing rely on an ability to determine
whether a particular invocation of a component’s
service succeeds or fails from the perspective of the

invoker. There are three basic ways in which such an
invocation can be judged to have failed

- the operation completes, but returns a value
that was not the expected one,

- the operation does not complete and returns
some indications to the caller that it was
unable to do so (e.g. raised an exception),

- the operation does not complete within a
required period of time.

In principle, all three forms can be used in both
quantitative as well as qualitative testing. However,
since forms (2) and (3) do not require an expected
result to be determined, they lend themselves to
quantitative testing. The creation of expected results
for the first form of failure has traditionally been one
of the biggest stumbling blocks to quantitative testing
(also known as “statistical” or “random” testing)
because it is difficult to do automatically [9].

4. MORABIT Infrastructure

The main contribution of the MORABIT project are
to define the basic functionality and services that an
infrastructure needs to provide to support run-time
testing of the kind describe above and to define the
basic methodology that component developers and
deployers need to follow to use it. The former is briefly
summarized in the subsections below.

A prototype version of the MORABIT
infrastructure has been developed which demonstrates
the basic features of the approach in the context of a
system composed of a set of collocated components –
that is, within the confines of a single virtual machine.
The MORABIT infrastructure is able to influence and
monitor life-cycle events such as component creation
and migration etc., and is able to intercept inter-
component invocations. In the longer term, a
distributed version of the infrastructure needs to be
developed and integrated into an enterprise middleware
infrastructure supporting the distributed interaction of
components (e.g. J2EE or .NET).

The so-called MORABIT infrastructure provides
the basic run-time services needed to execute context-
sensitive, resource-aware tests of components. These
services are accessed via an API and an XML-based
language which allows various specifications to be
defined. This includes component configuration files
and test requests. The basic philosophy of the
infrastructure’s design is to minimize the impact of the
built-in testing feature on the normal application code.
Therefore, although there is a programmatic API which
allows programmers to explicitly control when tests are

executed and what reaction are performed, the goal is
to allow run-time testing concerns to be separated to
the greatest extent possible from normal application
concerns. Thus, the responsibility for executing and
reacting to tests is generally passed to the infrastructure
via so-called “test request” specifications.

A test request specifies all the important parameters
that the infrastructure needs to know in order to
effectively perform the tests at run-time. In addition to
the description of the test cases to be executed on a
component this includes specifications of when (i.e.
under what circumstances) a test should be executed.
The currently supported test timing options include:

- Lookup-time: when a component first acquires
a reference to another component,

- Call-time: when a client component calls a
method of a server component,

- Topology-change time: when a component
leaves or joins the network,

- Idle-time: when the load of the system drops
below some specified threshold,

- Periodic: at fixed time intervals,

It is not only the tests themselves which are
executed automatically, in many cases the system’s
reactions to the test results are enacted by the
infrastructure as well. Several infrastructure-level
reaction strategies are currently supported including:

- Shut down: in which the infrastructure shuts
down one or more components of the system,

- Try next: in which the infrastructure tests the
next available server component.

To enable users to best leverage the infrastructure,
MORABIT has defined an accompanying method
which explains how components should be developed
and deployed. Based on mainstream component-
development practices, the method covers all aspects
of the component life-cycle, from specification and
design through to implementation and deployment.

5. Run-Time Testing Examples

In this section we provide an example of the use of
MORABIT to support run-time testing and show how
it helps reduces the manual effort involved in
validating the AH component at deployment-time. The
example illustrates where quantitative testing might be
used. We will focus on the register() operation which is
implemented according to the collaboration diagram in
Figure 4. The components that take part in this

collaboration are Participant Manager, Mail Server,
and Activity Logger. The collaboration diagram
illustrates successful execution paths through the
operation, but does not indicate the likelihood of a
particular path being taken. To do this we used Markov
chains to show the path probabilities. Figure 6 shows a
Markov chain for the register() operation which
illustrates the relative probabilities of the method
invocations comprising the algorithm being executed at
each at branching point.

getParticipant() logRegister()

addParticipant()send()

1.00 0.20

0.80 1.00

1.00
Figure 6. Markov Chain for register() algorithm

Table 1 shows the relative execution frequencies
and the failure rates for each operation called from
register(). The former can be calculated from the
collection of Markov chains for all of Auction House’s
operations, while the latter are measured by performing
quantitative tests of the server components at run-time.

operation frequency failure

ParticipantManager.addParticipant() 0.80 0.002

ParticipantManager.getParticipant() 1.00 0.001

MailServer.send() 0.80 0.100

ActivityLogger.logRegister() 1.00 0.005

 Table 1. Invocation Frequencies and Failure Rates

The failure rate of 0.002 indicates that out of, say,
1000 calls the addParticipant() operation on averages is
likely to fail 2 times. This frequency is called the
probability of failure on demand (POFOD). It is
important because it represents the probability of a
failure being perceived by the user.

To calculate the POFOD of register() the execution
likelihoods derived from the Markov chain are
multiplied by the failure rates and the products are
summed together. Given the data in Table 1, therefore,
the probability of a given invocation of the register()
method failing is thus -

((1.00)*0.001) + ((1.00*0.80)*0.100) +
 ((1.00*0.80*1.00)*0.002) + ((1.00)*0.005)
= 0.001 + 0.08 + 0.0016 + 0.005
= 0.0876

Thus, if the POFOD of each operation of a
component can be determined by run-time testing the
reliability of the component as a whole can be
determined. The usage profile can be enhanced by

taking into account the distribution of actual parameter
values for the operation parameters and also the
probability of specific operation sequences (and thus
component states) arising. However, for the sake of
simplicity, these are not considered.

Without the MORABIT run-time testing
technology, the only way to determine the reliability of
the AH component is to measure it by running a
statistically significant number of test cases on it at
development-time, and measuring the distribution of
any observed failures. These test cases must be
distributed in accordance with the usage profile in
order to get an accurate measure of the probability of
the user perceiving an error.

5.1. Deployment-time Test on Lookup

As a first example we show how MORABIT can be
used to test a server of the Auction House component
when its reference is first acquired. If usage
information is available for every operation of the AH
component then, assuming the operation invocation
distribution defined in the usage profile, it is possible
to calculate invocation frequencies for each of the
servers of the component. It is then, in turn, possible to
use this information to calculate the acceptable
POFOD levels for the individual operations of the
individual server. For a given POFOD of the AH as a
whole, this can be broken down to determine
acceptability thresholds for each operation.

Having determined what reliability is required for
the server components the next step is to define an
appropriate set of test cases to test each server
component. The test cases must be distributed
according to the usage profile and their number must
be high enough to get a statistically significant result.
The final thing to do is to decide what reaction to take
if the desired reliability cannot be delivered. One
option, for example, is to shut down the component

The examples below are shown in the XML syntax
used in a MORABIT test request which is passed to the
MORABIT infrastructure.

<testRequest
 name=”Auction House’s TR for the MailServer”
 reliability=”0.85”
 confidence=”0.80”
 testTime=”lookupTime”
 testReaction=”shutdown”>
 <testSuite
 name=”for testing compliance”
 typeUnderTest=”MailServer”>
 <testCase>
 ...
 </testCase>

 </testSuite>
</testRequest>

Each component has such a test request which
contains all information about the tests to be
performed. Here, this test request belongs to the
Auction House. Below the name of the test request the
required reliability and confidence are listed. These are
the values the testing component expects from its used
services. The values are followed by an indication of
when the test should be executed. “lookupTime”
means that the potential new server is tested before the
reference to a Mail Server is acquired.

From the result of the test runs, reliability and
confidence are calculated. If the specified required
values are not met, the specified test reaction will be
performed. Here the component will be shutdown,
meaning that it will not serve any further service
requests. Less drastic action can also be chosen. Since
the reason for the failure of the tests cannot be
determined it might be possible that the tested service
failed because of its required services.The final part in
the test request contains the test cases. In our current
implementation, the test cases are implemented as
JUnit-like Java classes. Tests requests therefore contain
the fully-qualified Java class name of each test.

5.2. Service-time Test on Replacement

When all components are deployed and all tests
passed, the system starts delivering its service. From
then on only service-time testing can be done. As an
example of such service-time tests, here we show a test
request that defines that the mail server is to be tested
whenever the external server is swapped. Everything is
basically the same except the test time when the testing
should be executed

testTime=”topologyChangeTime”

This indicates that the tests are performed whenever
the environment changes, meaning whenever the mail
server is replaced.

5.3. Service-time Self-test on Idle

In the final example we address the issues of
resource-awareness. The MORABIT infrastructure
constantly measures the resources of a device, in order
to detect whenever “enough” resources are available to
run tests in the background. As well as running tests
for its required services, a component can also perform
self-tests. A good time to do so this is when the device
the component is running on is idle.

testTime=”idleTime”

For self-testing the “type under test” needs to be set
to the AH component as a whole rather than one of its
servers. The test request thus has to be changed to

typeUnderTest=”AuctionHouse”

Idle is defined relative to the device’s resources.
Therefore, the test request must also define what is
considered to be “idle” for the resource in question:

<resource type=”CPU”
 load=”below 10 out of 100” />

This indicates that if the resource “CPU usage” of
the device drops below 10% the device is considered to
be idle. When the test time is defined to be “idle” the
infrastructure thus has a concrete threshold defining
when to perform the tests. Besides CPU usage the
MORABIT infrastructure is also capable of measuring
memory consumption and bandwidth. All three can be
combined to better adjust to the changing environment.

This approach has the advantage that unused
resources are put to good use when they would
otherwise be “wasted”. Regular business functionality
is not affected because tests are only performed when
sufficient resources are available.

6. Related Work

Supporting the run-time verification of component-
based systems though built-in testing is still a very
specialized topic. While there have been several
published approaches to “self” testing via built-in tests
[10], [11], [12] these have all focused on enhancing
development-time testing activities. To our knowledge
the only previous project to have explicitly focused on
run-time verification using BIT is the Component+
project [13], [14], on which the MORABIT project
builds. The Component+ approach was in turn
influenced by the original work of Wang et al [3].

MORABIT enhances Component+ in three
important ways. First, it covers the full spectrum of
run-time testing possibilities, including the contract
testing and QoS testing approaches elaborated in
Component+. For example, MORABIT allows
components to define self-tests as well as server tests,
and allows a larger range of test timing policies such as
idle-time and random testing. Second, it allows built-in
testing concerns to be separated, to the greatest extent
possible, from the normal component development and
deployment concerns. Based on the XML test request,
the infrastructure can take over all responsible
information for executing, evaluating, and reacting to
tests. Last but not least, MORABIT takes into account
the resources of the computer or the computers on
which the tests are to be executed and evaluated. Since

service-time tests are executed when applications are
servicing requests, built-in tests must be executed
under carefully controlled conditions, otherwise they
run the risk of undermining the very thing they are
intended to improve – the reliability of the system.

The built-in tests themselves draw heavily on
accepted practices and theories in software testing [15].
The definition and execution of qualitative built-in test
cases is based on the standard theories for defining
defect-testing test cases such as equivalence class and
boundary value analysis as well as algorithm-based
coverage criteria such as path coverage. Similarly, the
definition of quantitative test cases is based on widely
known statistical testing techniques such as explained
in [16] or those developed in the Cleanroom approach
[17]. However, in both case subtle but important
adaptations were necessary to tailor the approaches to
the needs of run-time testing.

Applying these testing capabilities in a meaningful
way in the context of components requires appropriate
theories for the composition of properties and features.
In particular, to reduce the level of traditional testing
needed to verify component-based systems it is
necessary to be able to derive some conclusions about
correctness and/or reliability of systems based on the
correctness and/or reliability of its components. This
aspect of the MORABIT approach has been influenced
by other component reliability work such as that of [2].

Built-in testing approaches of this kind overlap to a
certain extent with service-level management and
monitoring technologies such as that of Wang et al
[18]. However, the overlap is small because built-in
testing is focused on checking the conformance of
components to their published interface, either in terms
of correctness or reliability, and does not place a
significant emphasis on fault tolerance. In contrast, the
approach of Wang et al is focused on monitoring QoS
characteristics of systems and emphasizes the explicit
provision of counter measures. The two approaches are
essentially complementary therefore.

7. Conclusion

In this paper we have presented the MORABIT
approach for run-time testing which can help automate
much of the traditional verification effort involved in
building software systems from components. We have
explained the basic rationale and philosophy behind the
approach and demonstrated in terms of a case study
how it helps verify the correctness and/or reliability of
component-based systems at both deployment- and
service-time. Performing automated tests at the
component level not only reduces the amount of
traditional system testing needed to attain a given level

of confidence in a system’s reliability, it also helps to
pin-point the location of faults, and thus reduces the
effort involved in finding and removing them.

Although this technology is not tied to enterprise
systems per se, the problems which it addresses
become much acuter the larger and more complex a
system becomes. The built-in testing technology
developed in MORABIT therefore promises to be of
particular benefit in the creation and integration of
enterprise computing systems. As mentioned above,
the approach essentially plugs a hitherto neglected gap
in the spectrum of dependability techniques between
classic development-time verification techniques on
the one hand and enterprise service-level management
and fault tolerance techniques on the other hand.

The traditional notions of verification and validation
and their shoe-boxing into development- and run-time
activities is no longer appropriate with modern
component- and service-based development methods.
Instead a more component-oriented notion of
verification is needed in which the components of a
system are checked according to their ability to fulfill
their provided contract in terms of their required
contracts. Thus, the verification of a system is
essentially performed by validating the pairwise
relationships between its components. In the spirit of
Boehm we can characterize this new approach as
answering the question, for each component – “do I
have a connection to the right component” as opposed
to “do I have the right connection to a component”.

The development of our infrastructure is still at an
early stage, but the initial prototype has enabled us to
validate the core tenets of the approach. The next step
is to enhance the system to work with distributed
middlewares and apply it to more case studies.

8. Acknowledgements

We are grateful to the Landesstiftung of the state of
Baden-Württemberg for the funding of this work.
Rainer Malaka and Matthias Merdes thank the Klaus
Tschira Stiftung for its support.

References

[1] C. Szyperski, Component Software – Beyond Object-

Oriented Programming, Addison-Wesley, London,
1998.

[2] R. H. Reussner, I. H. Poernomo, and H. W. Schmidt,
“Contracts and Quality Attributes for Software
Components”, Proc. 8th Int'l Workshop on Component-
Oriented Programming (WCOP'03), Darmstadt,
Germany, June 2003.

[3] Y. Wang, G. King, and H. Wickburg, “A method for
built-in tests in component-based software

maintenance”, IEEE International Conference on
Software Maintenance and Reengineering (CSMR'99),
IEEE Computer Science Press, 1999, pp. 186-189.

[4] Component + project, http://www.component-plus.org/
[5] MORABIT project, http://www.morabit.org/
[6] B. Boehm, “Verifying and validating software

requirements and design specifications”, IEEE Software,
1984, Vol 1.

[7] A. A. Abdel-Ghaly, P. Y. Chan, and B. Littlewood,
"Evaluation of Competing Software Reliability
Predictions", IEEE Trans. Software Eng, 1986, 12(9).

[8] J. Musa, "Operational profiles in software-reliability
engineering", IEEE Software, 1993, 10(2), pp. 14–32.

[9] R. Hamlet, "Random Testing", Encyclopedia of
Software Engineering, Wiley, Second Edition, 2002.

[10] Y. L. Traon, D. Deveaux, and J.-M. Jezequel, "Self-
testable components: from pragmatic tests to design-to-
testability methodology", Technology of Object-
Oriented Languages and Systems (TOOLS), IEEE
Computer Society Press, 1999, pp. 96-107.

[11] S. Beydeda, V. Gruhn, "Black- and White-Box Self-
testing COTS Components", Software Engineering and
Knowledge Engineering (SEKE), Banff, 2004.

[12] L. Mariani, M. Pezze, and D. Willmor, “Generation of
Integration Tests for Self-Testing Components”,
FORTE Workshop, 2004, pp. 337 - 350

[13] C. Atkinson, H.-G. Groß, F. Barbier, Chapter 8,
"Component Integration through Built-in Contract
Testing in Component-Based Software Quality:
Methods and Techniques", Lecture Notes in Computer
Science #2693, Springer, 2003, pp. 159-183.

[14] H.-G. Gross, Component-Based Software Testing with
UML, Springer, 2004.

[15] B. Beizer, Software Testing Techniques, Van Nostrand
Rheinold, New York, 1990.

[16] J. D. Musa, Software Reliability Engineering: More
Reliable Software Faster and Cheaper,
Osborne/McGraw-Hill, 1998.

[17] Deck, M., "Cleanroom and object-oriented software
engineering: A unique synergy". Proceedings of the
Eighth Annual Software Technology Conference, Salt
Lake City, USA, April 1996.

[18] G. Wang, A. Chen, C. Wang, C. Fung, and S. A.
Uczekaj, "Integrated Quality of Service (QoS)
Management in Service-Oriented Enterprise
Architectures", Enterprise Distributed Object
Computing (EDOC), Monterey, USA, 2004, pp. 21-32

