

Copyright © ACM [2008]

This is the author's version of the work. It is posted here by permission of ACM for your
personal use. Not for redistribution. The definitive version was published in Proceedings of
the 30th International Conference on Software Engineering, (ICSE 2008), 10.-18. Mai
2008 in Leipzig (Germany), pp. 633-638, ACM, New York 2008

http://doi.acm.org/10.1145/1368088.1368176

Rational Quality Requirements for Medical Software
Barbara Paech

Institute of Computer Science
University of Heidelberg

Im Neuenheimer Feld 326
D-69118 Heidelberg

Germany
paech@informatik.uni-heidelberg.de

Thomas Wetter
Institute of Medical Biometry and Medical Informatics

University of Heidelberg
Im Neuenheimer Feld 305

D-69120 Heidelberg
Germany

thomas.wetter@urz.uni-heidelberg.del

ABSTRACT
In this paper we discuss the challenges of software quality for
medical software and present some ideas for improving medical
software quality requirements through software engineering
methods. We apply the quality requirements engineering method
MOQARE to elicit specific quality requirements for an imaginary
drug advisory system and report our lessons learned.

Categories and Subject Descriptors
D2.1 Requirements / Specification

General Terms
Management, Documentation, Design, Economics, Human
Factors, Standardization, Languages

Keywords
Quality Requirements, medical software quality challenges,
medical business processes, risk analysis

1. INTRODUCTION
Software quality is a difficult issue in general. Very often quality
issues are not adequately dealt with during software development,
often due to cost and time restrictions but also because it is
difficult to derive a coherent view of quality between all
stakeholders[6]. The latter is particularly true for the development
of medical software, as the business processes involved
themselves are subject to strong quality constraints and as there
are typically many different stakeholders involved.

In this paper we want to explore the potential of software
engineering methods for medical software. We have not
researched in detail for other software engineering methods
applications to medical software such as e.g. [1], and our intent is
not to present a mature approach. Instead we want to explore with
an imaginary example the usefulness of one particular software
engineering approach which enables the rational treatment of
quality requirements for medical software.

In section 2 we describe typical quality challenges for
medical software. Then we sketch an application of the quality
requirements engineering method MOQARE for the design of an
antibiotic drug advisory system. In section 4 we discuss our
lessons learned. The paper closes with an outlook on future
research.

2. SOFTWARE QUALITY CHALLENGES
IN MEDICAL SOFTWARE
In the sequel we will use the term medical software for software
used in the variety of settings where health care professionals and
paramedics treat patients and as part of that administer and
document diagnostic and therapeutic procedures, take notes, seek
advice, communicate, and look up data from previous treatments.
Software for patients rather than for health care professionals
poses a whole new set of challenges that will not be included
here.

The purpose of this section is to capture typical challenges
for the quality of medical software. Medical care as an industry
and clinical users as stakeholders set up a peculiar workplace,
some of whose characteristics will subsequently be outlined, with
primary focus on physician users. Other user groups such as
nursing and hospital administration will be mentioned where
appropriate and add to the size of the problem.

Physicians’ work can be characterized through complexity,
autonomy, and innovation. Entailed from these primary
characteristics are secondary ones such as high variability and
high rate of change

Complexity relates to the complexity of the medical domain.
ICD – widely used in the 1997 version ICD-10 – is an
International Classification of Diseases and Related Health
Problems which lists appr. 12,000 different conditions. A patient
is typically characterized through a one or a small two digit
number of ICD-codes. Assuming that a patient has only three
conditions yields 12,0003 ~ 2*1012 combinations as a conservative
lower estimate.

Complexity of the domain is reflected through complexity of
education and care. Depending on the national designs of medical
education there may be more than hundred specialties and sub
specialties of medical physicians. A patient with a complex
condition is typically seen by several sub specialties which need
to share data and processes. Furthermore each sub specialty
contributes proprietary data and measuring modalities.

For a number of reasons physicians have high autonomy in
doing their work. The Declaration of Helsinki holds up the
basically unchallenged claim of Freedom of Treatment: as long as
they regard it appropriate in appreciation of special risks or
opportunities of a case physicians may proceed as they prefer and
may disregard any existing standard procedures or protocols. This
can be justified through both an outstanding level of education
and work ethos on the side of the physicians and the lasting
incompleteness of the knowledge: it is out of consideration to
have scientific evidence about the best approach for all >
2*1012combinations of conditions in any foreseeable future. As a

result, physicians can and do deviate from established procedures
in an unforeseeable way.

Many of the most renowned physician practitioners are also
outstanding innovators. In their role as researchers they push the
limits of the sub specialties and develop and test new procedures.
Their first of a kind approaches require and produce new types of
data and impose new kinds of constraints on others working in the
same hospital and on software used and data shared.

All arguments so far come down to well justified, high
variability of processes in medicine. While there may be
industries where IT is used as a means and software can be
designed to the end to reduce variability, medical software rather
has to be designed to comply with the variability.

While all factors above are inherent to the nature of the
problem – health and how to treat disease – the following is self
made organizational and yet unavoidable for the foreseeable
future: the diversity in organizing health care across countries
and states, sectors and professions. This diversity entails
differences concerning which data are required to claim
reimbursement for services offered, which resources can be
booked right away or have to be applied for etc. Assuming that a
valid software engineering approach has been found that masters
all other challenges in one organizational setting lots of new work
is likely to begin for any other organizational settings [5].

Diversity will not be pursued in depth, because it is worth an
article of its own. In the context of this paper it is relevant
because of its impact on change. The above mentioned inherent
challenges entail already a very high rate of change. This is
considerably increased through variability simply because the
more factors there are the higher is the rate of change coming
down on the software [7].
For the rest of the paper we concentrate on complexity, autonomy
and change.

3. QUALITY REQUIREMENTS
ENGINEERING WITH MOQARE
In [4] we introduced the method MOQARE for eliciting and
prioritizing quality requirements. The main idea is to specify
quality as countermeasures to quality defects where quality
defects are characterized by development or operation misuses
which may cause them. This idea is typically applied in the
specification of reliability, but works equally well also for other
quality attributes. It helps to elicit and rationalize specific
requirements for typically vague quality goals.

A major outcome of an MOQARE analysis is the so-called
Misuse Tree which shows how different quality goals, misuses
and countermeasures are related to each other and to the business
goals. This way, dependencies between business and system
requirements are made explicit and can be exploited during
prioritization. Furthermore the benefit of a quality requirement
(countermeasure) can be derived from the risks of the misuse
cases it prohibits, mitigates or detects.

In the following we sketch a MOQARE analysis for an
imaginary medical software system, the antibiotics advisory
system (AntiBiAS) for the paradigmatic example of advising
physicians in prescribing antibiotics and ordering them through
the hospital pharmacy. It gives a systematic account of typical
quality issues (as discussed in section 2) and quality requirements
which try to solve them.

Some of the threats to quality processes may be related to
partially competing goals which legitimately coexist in hospitals,
and which can be served in a balanced way if appropriate
feedback loops are present and users are fully aware of the present
state of the whole feedback loop. Given the above arguments this
is very hard to achieve and partial views are the rule. The
following scenario is owed to one such set of partial views of the
development of AntiBiAS.

In the rest of this section we explain how quality
requirements for this system are derived from general business
and quality goals. The corresponding Misuse Tree is depicted in
Figure 1.

A hospital has typically among others the following business
goals

• Good management of bacterial infections (medical).
• Low cost (financial)
Clearly, these goals overlap: If epidemics of nosocomial

(hospital acquired) infections are avoided, mass consumption of
antibiotics and the resulting cost is avoided But they also
compete: If antibiotics are withheld, especially in a situation
where an epidemic is developing and is noticed or reacted to too
late, money is saved at first but higher consumption/payment may
be due later to fight an epidemic. They also compete in a more
subtle and somewhat paradoxical way. If broadband antibiotics
are routinely administered without specific indication, resistant
bacteria are the only that will survive and will form populations
for which no more cure exists. In other words: antibiotics
utilization is a continuous trade off between fighting existing or
imminent threats and trusting the patient's immune system when
there are no threats. So these business goals can be refined into
the following three, which are considered in the following:
• BG1: Low antibiotics consumption (to reduce cost, but also

to avoid conditions where resistant bacteriae will selectively
survive)

• BG2: Low number of nosocomial infections; This is core to
the medical goal

• BG3: Low cost of antibiotics
For BG2 other organizational and hygiene measures

obviously play a role. For our consideration, however, to achieve
the business goals the hospital establishes AntiBiAS combined
with an order entry system which initiates drug delivery and
records ordering in the electronic patient archive.. The quality
goal to be achieved through the software that serves all three
business goals is
• QG0: optimized antibiotics ordering

Thus
• QG1: accuracy of the advisory and order function

 is critical for business success. That means on the one hand
that
• QG11: the information recorded in AntiBiAS has to be

accurate and on the other hand that
• QG12: the knowledge base (data and rules) of AntiBiAS

need to be accurate.

However, AntiBiAS is not a fully automatic system.
Physicians are supposed to consult the data and advice offered
and to release an order through the system. Unless they are
convinced that they have knowledge and evidence beyond the
scope of the system and then their autonomy allows and even
encourages them to deviate, they should confirm and authorize

the order suggested by the system. Therefore, a nontechnical
quality goal is that
• QG2: physicians rationally handle system suggestions.

Only if the advice is normally correct and correct advice is
normally adhered to, can optimal performance be achieved.

The main idea of MOQARE is to look at quality risks
triggered by misuses in order to better understand what quality
means to the stakeholders. In order to come up with the misuses it
is important to understand the context of the system that means
the business processes and rules and the typical users, As
described in section 2 this is characterized by high complexity,
autonomy and change.

Epidemics are variations over time of the spread and threat
through bacteria residing in the hospital. An epidemic may be
detected

• by chance, through individuals with insight and
spontaneously granted access to data

• indirectly through increasing ordering of antibiotics
• directly though increased number of positive

microbiology lab samples
Obviously, quality assurance cannot rely on chance or

insight. For the other two indicators, however, appropriate
measures can be taken. For this purpose the system needs to
record and analyze the orders in both quantity and type as well as
lab information. Therefore, QG11 is at risk, if

• QD1: the current orders are not recorded completely or

• QD2: the recorded evidence on epidemic developments
is not accurate. E.g. Nosocomial infections/resistant
agents are not noticed or not incorporated in the system.

While the former two deficits relate to data required to

monitor epidemics, the next two quality risks relate to knowledge
required to generate the appropriate advice, irrespective of
whether there is or isn't an epidemic. QG12 is at risk, if
• QD3: AntiBiAS advises unnecessarily expensive orders or
• QD4: AntiBiAS advises medically inappropriate orders.

The main defect compromising QG2 is just its opposite
• QD5: physician does not rationally handle advice.

The next step in MOQARE is to analyze which actions
(misuses) can trigger the defects. Here one also hast to consider
vulnerabilities, that means properties of the system or the
environment which make the misuse more likely. If the
vulnerability can be avoided, the countermeasure should also
address the vulnerability (e.g. insufficient education), but often
the vulnerability is just inherent in the system or the environment.
Then the countermeasure has to address the misuse in the
presence of the vulnerability (e.g. autonomy) or prevent side
effects of the misuse. In Figure 1 we highlight vulnerabilities. In
particular, we concentrate on vulnerabilities which correspond to
the challenges identified in section 2.

BG1: low antibiotics

consumption
BG2: low number of

nosocomial epidemics

QG1: accuracy of the advisory function and the order function

MUC1: patient brings
own medicine

QD1: not all
orders are recorded

in the system

QD2: not all information
on epidemics in

hospital is recorded
in the system

QG2: physician rationally
handles adviceQG11: recorded information is accurate

MUC6: physician reluctant to
adapt ordering to medical

or market variations
VU: education insufficient

for autonomy

QD3: too
expensive orders

are advised

QD4: medically
inappropriate orders

are advised

MUC5: advise does
not reflect epidemic

situation

CM1 =(QG):
good

education

CM2: system support for
rational decision

CM4: advisory rules
are updated

reflecting suspected
epidemics

MUC2: physician
gets antibiotics in
a more convenient

way
VU: lack of

convenience

MUC3: physician gets
antibiotics which
are not available
VU: autonomy

MUC4 information
from specialized labs

is not collected
accurately

VU: complexity

CM3 (=QG):
information collection

from specialized
labs is accurate

BG3: low cost of antibiotics

ChMUC7: new
drug prizes are
not captured
VU:change

ChMUC8: new
drugs are

not captured
VU: change

CM6: new business
process to synchronize
system and pharmacy

QG12: knowledge base
is accurate

QD5: physician does
not rationally
handle advice

QG0: optimized antibiotics ordering

CM5:
system support
for consumption

recording

Figure 1: Misuse Tree AntiBiAS

For the analysis of the misuse cases, first we concentrate on
QD1: There are several actions which prevent the system from
recording orders:
• MUC1: antibiotics are consumed which have never been

ordered through the system, e.g. patients bring their own
medicine.

• MUC2 comprises all physician behaviors to get in a more
convenient way an antibiotic which they could principally
order through the system from the pharmacy. Thus, lack of
convenience is a vulnerability. It can be a non-intuitive
interface of the software, the distant or rarely available
access points to computers, authentication and signature
requirements. To work around the inconvenience
physicians may make a phone call to the hospital
pharmacy, order from a local pharmacy or have some
antibiotics on stock on the ward.

• MUC3 comprises all physician behaviors to get an
antibiotic which they cannot order from the hospital
pharmacy but regard necessary for the patient they are
treating. The mechanisms can be the same as for MUC2
and hence the effect on quality is the same. The motivation
(and thus the vulnerability), however, is lack of
convenience in MUC2 and autonomy in MUC3.
At least as important an indicator for epidemics as

antibiotics ordering is the detection of bacteria in samples sent
to microbiology labs. Therefore, QD2 may materialize through
• MUC4: typically there is not only one central lab, but

many small labs for specialized units co-exist. Often
information from the specialized labs cannot be collected
accurately because the respective Laboratory Information
Systems communicate results in proprietary formats rather
than adhering to existing standards. This is a typical
example of the complexity vulnerability where defects in
one system (collecting lab information) jeopardize other
systems.

QD3 means that medically appropriate antibiotics are

suggested but that a cheaper choice exists in the hospital
pharmacy. QD4 means that the expected patient outcome is
better with a medically different antibiotic from the hospital
pharmacy. Both deficits point to the fact that, in order to build
AntBiAS, the knowledge required to advise the most economic
of the medically appropriate antibiotics must already be present.
It is assumed here that this knowledge is available. Then the
software engineering challenges remain to capture and present
this knowledge appropriately. The latter includes that, when
changes become necessary, they can be incorporated smoothly.

Three types of changes are most prominent: prices for
antibiotics change, new antibiotics are developed that better
serve some patients' conditions; these both happen in the
uncontrollable environment. Furthermore epidemics develop
and disappear again inside the hospital.

Changes in the environment constitute risks for the system.
This is covered in MOQARE by collecting so called Change
Misuse Cases (abbreviated ChMUC) which characterize the
expected changes. QD3 and QD4 then materialize due to related
change misuses that are, however, different in one important
aspect:
• ChMUC7: Ignoring changed prices means that hospital

profitability goes down.

• ChMUC8: Ignoring new superior antibiotics means that
opportunities for patient cures are not taken.
Besides the change misuses the internally caused main

problem for QD4 is
• MUC5: the advice given does not reflect the current

epidemic situation in the hospital. AntiBiAS’ advice is too
“aggressive” (suggesting antibiotics in too many cases)
with no epidemic present or too conservative or unspecific
(not suggesting antibiotics or suggesting general ones)
while an epidemic is present or even a specific agent is
known as cause.
While all aspects so far originate from system properties

and behaviors - with physicians contributing logistics misuses
such as MUC2 and MUC3 - QD5 originates from physicians
taking their autonomy too far: They bluntly disregard system
advice rather than at least considering whether it may add value
to a decision.

Because of the autonomy, physicians will always be
allowed to order antibiotics which are not recommended by the
advisory system or to not order recommended antibiotics. Thus,
QD5 materializes when both habits and irrational and
conservative attitude guide behavior towards the following
misuse:
• MUC6: Physicians tend to prescribe what they know and

are used to and try to ignore that better opportunities exist
or emerge that are worth taking into consideration. The
vulnerability here is insufficient education in the light of
the autonomy.

The main goal of this misuse analysis is to identify

adequate countermeasures. These can help to detect, mitigate or
inhibit the misuse cases. For the latter it is important to know
the vulnerabilities which enable the misuse case. One important
vulnerability for medical software is the autonomy of the
physicians (see MUC3). But as argued in section 2 this is
inherent in the medical domain. For requirements engineering
the challenge is here to find a balance between the autonomy
requirement and the other quality requirements. Another
vulnerability, e.g. important for MUC6 is the education of the
users, in this case the physicians. This gives rise to non technical
and technical countermeasures. So for MUC6 we have
• CM1: good education of the user. Clearly this has to be

refined, but is out of the scope of this paper.
A further countermeasure which supports the education is

system support for rationale decision making, when unsolicited
antibiotics are about to be ordered. This includes

CM2.1: passive help function (“Infobutton” [2]) that
informs upon user’s request about the system’s logic to
recommend or deny an antibiotic, and

CM2.2: active antibiotics assistant logics and interface
design which discourage antibiotics unless clearly indicated
(low sensitivity, high specificity)

Also the countermeasure to MUC4 is a new quality
requirement which needs to be refined. To mitigate the
inaccurate information collection one has to analyze in detail the
information collection including e.g.

CM3.1: An internal technical countermeasure is to analyze
the data delivered through the laboratory information system
and to translate into the conventions required for epidemics
detection.

CM3.2: An external managerial countermeasure is to force
vendors of so far noncompliant laboratory information systems
to change the data formats they deliver.

The decision which of the two countermeasures to prefer
depends on factors such as power of hospital and vendor, skills
available in the hospital, time, dependency on the specific
laboratory information system.

The epidemical advise (MUC5) depends strongly on the
data and criteria used to detect the epidemic. As mentioned
before we assume that this knowledge is available in the
hospital. So it remains to ensure that the advisory rules are
updated when new evidence on epidemics is present
• CM4: the advisory rules are updated according to epidemic

evidence.
To avoid incomplete data on antibiotics consumption

through MUC1 and MUC3 (and possibly MUC2) the following
countermeasure suggests itself:

CM5: Add function to AntiBiAS which records antibiotics
that are indeed given to patients although they were not ordered
through the system.Its relationship to the three misuses is not
shown in Figure 1 for sake of readability.

The final countermeasure mitigates ChMUC7 and
ChMUC8.
• CM6: A business process is established initiated by

pharmacy and administration: They communicate the plan
to introduce new drugs or changing drugs through
apparently equivalent cheaper ones to software
maintenance. Software maintenance accommodates the
advice function to these changes and approves the new
purchases to pharmacy when the respective software
release of the advisor is ready for launch. In section 4 we
will briefly discuss how this and other countermeasures can
be regarded from a broader perspective of professional and
enterprise culture.

4. LESSONS LEARNED
When applying MOQARE to the example system we wanted to
evaluate how feasible the application of a rigorous quality
analysis is for medical software given the challenges.

During our analysis we made the following experiences:
• It was possible to rationally derive the countermeasures

from the business goals and the main software quality goal.
We needed several iterations to arrive at the final picture,
but this was felt as an advantage. The misuse tree forced us
to very carefully think about what to make explicit or not.
For example, at first we tried to deal with QG2 implicitly
as we wanted to concentrate on the system quality. But
when discussing MUC6 (which first came up when
thinking about how the system can achieve BG3) we
realized that it is important to distinguish good uses of
autonomy (as in MUC3) of bad ones. As another example,
for QD1 we first had collected all the different ways how
physicians can bypass the order recording. Given the
logistics in a hospital there are many ways to do this. But
by looking at the misuses it became clear that there are
different reasons for the bypassing and that actually the
reasons are more important to identify adequate
countermeasures.

• It was possible to adequately highlight the challenges
discussed in section 2 in our analysis. The misuses helped

to identify how these challenges in particular affect the
software under consideration. This is made explicit through
the vulnerabilities.

• Quality considerations impact the system scope: An
interesting combination arose wrt. MUC1 and MUC3:
neither can we prevent that patients bring their own
medicine nor can we preclude physician autonomy.
Therefore, a countermeasure cannot be established that
prevents the misuses but only one which avoids its harmful
side effects (CM5). Interestingly, this compromises the
basic intention of the system to be a closed antibiotics
advisory and ordering system with documentation of
consumption being a side effect of ordering. CM5 modifies
this closed system perspective for the better good of at least
capturing the data from processes that don't fit in the closed
metaphor.

• Countermeasures often have implications on professional
and enterprise culture. To keep the Misuse Tree simple for
the paper we have not discussed the implications in detail.
For example, CM1 und CM6: CM1 does have medical
contents but the major education goal is the change of
attitude from experience based and authority supported
towards rational decision making. CM6 comprises the
synchronization between purchasing and software
maintenance. This would entail to establish in addition
managerial processes that assess every new drug and every
new price as to its financial and medical effects in the
hospital versus effort to have it incorporated in the
AntiBiAS. A consensus is then achieved as to either
coordinated implementation or to agreement to ignore a
change. Hence an enterprise culture of local optimizers that
disregard side effects imposed on other enterprise functions
gives ways to a culture of communication and seeking for a
global optimum.

• Combining Misuse analysis and architecture may help to
suggest countermeasure that would not come to mind easily
with misuse analysis alone. Through his familiarity with an
architectural concept specifically developed for medical
information systems one of the authors came up with the
following farther ranging countermeasure for MUC2, i.e.
convenience driven phone calls instead of using AntiBiAS.
The corresponding architectural notion is uncontrolled
redundancy: two ways to execute a function for which only
one way is necessary. This redundancy can be modified.
Either can the convenience factor be reduced through a
voice recognition enabled automated ordering system
which just records orders but takes the physician through
an endless dialogue. Or AntiBiAS could itself be voice
enbabled such that the phone call leads to the same advice
and to an equally recorded AntiBiAS order. This would
coincide with a countermeasure to unavailability of access
points.

• A MOQARE analysis is time consuming and for a complex
system the Misuse Tree gets too big. From the example it is
difficult to estimate whether the time needed is worth the
effort. There are several ways how the time can be made
more worthwhile: Clearly, for a real system requirements
management tools are needed to capture the results of the
MOQARE analysis. Wrt. the time constraints it seems
important to restrict a detailed analysis to certain difficult
quality trade-offs. Furthermore often parts of the analysis

can be re-used for similar systems. This re-use decreases
the time needed for the specific system.
The main advantages of rationale management in general

are support for communication, transparent decision making and
software evolution [3]. Given the variability and the complexity
of the domain as well as the constant innovation and change
such support seems urgently needed. CM6 in its different levels
of sophistication is an example for initializing a communication
about direct and indirect effects of replacing certain antibiotics
through cheaper ones. Locally optimal patterns of behavior may
give way for a hospital wide strategy that leads towards a global
optimum.

Altogether, the effort needed is a general argument against
software engineering methods. As sketched in section 2 so far
the medical domain has put more emphasis on managerial
actions than a system quality culture. As there is evidence from
other quality critical domains like aerospace or automotive, it
seems worthwhile to explore the benefits of a system quality
culture for medical software.

5. FUTURE WORK
In the above we have discussed the application of the quality
requirements engineering method MOQARE to medical
software. Clearly, this only treats a small part of the general
quality problems. We see the following issues for future work.

• The first step, of course, has to be to apply this in a real life
scenario in order to check whether it is feasible. Naturally,
this would lead to an improvement of MOQARE to fit it
better to medical software. E.g. the categories of business
and technical risks might not be sufficient? QD3 and QD4
are presented here as equivalent. QD4, however, may risk
lives while QD3 only risks profitability.

• Based on this one could investigate different system types,
e.g. proactive software rather than just reactive to user
initiated transactions. Or multi-vendor situations as they are
typical in hospitals require specific attention MUC4 e.g. is
not covered through CM3 unless software vendors deliver
data through precisely specified interfaces. Hospitals with
renowned software development departments have been hit
by surprise and failed to get mission critical lab data
integrated with decision support systems (partially) because
their technical skills were not sufficient to make and follow
up on contracts that were supposed to force vendors to
comply. Their existing skill set and enterprise culture
turned out as vulnerabilities for the continuum of
requirements when interfacing a highly variant set of pieces
software from various sources with self-developed software
[8]. For specific contexts it seems feasible to come up with
checklists for typical quality defects, misuses,
vulnerabilities and countermeasure.

• Given the high impact of change, it is also necessary to
investigate the influence of change on quality. This can not
only be captured through the analysis of change misuse
cases (clarifying how the system can adapt to change which
might threaten the quality goals). In addition, the evolution
of the quality goals itself and its treatment in MOQARE is
an open question. CM5 is an example of such evolution of
quality goals. It violates a core assumption about the role of
AntiBiAS that remained implicit: The original aim of
AntiBiAS entailed that data on antibiotics given is

complete. CM5 jeopardizes this concept by not only
tolerating but actively supporting that the advisory function
be bypassed through a mere documentation of antibiotics
selected or present in ad-hoc processes.

• One way to amortize the effort in building models is
typically to use the models during run-time. For MOQARE
one can imagine incorporating a monitoring mechanism for
quality defects and misuses in the system. It is e.g.
interesting to investigate whether monitoring misuses is
easier than monitoring quality directly.

6. ACKNOWLEDGMENTS
The first author was on sabbatical at the University of New
South Wales in Sydney during the preparation of this paper.
This provided a very positive and stimulating environment.

7. REFERENCES
1. Chen, B. Avrunin, G.B..Clarke, L.A. Osterweil, L.J.

Automatic Fault Tree Derivation from Little-JIL
Process Definitions, Software Process Workshop
(SPW 2006) and 2006 Process Simulation Workshop
(PROSIM 2006), Springer-Verlag LNCS, Vol. 3966,
pp. 150-158, 2006.

2. Cimino; J.J., Li, J. Bakken, S.; Patel, V.S. Theoretical,
empirical and practical approaches to resolving the
unmet information needs of clinical information
system users; Proc. AMIA Symp., pp 170-174 ,2002

3. Dutoit, A.H.; McCall, R.; Mistrik, I.; Paech, B. (Eds.)
Rationale Management in Software Engineering,
Springer Verlag, 2006

4. Herrmann, A. Paech, B. “MOQARE: Misuse-oriented
Quality Requirements Engineering”, Requirements
Engineering Journal, Springer-Verlag, accepted for
publication, 2007

5. Jones MT; Computers can land people on Mars, why
can’t they get them to work in hospitals? Methods Inf
Med 42 410-5, 2003

6. Paech B, Kerkow D. Non-Functional Requirements
Engineering - Quality is Essential. In: Regnell B,
Kamsties E, Gervasi V (eds) Proceedings of the 10th
Intl. Workshop on Requirements Engineering
REFSQ04, Essener Informatik Beiträge Bd 9, pp 237-
250, 2004

7. Wetter, Th; To decay is system: The challenges of
keeping a health information system alive; Int. J. Med.
Inform. 76 (S1), pp. 252–260, 2007

8. Wetter, Th. Safeguarding clinical software – A
managerial case study about project management and
oversight; Proc. APAMI conference, pp. 27-31, 2006

