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Abstract 

 
Today component- and service-based technologies 

play a central role in many aspects of enterprise 
computing. However, although the technologies used 
to define, implement, and assemble components have 
improved significantly over recent years, techniques 
for verifying systems created from them have changed 
very little. The correctness and reliability of 
component-based systems are still usually checked 
using the traditional testing techniques that were in use 
before components and services became widespread, 
and the associated costs and overheads still remain 
high. This paper presents an approach which 
addresses this problem by making the system 
verification process more component-oriented. Based 
on the notion of built-in tests – tests that are packaged 
and distributed with prefabricated, off-the-shelf 
components – the approach and supporting 
infrastructure help to automate some of the testing 
process, thereby significantly reduces system testing 
effort. After providing an introduction to the principles 
behind component-based verification, and explaining 
the main features of the approach, we show by means 
of a small example how it can reduce system 
verification effort.  
 
1. Introduction 
 

Because they can significantly reduce the levels of 
effort involved in building and developing systems [1], 
components and services today play a central role in 
most software engineering projects, particularly 
enterprise computing projects. However, in their 
currently most widely used form, component and 

service technologies have little or no impact on the 
level of effort needed to verify such systems once 
created. Component-based systems are still typically 
verified using the same system testing techniques that 
were used before the notions of components or services 
became widespread. These techniques are not only 
very expensive, they are also unable to use knowledge 
about a system’s component structure to pin-point the 
source of failures because they treat them as 
monolithic, black boxes. As a result, many of the 
benefits of component-based development are defeated 
by the costs involved in verifying the systems using 
traditional techniques. This problem is not unique to 
enterprise systems, but is much acuter at the enterprise 
level because of the shear sizes and number of 
components involved. Finding better verification 
techniques is thus a central challenge in enterprise 
computing. 

For small systems under carefully controlled 
conditions it is theoretically possible to prove or 
calculate the correctness or reliability of a system 
given the correctness or reliability of its components 
[2]. However, such mathematically rigorous techniques 
rarely if ever scale up to enterprise systems, and are 
only applicable to relatively static architectures. 
Systems which are continually changing their 
configuration, such as those serving dynamically 
changing sets of users or those composed of ad hoc 
collections of components, cannot be analyzed using 
these techniques 

Until rigorous methods for analyzing enterprise 
scale systems become available, dynamic testing 
techniques will remain the only practical way of 
gaining some confidence of their fitness for purpose. 
The challenge is thus to enhance the traditional, 



component-agnostic testing techniques available today 
to make them more component-friendly. One of the 
most promising ways of doing this is the notion of 
built-in testing (BIT), first suggested by Wang [3] and 
later refined in the Component+ project [4]. The basic 
idea behind this approach is to build into components 
the ability to test their environments at run-time so that 
they can perform much of the required system 
validation work “themselves”. Although the 
Component+ project defined many of the basic ideas 
behind the approach, however, it did not take the issue 
of resource-awareness into consideration or fully 
elaborate how traditional development practices need 
to be enhanced. 

Because testing is a resource intensive activity 
which by definition involves the execution of a 
component’s normal functional code, it is only 
practicable if the tests are executed when the load on 
the system is sufficiently low. In other words, built-in 
tests should only be executed when they will have a 
minimal, or at least an acceptable, impact on the 
performance of the component. This implies the need 
for an intelligent run-time infrastructure (or component 
container) which is able to coordinate the built-in 
testing process and orchestrate the testing of the 
various components. 

To further investigate the feasibility of built-in, run-
time testing, particularly in the domain of mobile-
accessible enterprise systems where its potential 
benefits are at their highest, we have built a prototype 
version of the required run-time testing infrastructure 
as part of the MORABIT project [5]. In the paper we 
explain how this infrastructure can be used to partially 
automate the verification of a component that is a core 
part of a mobile business system. This approach 
promises to significantly reduce the effort involved in 
verifying enterprise system components and thus to 
lower the overall costs and time associated with 
enterprise systems engineering. 

The remainder of the paper is structured as follows. 
In section 2 we present the case study which we use to 
illustrate the approach. In section 3 we discuss the 
main issues involved in developing a component-
oriented approach to system verification and introduce 
some of our new terminology. Then in section 4 we 
present a high level overview of the MORABIT 
approach. Section 5 follows with detailed examples of 
how this approach might be used in the context of the 
case study. Section 6 discusses related work and 
Section 7 concludes. 
 
 
 
 

2. The Auction House Example 
 

The case study we use to illustrate the approach is 
an Auction House System whose job is to enable 
auction participants to interact electronically using 
mobile devices. Unlike fully electronic auction 
applications like e-bay, the users of this system need to 
be actually present at a physical auction. The system 
supports the auctioneer by allowing users to offer and 
bid for items, use infrastructure facilities such as e-mail 
and conduct payment transactions electronically. 

The overall architecture of the Auction House 
System is illustrated schematically in Figure 1. Each of 
the nodes in this figure is a distributed component 
executing on an independent device. Each of the edges 
represents a remote interaction. The central component 
in the system is the Auction House. This is the central 
server which mediates requests from auction 
participants - the clients - usually hosted on mobile 
devices such as PDAs. The other components in the 
system assist the Auction House in delivering its 
service. The Activity Logger is responsible for storing 
a log of all the main activities in an auction, such as 
auction initiation, the offering of items, the placing of 
bids, the completion of auctions etc. The Auction and 
Participant Managers are responsible for storing the 
important data involved in an auction. The Mail Server 
is responsible for dispatching mails and the Bank takes 
care of handling payments. 
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Figure 1. Auction House System architecture 

Figure 1 depicts a sketch of a typical configuration 
of the system. The actual configuration of the system at 
any given point in time is highly dynamic and changes 
as new participants join and leave an auction. The Mail 
Server and Bank component may also change if 
compatibility or reliability problems are detected. This 
architecture is suitable for implementation in a variety 
of component technologies such as .NET, CORBA, 
EJBs, and Web Services.  



Since it plays the central coordinating role in the 
architecture, the Auction House also plays the main 
role in determining the dependability of the system. In 
fact, from the point of view of auction participants the 
Auction House (AH) is the system. Determining the 
reliability of the AH is a non-trivial tasks because it is 
itself also uses components whose identity is 
determined at run-time. Establishing whether the AH is 
capable of fulfilling its contract is therefore a 
challenging task which would take a great deal of time 
and effort if performed in the traditional way. To 
understand how MORABIT built-in test technology 
addresses this problem we need to clarify the provided 
and required interfaces of the component, and the 
methods which each of these provides. 
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Figure 2. AH Interfaces –Plugs/Sockets Notation 

Figure 2 illustrates the different interfaces of the 
Auction House component (provided and required) 
using the plugs and sockets notation of the UML, while 
Figure 3 shows them in a more complete form using 
the class notation. 
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Figure 3. AH  Interfaces – Class Notation  

The services offered by the AH system as a whole 
are realized by algorithms (i.e. code) within the AH 
component together with the services of the other 
components that it uses through its required interfaces. 
This, in turn, means that the “correctness” of the 
service offered by the AH component depends on two 

things – the “correctness” of the functionality (i.e. 
code) within the component itself and the “correctness” 
of the component’s servers (i.e. the components 
delivering the services that it uses through its required 
interface. Verifying the correctness therefore involves 
checking of both of these elements. To check the first, 
it is necessary to know the algorithms used to realize 
the functionality of the AH component’s methods, 
either in the form of code or in the form of design 
models. An example is shown in Figure 4 in the form 
of a collaboration diagram. This collaboration diagram 
shows how the Auction House components invokes 
operations of the Participant Manager, Mail Server, 
and Activity Logger component to implement the 
Auction House’s register() operation. 
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2: [success == false] send()

1: success = getParticipant()
3: [success == false] addParticipant()

4: logRegister()

 
Figure 4. Algorithm for the register operation 

Each operations is realized in a similar fashion. 
 
3. Testing Component-Based Systems 
 

In traditional development approaches two basic 
testing notions are used to check the quality of systems 
assembled from separate modules - the notions of 
“integration testing” and “acceptance testing”. 
“Integration testing” is a technique for verification that 
focuses on the testing of successively larger groupings 
of modules, leading up to the system as a whole, in the 
context of the development environment1. According 
to the terminology of Boehm [6], integration testing 
aims to verify that “we are building the system right” 
according to some well defined description of what the 
system should do. “Acceptance testing”, in contrast, 
focuses on validation and essentially involves the 
testing of a deployed instance of the system in the 
target execution environment before it is put into 
service. In Boehm’s terminology [6] acceptance testing 
aims to validate that “we are building the right system” 
based on the expectations of the customer or users. 

When systems are assembled from components at 
deployment-time and may have their configurations 

                                                        
1 For the purposes of this paper we regard “system” testing as 

special case of integration testing. It is the concluding case where the 
integrated unit under test happens to be the complete system. 



changed dynamically, these notions of testing are no 
longer adequate. In particular, integration testing no 
longer makes sense in its traditional form because the 
precise composition of a system is not known at 
development-time when integration testing is 
traditionally performed. In the case of the Auction 
House system the specific set of components making 
up an instance of the system is chosen when instances 
of its components are deployed, and these can originate 
from numerous vendors.  

The notion of testing “the system” as an integrated 
whole at development-time no longer applies in the 
traditional sense therefore. Testing at development-
time is still important, but its role is to test the code 
that implements a component’s provided interface in 
terms of representative implementations of its required 
services. In terms of the auction house example, this 
corresponds to the testing of the AH component (which 
contains the algorithms implementing the AH’s 
provided interface) using representative 
implementations of the other components (e.g. Mail 
Server etc.) which realize the AH’s required interfaces. 
A “representative implementation” of a required 
component can either be a full working version of the 
component or a stub which mimics the component for 
a few chosen test cases. Since these tests are performed 
at development-time and are exclusively focused on 
verification against a specification, we simply use the 
term development-time testing for this activity. 

In the context of component-based development 
neither the notion of integration testing nor the notion 
of acceptance testing is fully appropriate in its 
traditional form. The former is not appropriate because 
integration can and should no longer be fully 
performed at development-time as has hitherto been 
the case. The latter is not appropriate because the 
testing that is performed at deployment-time should no 
longer focus just on validation as has traditionally been 
the case. Instead, the testing activities that are 
performed at deployment-time also need to include 
tests to verify the assembly of components against the 
system’s specification. It therefore makes sense to 
combine the notions of integration and acceptance 
testing into a single activity known as deployment-time 
testing (where, as in our example, a component can be 
the system in the traditional sense). Such a 
deployment-time, component testing activity serves the 
dual roles of validation and verification of the 
assembled system in its run-time environment. 

For systems whose structure remains constant after 
initial deployment there is clearly no need to revalidate 
the system once it has been placed in service because 
any tests that have been performed will not be able to 
uncover new problems. However, many component-
based systems do not have a constant structure. On the 

contrary, an important benefit of component-based 
development is that it allows the structure of a system 
to be changed while it is in service. In our auction 
house case study, for example, the external 
components that are used to realize the AH’s required 
interfaces, such as the Mail Server or the Activity 
Logger etc., may be changed dynamically at any time. 
If a change is made, then clearly any results of tests 
performed at deployment-time may no longer be valid.  

The notions of development-time and deployment-
time testing are therefore not sufficient to cover the full 
spectrum of testing scenarios in dynamically 
reconfigurable component-based systems. We need to 
add the notion of service-time testing as well. Service-
time tests are carried out once a system has entered 
service and is delivering value to users (i.e. is being 
used to fulfill its purpose). Deployment-time and 
service-time testing both take place at “run-time” in the 
sense that they are applied to a “running” system in its 
final execution environment.  

development-time run-time

deployment-time service-time

 
Figure 5. Life-cycle phases 

The relationship and role of these different phases 
in the life-cycle of a component-based system are 
summarized in Figure 5. At the highest level of 
abstraction, two different phases exist, the 
development phase, in which the system is developed 
and tested using representative service providers in the 
development environment, and the run-time phase in 
which an instance of the system is connected to actual 
service providers and is running in its final execution 
environment. The run-time phase is divided into two 
subphases – the deployment phase and the service 
phase. In the deployment phase, the system is set up in 
its initial configuration and starts to run in its execution 
environment, but it is not yet delivering service to 
users. This is important because it allows testing 
activities to be performed under controlled conditions 
under certain specific sets of assumptions. In the 
service phase the system has been put into service and 
is delivering value to users. During service-time the 
assumptions that held during deployment-time may no 
longer be valid. 

 
3.1. Built-in Tests 
 

Having established the basic notions of when 
testing makes sense in component-based development 



and reinterpreted the goal of testing at different stages 
in a component-based system’s life-cycle, we now turn 
to the question of how the tests are performed. Since 
they essentially replace the integration and acceptance 
testing activities of traditional development approaches 
(albeit with difference emphases) development- and 
deployment-time testing can be performed using some 
suitable mix of traditional integration and acceptance 
testing techniques. The difference between whether 
tests focus on validation or verification is manifested in 
the nature of the test cases rather than in the actual 
activities or technologies used.  

Traditional testing technologies (whether for 
validation or verification) are primarily manual 
activities. Although certain aspects can be automated 
under certain circumstances, the main steps in the 
testing process are driven by humans. In particular, 
human engineers are responsible for putting the system 
into an appropriate state, judging when tests can and 
should be executed, analyzing the results to identify 
unexpected behavior and working out how to respond. 
It is precisely because these activities require such a 
large amount of human involvement that verification is 
such an expensive part of traditional development 
processes. Moreover, the problem is exacerbated when 
traditional techniques are used to test dynamically 
assembled component-based systems at deployment-
time because, as explained above, much of the 
verification work that was done as part of integration 
testing has to be postponed to deployment-time. As a 
result, the amount of testing that has to be done at 
deployment-time to reach a given quality confidence 
level in component-based systems is higher than for 
traditionally developed systems. This, in turn, 
significantly reduces the plug and play benefits of 
component-based development because the cost and 
time benefits gained though rapid application assembly 
are largely lost due to the extended validation effort. 

The MORABIT built-in testing technology was 
developed to address this problem and significantly 
reduce the amount of manual effort needed to attain a 
given level of confidence in a system’s quality. It can 
be viewed as an enhancement of the “built-in testing” 
approach developed in the Component+ project [4]. 
The basic idea behind built-in testing is to equip 
prefabricated components with the ability to perform 
their own automated tests of their environments 
whenever necessary to determine whether they are able 
to fulfill their own responsibilities. They can also be 
equipped with the ability to perform an appropriate 
reaction to any detected problems and/or to report 
perceived problems to human operators. The term 
“built-in” does not mean that code for executing and 
reacting to test is necessarily bound into the normal 
application code of a component. Rather, it indicates 

that components purchased from third party vendors 
are packaged with the necessary run-time test and 
reaction definitions.  

As well as reducing the human effort required to 
reach a given level of confidence in a component’s 
quality at deployment-time, built-in testing has another 
significant benefit. It also enables the dependability of 
component-based systems to be tested at service-time 
whenever changes may affect the validity of results 
derived from previously executed tests. For example, 
whenever an external server of the Auction House 
component is changed the validity of results derived 
from hitherto executed tests is no longer guaranteed. In 
order to maintain the same level of confidence in the 
Auction House system’s reliability it is necessary to 
execute some, if not all, of the tests that were 
performed at deployment-time. However, this is easier 
said than done for two reasons. Unless one takes the 
component out of service temporarily (which 
effectively represents a temporary return to the 
deployment phase), the service-time tests have to be 
performed and reacted to at a time which  

- is meaningful with respect to the component’s 
thread of execution. Test reactions, in 
particular, need to be synchronized with the 
component’s activities to ensure that any 
changes are made consistently. 

- does not unduly affect the component’s ability 
to deliver its service. Tests are not only highly 
resource intensive, they also require certain 
conditions to exist such as private access to 
server components to be available, or server 
components to be in specific states etc. 

Thus, in order to support service-time as well as 
deployment-time testing, run-time time testing 
technology needs to have two additional 
characteristics: it needs to be context-sensitive and it 
needs to be resource-aware. These are the novel 
characteristics of the MORABIT run-time testing 
technology which are presented in this paper. 
 
3.2. Qualitative versus Quantitative Testing 
 

We have so far discussed the different life-cycle 
phases which determine when tests are performed and 
the built-in test notion which determines how they are 
performed, but we have not yet addressed what it is 
that the tests are aimed at discovering. Generally 
speaking tests can be performed with two goals in 
mind. One goal is to establish in a “black and white” 
manner whether a component or a system of 
components satisfies a given set of test cases. The 
other goal is to measure the reliability of a component 



or system of components based on its satisfaction of a 
set of test cases. We refer to the former as qualitative 
testing since it yields a binary pass/fail result and the 
latter as quantitative testing since it delivers numeric 
measures of the reliability of a component. 

Qualitative test suites usually have a much smaller 
number of test cases than quantitative test suites. In 
qualitative testing, the test cases are chosen according 
to carefully developed criteria derived from classic 
testing coverage principles. In contrast, with traditional 
defect testing, however, test cases are not chosen solely 
based on their likelihood of uncovering 
implementation errors, since it is assumed that all 
components have undergone extensive development-
time testing in which the normal coverage criteria were 
used to define test cases. Rather, the test cases are 
chosen with a view to uncovering the most likely 
causes of “misunderstandings” in the nature of the 
service to be delivered. Typical examples are the 
orders of parameters or the sequencing of operations. 
In essence, therefore, qualitative run-time tests are 
driven more from the perspective of validation than of 
verification, since the goal is to check whether one 
component meets another’s expectations rather than its 
specification. A reaction to qualitative tests is based 
solely on whether the component fails or passes the 
tests. If the component passes no action is usually 
taken, but if it fails, a variety of actions can be taken. 

Quantitative test cases are developed to provide a 
statistically significant sampling of the usage pattern 
that a component is likely to experience in a particular 
run-time environment. There are therefore usually 
many more test cases in quantitative tests than in 
qualitative tests in order to attain statistical 
significance. Instead of a binary pass/fail value, two 
qualitative measures are returned – one the measured 
reliability of the component derived from the ratio of 
test case in which the component passed to those in 
which it failed, the other the statistical level of 
confidence which can be attached to the first value. 
The precise way in which these values are calculated 
depends on the assumptions and sampling model 
which is used, of which there can be several [7]. All 
approaches, however, rely on a model of the usage 
profile of the component. Such profiles describe the 
distributions of various invocation properties such as 
relative method invocation frequency, parameter 
values, and method invocation sequences [8]. The 
basic goal of the test case selection process is to pick a 
statistically significant set of test cases which most 
closely resembles the usage profile of the component, 
and thus give the best estimate of its reliability. 

Both forms of testing rely on an ability to determine 
whether a particular invocation of a component’s 
service succeeds or fails from the perspective of the 

invoker. There are three basic ways in which such an 
invocation can be judged to have failed 

- the operation completes, but returns a value 
that was not the expected one, 

- the operation does not complete and returns 
some indications to the caller that it was 
unable to do so (e.g. raised an exception), 

- the operation does not complete within a 
required period of time. 

In principle, all three forms can be used in both 
quantitative as well as qualitative testing. However, 
since forms (2) and (3) do not require an expected 
result to be determined, they lend themselves to 
quantitative testing. The creation of expected results 
for the first form of failure has traditionally been one 
of the biggest stumbling blocks to quantitative testing 
(also known as “statistical” or “random” testing) 
because it is difficult to do automatically [9].  
 
4. MORABIT Infrastructure 
 

The main contribution of the MORABIT project are 
to define the basic functionality and services that an 
infrastructure needs to provide to support run-time 
testing of the kind describe above and to define the 
basic methodology that component developers and 
deployers need to follow to use it. The former is briefly 
summarized in the subsections below. 

A prototype version of the MORABIT 
infrastructure has been developed which demonstrates 
the basic features of the approach in the context of a 
system composed of a set of collocated components – 
that is, within the confines of a single virtual machine. 
The MORABIT infrastructure is able to influence and 
monitor life-cycle events such as component creation 
and migration etc., and is able to intercept inter-
component invocations. In the longer term, a 
distributed version of the infrastructure needs to be 
developed and integrated into an enterprise middleware 
infrastructure supporting the distributed interaction of 
components (e.g. J2EE or .NET). 

The so-called MORABIT infrastructure provides 
the basic run-time services needed to execute context-
sensitive, resource-aware tests of components. These 
services are accessed via an API and an XML-based 
language which allows various specifications to be 
defined. This includes component configuration files 
and test requests. The basic philosophy of the 
infrastructure’s design is to minimize the impact of the 
built-in testing feature on the normal application code. 
Therefore, although there is a programmatic API which 
allows programmers to explicitly control when tests are 



executed and what reaction are performed, the goal is 
to allow run-time testing concerns to be separated to 
the greatest extent possible from normal application 
concerns. Thus, the responsibility for executing and 
reacting to tests is generally passed to the infrastructure 
via so-called “test request” specifications.  

A test request specifies all the important parameters 
that the infrastructure needs to know in order to 
effectively perform the tests at run-time. In addition to 
the description of the test cases to be executed on a 
component this includes specifications of when (i.e. 
under what circumstances) a test should be executed. 
The currently supported test timing options include: 

- Lookup-time: when a component first acquires 
a reference to another component, 

- Call-time: when a client component calls a 
method of a server component, 

- Topology-change time: when a component 
leaves or joins the network, 

- Idle-time: when the load of the system drops 
below some specified threshold, 

- Periodic: at fixed time intervals, 

It is not only the tests themselves which are 
executed automatically, in many cases the system’s 
reactions to the test results are enacted by the 
infrastructure as well. Several infrastructure-level 
reaction strategies are currently supported including: 

- Shut down: in which the infrastructure shuts 
down one or more components of the system, 

- Try next: in which the infrastructure tests the 
next available server component.  

To enable users to best leverage the infrastructure, 
MORABIT has defined an accompanying method 
which explains how components should be developed 
and deployed. Based on mainstream component-
development practices, the method covers all aspects 
of the component life-cycle, from specification and 
design through to implementation and deployment.  

 
5. Run-Time Testing Examples 
 

In this section we provide an example of the use of 
MORABIT to support run-time testing and show how 
it helps reduces the manual effort involved in 
validating the AH component at deployment-time. The 
example illustrates where quantitative testing might be 
used. We will focus on the register() operation which is 
implemented according to the collaboration diagram in 
Figure 4. The components that take part in this 

collaboration are Participant Manager, Mail Server, 
and Activity Logger. The collaboration diagram 
illustrates successful execution paths through the 
operation, but does not indicate the likelihood of a 
particular path being taken. To do this we used Markov 
chains to show the path probabilities. Figure 6 shows a 
Markov chain for the register() operation which 
illustrates the relative probabilities of the method 
invocations comprising the algorithm being executed at 
each at branching point. 

getParticipant() logRegister()

addParticipant()send()

1.00 0.20

0.80 1.00

1.00  
Figure 6. Markov Chain for register() algorithm 

Table 1 shows the relative execution frequencies 
and the failure rates for each operation called from 
register(). The former can be calculated from the 
collection of Markov chains for all of Auction House’s 
operations, while the latter are measured by performing 
quantitative tests of the server components at run-time. 

 
operation frequency failure 

ParticipantManager.addParticipant() 0.80 0.002 

ParticipantManager.getParticipant() 1.00 0.001 

MailServer.send() 0.80 0.100 

ActivityLogger.logRegister() 1.00 0.005 

 Table 1. Invocation Frequencies and Failure Rates 

The failure rate of 0.002 indicates that out of, say, 
1000 calls the addParticipant() operation on averages is 
likely to fail 2 times. This frequency is called the 
probability of failure on demand (POFOD). It is 
important because it represents the probability of a 
failure being perceived by the user. 

To calculate the POFOD of register() the execution 
likelihoods derived from the Markov chain are 
multiplied by the failure rates and the products are 
summed together. Given the data in Table 1, therefore, 
the probability of a given invocation of the register() 
method failing is thus - 

((1.00)*0.001) + ((1.00*0.80)*0.100) + 
                     ((1.00*0.80*1.00)*0.002)  + ((1.00)*0.005) 
= 0.001 + 0.08 + 0.0016 + 0.005 
= 0.0876 

Thus, if the POFOD of each operation of a 
component can be determined by run-time testing the 
reliability of the component as a whole can be 
determined. The usage profile can be enhanced by 



taking into account the distribution of actual parameter 
values for the operation parameters and also the 
probability of specific operation sequences (and thus 
component states) arising. However, for the sake of 
simplicity, these are not considered. 

Without the MORABIT run-time testing 
technology, the only way to determine the reliability of 
the AH component is to measure it by running a 
statistically significant number of test cases on it at 
development-time, and measuring the distribution of 
any observed failures. These test cases must be 
distributed in accordance with the usage profile in 
order to get an accurate measure of the probability of 
the user perceiving an error. 
 
5.1. Deployment-time Test on Lookup 
 

As a first example we show how MORABIT can be 
used to test a server of the Auction House component 
when its reference is first acquired. If usage 
information is available for every operation of the AH 
component then, assuming the operation invocation 
distribution defined in the usage profile, it is possible 
to calculate invocation frequencies for each of the 
servers of the component. It is then, in turn, possible to 
use this information to calculate the acceptable 
POFOD levels for the individual operations of the 
individual server. For a given POFOD of the AH as a 
whole, this can be broken down to determine 
acceptability thresholds for each operation. 

Having determined what reliability is required for 
the server components the next step is to define an 
appropriate set of test cases to test each server 
component. The test cases must be distributed 
according to the usage profile and their number must 
be high enough to get a statistically significant result. 
The final thing to do is to decide what reaction to take 
if the desired reliability cannot be delivered. One 
option, for example, is to shut down the component  

The examples below are shown in the XML syntax 
used in a MORABIT test request which is passed to the 
MORABIT infrastructure. 

<testRequest 
    name=”Auction House’s TR for the MailServer” 
    reliability=”0.85” 
    confidence=”0.80” 
    testTime=”lookupTime” 
    testReaction=”shutdown”> 
    <testSuite 
        name=”for testing compliance” 
        typeUnderTest=”MailServer”> 
        <testCase> 
            ... 
        </testCase> 

    </testSuite> 
</testRequest> 

Each component has such a test request which 
contains all information about the tests to be 
performed. Here, this test request belongs to the 
Auction House. Below the name of the test request the 
required reliability and confidence are listed. These are 
the values the testing component expects from its used 
services. The values are followed by an indication of 
when the test should be executed. “lookupTime” 
means that the potential new server is tested before the 
reference to a Mail Server is acquired. 

From the result of the test runs, reliability and 
confidence are calculated. If the specified required 
values are not met, the specified test reaction will be 
performed. Here the component will be shutdown, 
meaning that it will not serve any further service 
requests. Less drastic action can also be chosen. Since 
the reason for the failure of the tests cannot be 
determined it might be possible that the tested service 
failed because of its required services.The final part in 
the test request contains the test cases. In our current 
implementation, the test cases are implemented as 
JUnit-like Java classes. Tests requests therefore contain 
the fully-qualified Java class name of each test. 
 
5.2. Service-time Test on Replacement 
 

When all components are deployed and all tests 
passed, the system starts delivering its service. From 
then on only service-time testing can be done. As an 
example of such service-time tests, here we show a test 
request that defines that the mail server is to be tested 
whenever the external server is swapped. Everything is 
basically the same except the test time when the testing 
should be executed 

testTime=”topologyChangeTime” 

This indicates that the tests are performed whenever 
the environment changes, meaning whenever the mail 
server is replaced.  
 
5.3. Service-time Self-test on Idle 
 

In the final example we address the issues of  
resource-awareness. The MORABIT infrastructure 
constantly measures the resources of a device, in order 
to detect whenever “enough” resources are available to 
run tests in the background. As well as running tests 
for its required services, a component can also perform 
self-tests. A good time to do so this is when the device 
the component is running on is idle. 

testTime=”idleTime” 



For self-testing the “type under test” needs to be set 
to the AH component as a whole rather than one of its 
servers. The test request thus has to be changed to  

typeUnderTest=”AuctionHouse” 

Idle is defined relative to the device’s resources. 
Therefore, the test request must also define what is 
considered to be “idle” for the resource in question: 

<resource type=”CPU” 
    load=”below 10 out of 100” /> 

This indicates that if the resource “CPU usage” of 
the device drops below 10% the device is considered to 
be idle. When the test time is defined to be “idle” the 
infrastructure thus has a concrete threshold defining 
when to perform the tests. Besides CPU usage the 
MORABIT infrastructure is also capable of measuring 
memory consumption and bandwidth. All three can be 
combined to better adjust to the changing environment. 

This approach has the advantage that unused 
resources are put to good use when they would 
otherwise be “wasted”. Regular business functionality 
is not affected because tests are only performed when 
sufficient resources are available. 

 
6. Related Work 
 

Supporting the run-time verification of component-
based systems though built-in testing is still a very 
specialized topic. While there have been several 
published approaches to “self” testing via built-in tests 
[10], [11], [12] these have all focused on enhancing 
development-time testing activities. To our knowledge 
the only previous project to have explicitly focused on 
run-time verification using BIT is the Component+ 
project [13], [14], on which the MORABIT project 
builds. The Component+ approach was in turn 
influenced by the original work of Wang et al [3].  

MORABIT enhances Component+ in three 
important ways. First, it covers the full spectrum of 
run-time testing possibilities, including the contract 
testing and QoS testing approaches elaborated in 
Component+. For example, MORABIT allows 
components to define self-tests as well as server tests, 
and allows a larger range of test timing policies such as 
idle-time and random testing. Second, it allows built-in 
testing concerns to be separated, to the greatest extent 
possible, from the normal component development and 
deployment concerns. Based on the XML test request, 
the infrastructure can take over all responsible 
information for executing, evaluating, and reacting to 
tests. Last but not least, MORABIT takes into account 
the resources of the computer or the computers on 
which the tests are to be executed and evaluated. Since 

service-time tests are executed when applications are 
servicing requests, built-in tests must be executed 
under carefully controlled conditions, otherwise they 
run the risk of undermining the very thing they are 
intended to improve – the reliability of the system. 

The built-in tests themselves draw heavily on 
accepted practices and theories in software testing [15]. 
The definition and execution of qualitative built-in test 
cases is based on the standard theories for defining 
defect-testing test cases such as equivalence class and 
boundary value analysis as well as algorithm-based 
coverage criteria such as path coverage. Similarly, the 
definition of quantitative test cases is based on widely 
known statistical testing techniques such as explained 
in [16] or those developed in the Cleanroom approach 
[17]. However, in both case subtle but important 
adaptations were necessary to tailor the approaches to 
the needs of run-time testing. 

Applying these testing capabilities in a meaningful 
way in the context of components requires appropriate 
theories for the composition of properties and features. 
In particular, to reduce the level of traditional testing 
needed to verify component-based systems it is 
necessary to be able to derive some conclusions about 
correctness and/or reliability of systems based on the 
correctness and/or reliability of its components. This 
aspect of the MORABIT approach has been influenced 
by other component reliability work such as that of [2]. 

Built-in testing approaches of this kind overlap to a 
certain extent with service-level management and 
monitoring technologies such as that of Wang et al 
[18]. However, the overlap is small because built-in 
testing is focused on checking the conformance of 
components to their published interface, either in terms 
of correctness or reliability, and does not place a 
significant emphasis on fault tolerance. In contrast, the 
approach of Wang et al is focused on monitoring QoS 
characteristics of systems and emphasizes the explicit 
provision of counter measures. The two approaches are 
essentially complementary therefore. 

 
7. Conclusion 
 

In this paper we have presented the MORABIT 
approach for run-time testing which can help automate 
much of the traditional verification effort involved in 
building software systems from components. We have 
explained the basic rationale and philosophy behind the 
approach and demonstrated in terms of a case study 
how it helps verify the correctness and/or reliability of 
component-based systems at both deployment- and 
service-time. Performing automated tests at the 
component level not only reduces the amount of 
traditional system testing needed to attain a given level 



of confidence in a system’s reliability, it also helps to 
pin-point the location of faults, and thus reduces the 
effort involved in finding and removing them. 

Although this technology is not tied to enterprise 
systems per se, the problems which it addresses 
become much acuter the larger and more complex a 
system becomes. The built-in testing technology 
developed in MORABIT therefore promises to be of 
particular benefit in the creation and integration of 
enterprise computing systems. As mentioned above, 
the approach essentially plugs a hitherto neglected gap 
in the spectrum of dependability techniques between 
classic development-time verification techniques on 
the one hand and enterprise service-level management 
and fault tolerance techniques on the other hand.  

The traditional notions of verification and validation 
and their shoe-boxing into development- and run-time 
activities is no longer appropriate with modern 
component- and service-based development methods. 
Instead a more component-oriented notion of 
verification is needed in which the components of a 
system are checked according to their ability to fulfill 
their provided contract in terms of their required 
contracts. Thus, the verification of a system is 
essentially performed by validating the pairwise 
relationships between its components. In the spirit of 
Boehm we can characterize this new approach as 
answering the question, for each component – “do I 
have a connection to the right component” as opposed 
to “do I have the right connection to a component”. 

The development of our infrastructure is still at an 
early stage, but the initial prototype has enabled us to 
validate the core tenets of the approach. The next step 
is to enhance the system to work with distributed 
middlewares and apply it to more case studies. 
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