

Copyright © [2009] IEEE.

Reprinted from Testing: Academic & Industrial Conference - Practice and Research Techniques

(TAIC-PART´09), Windsor (UK), September 4-6, 2009, pp. 135-143, IEEE Computer Society 2009

This material is posted here with permission of the IEEE. Internal or

personal use of this material is permitted. However, permission to

reprint/republish this material for advertising or promotional purposes or

for creating new collective works for resale or redistribution must be

obtained from the IEEE by writing to pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the

copyright laws protecting it.

Using Dependency Information to Select the Test
Focus in the Integration Testing Process

Lars Borner
Institute for Computer Science

University of Heidelberg
Im Neuenheimer Feld 326

Heidelberg, Germany
 borner@informatik.uni-heidelberg.de

Barbara Paech
Institute for Computer Science

University of Heidelberg
Im Neuenheimer Feld 326

Heidelberg, Germany
paech@informatik.uni-heidelberg.de

Abstract—Existing software systems consist of thousands of
software components realizing countless requirements. To
fulfill these requirements, components have to interact with or
depend on each other. The goal of the integration testing
process is to test that the interactions between these
components are correctly realized. However, it is impossible to
test all dependencies because of time and budget constraints.
Therefore, error-prone dependencies have to be selected as
tests. This paper presents an approach to select the test focus in
the integration test process. It uses dependency and error
information of previous versions of the system under test.
Error-prone dependency properties are identified by statistical
approaches and used to select dependencies in the current
version of the system. The results of two case studies with real
software systems are presented.

Keywords; integration test, dependency information, test
focus selection

I. INTRODUCTION
The huge number of software components of today’s

software systems challenges testers in the unit, integration
and system testing process. While the unit testing process
addresses the single components and the system testing
process checks that the system requirements are correctly
realized, the integration testing process focuses on the
dependencies between software components. The goal of the
integration testing process is to show that the dependencies
are realized correctly. “Integration testing is a search for
component faults that cause intercomponent failure.” ([3], p
629)

In every testing process several decisions have to be
made to successfully control, execute and finish the process
[5]. One of the main decisions is the test focus selection. The
test focus represents the parts of the system that have to be
tested more extensively than parts not selected. This is
necessary because of the limitations of available resources
(time, budget).

To spend these resources wisely, testers have to select the
parts of the system that are error-prone, i.e. that have a
higher probability to contain an error. Several approaches
can be found to predict error-prone components, using

information of previous versions of the systems ([2], [10],
[11], [14], or [17]). However, these approaches focus on
components only. Therefore, they can only be used in the
unit testing process, where single software components are
tested.

This paper presents a new approach to predict error-
prone dependencies in a software system. A dependency is a
unidirectional relationship between two components. One
component (dependent component) depends on the
functionality of a second component (independent
component). A dependency is characterized by several
properties. Between two components A and B only two
dependencies can exist, one unidirectional dependency from
A to B and vice versa from B to A.

In our approach we consider source code files as software
components and use dependencies between these files to
select the test focus. All dependency properties considered
can automatically be extracted from the source code by using
a source code analyzer. Previous versions of the system
under test are used to identify properties that correlate with
the number of defects in the source code files. To uncover
correlations between the properties and the number of errors,
the statistical test of Kruskal and Wallis [9] is used.
Correlations that are persistent in all former versions are
used to select the dependencies to be tested in the current
version of the system.

The following sections are organized as follows. Section
2 explains the properties that are used to characterize a
dependency. Section 3 gives an overview of the whole
approach. It is followed by a detailed description of two case
studies of real large-sized software systems. In section 5 an
overview of existing approaches is given. The last section
summarizes the paper and the experiences we gathered in the
case studies.

II. DEPENDENCY PROPERTIES
Our approach uses 13 different properties to characterize

a dependency. These properties were gathered from several
existing approaches: [7], [8], [13], or [26]. We choose
properties that can automatically be extracted with a source
code analyzer. In our work we used the open source tool
SISSy (Structural Investigation of Software Systems [22]).

This tool analyzes source code files of several programming
languages and exports an abstract model of the source code
into a data base. The required information about
dependencies and their properties can be extracted from the
model by simply using SQL-Queries. For this, we use a
small self-developed tool that manages the queries of the
database and creates a file that can be used in the statistical
tool SPSS [23].

In our research work we focus on source code files
because several approaches exist to determine the number of
errors per file [15], [19] which is required to identify the
most error-prone dependency properties. The properties of
dependencies between source code files are based on
dependencies between classes in an object-oriented system.
The dependencies between classes have to be mapped to
dependencies between files. This is necessary because a
source code file can contain more than one class. The
mapping adheres to the following mapping rules:

Rule - Inheritance: A dependent file A inherits from an

independent file B, if at least one class in A is a sub-class of a
class in file B.

Rule - Service Call: A dependent file A calls at least one

service of an independent file B, if at least one class in A
calls at least one method of a class in B.

Rule - Attribute Access: A dependent file A accesses at

least one attribute of an independent file B, if at least one
class of file A accesses at least one attribute in the file B.

Using these mapping rules, several properties of

dependencies between source code files can be used in our
approach. The properties can be divided into two main
categories: inheritance and client/server.

A. Inheritance
A dependency with inheritance properties exists, if there

is at least one class in the dependent file that is a sub-class of
a class in the independent file. Three modifications in an
inheritance dependency are interesting for the integration test
process: adding new services, adding new attributes, and
overriding existing services. In all three cases the sub-class
changes the super class by adding a new functionality and/or
by modifying existing services. This is important, because
the concept of sub-typing ([13]) allows the use of a sub-class
in the source code where a super class is expected. If the sub-
class changes the behavior of the super class, it can lead to
an error. Therefore, it is important to look for correlations
between the number of errors and the amount of
modification. The following properties are used. The number
of new attributes indicates how many attributes are added in
sub-classes in the dependent file.

The number of new services indicates how many services
are added in the sub-classes in the dependent file and the
number of overridden service indicates how many services
of the super classes in the independent file are overridden by
the sub-classes in the dependent file.

B. Client/Server
A client/server dependency exists, if at least one class in

the dependent file accesses attributes and/or calls services of
at least one class in the independent file. Several properties
can be interesting for the integration tester, because they can
give hints on possible sources of error. The number of
accessed attributes represents the number of attributes that
are accessed by the classes in the dependent file. Every
attribute is counted only once, even if it is accessed more
than once. Accessing an attribute of a foreign class can
influence the behavior of the class and may lead to an
inconsistent behavior in one or both classes. The number of
services called indicates how many services of classes in the
independent file are called by classes in the dependent file.
Every service is counted only once even if the service is
called more than once. A service call may fail because of
different reasons. Possible faults can be found in [4] (p. 162),
e.g. “Message sent to wrong supplier”, “Message not in
supplier”, or “documentation/code mismatch”. Furthermore,
the input and output parameters can be sources of failure.
The number of input parameters sums up all input
parameters that are used in the services called by classes in
the dependent file in the classes in the independent file. As
stated in [16] an input parameter may be misinterpreted by
the server (the called class). The number of services with at
least one input parameter represents the number of all
services called by the client that uses at least one input
parameter. The number of complex input parameter sums up
the number of complex input parameters that are used in the
services called by the classes in the dependent file. An input
parameter is complex if it is a class itself and not a simple
data type like Integer or Character (see Java programming
language). A complex parameter can encapsulate several
states, and changing a state may influence the behavior of the
calling client, the server or the parameter object itself. The
number of services with complex output indicates the number
of services called by the client that return no simple results.
This complex result may be misinterpreted by the client,
which will lead to a failure. The number of services with
parameters of the same type comprises all services called by
the client that have at least two parameters of the same type.
Calling a method with at least two input parameters of the
same kind can lead to an error, as the parameter may be
swapped at developing time without a compiling error.
However, at runtime the swapped parameter may lead to a
faulty system behavior.

From the properties already presented, three new
properties can be computed that cannot be extracted directly
from the source code: average number of input parameters
per service call, average number of complex input
parameters per service call, and percentage of service calls
with complex output. The first one is computed by dividing
the number of input parameters by the number of services
called. The second one is computed by dividing the number
of complex input parameters by the number of services
called and the last one is computed by the number of services
with complex output divided by the number of services
called.

III. TEST FOCUS SELECTION
Our approach to test focus selection for the integration

testing process is based on information from previous
versions of the system. An overview of all steps that have to
be performed can be found in Figure 1. All steps are
necessary, because “There is no universal metric or
prediction model that applies to all projects” [12], i.e. there
are no dependency properties that can be used in all software
systems to select the test focus. Correlations that were
identified for a software system A and its previous versions
do not have to exist in a software system B.

Figure 1 Test focus selection approach

Our approach is divided into three main steps. First of all,
the dependency properties that are to be used in the
correlation analysis have to be identified. In our case studies
we use 13 different properties to characterize a dependency.
All 13 properties can be easily extracted from the source
code of the system under test. However, it is also possibly to
use more or less than these 13 properties. Second, the
previous versions of the system have to be analyzed and
finally, the identified correlations are used to select the test
focus of the current version.

A. Analyzing Previous Versions
In the second main step the previous versions have to be

analyzed. For every version to be analyzed, four different
sub-steps are performed (see Figure 1). First, the number of
errors per file has to be computed. These numbers are later
used to identify correlations between these numbers and the
dependency properties. In [19] a heuristic approach is
introduced to use information of a version control system
(e.g. Subversion [24]) and a bug tracking system (e.g.
Bugzilla [20]) to determine the number of errors per source
code file. Within the bug tracking system uncovered defects
are documented. Every defect gets a unique identifier (ID).
Every time a developer fixes a defect, he/she has to update at
least one source code file. These files are checked into the
version control system and a new revision (or version) of the
files and the system are automatically created. For every
check-in the developer adds a comment to describe what

he/she has done, for example “#1234 fixed”, where “#1234”
is the ID of the defect he/she fixed. Zimmermann et al.
propose to search for all defect IDs within the check-in
comments to identify all files that had to be changed during
the fixes. This information is used to determine the number
of errors per file.

In parallel the dependencies of the version and their
properties have to be identified. The result of this step is a
dependency table containing all dependencies. An example
of a dependency table extracted from the source code of the
open source tool Eclipse [20] can be seen in Table 1. Every
row represents a dependency between two files. The first two
columns contain the file name 1 of the dependent,
respectively the independent file. The following columns
represent the properties of a dependency. The third column
for example indicates the number of attributes of the
independent file that are accessed by the dependent file and
the fourth column contains the number of services of the
independent file that are called by the dependent file. This
dependency table is extended by the number of errors per file
for the dependent and independent file (see last two columns
in Table 1). The information about the properties and errors
is used in step 2.4 to identify the correlations between them.

TABLE 1 EXAMPLE OF A DEPENDENCY TABLE

In our approach the statistical test of Kruskal and Wallis
is used to identify correlations. This test is the nonparametric
alternative to a one-way ANOVA [9] and is used if the
assumption of the one-way ANOVA is not fulfilled. The test
of Kruskal and Wallis requires that the independent variable
(a property of the dependencies) is ordinal scaled. However,
as one can see in Table 1 the dependency properties are ratio
scaled. Therefore, we have to transform the ratio scale into
an ordinal scale. This is done in step 2.3 by using quantiles
[9]. The usage of quantiles enables us to create disjunctive
groups of nearly the same size. For every property each
dependency is put into one group (quantile). This group
contains all dependencies with similar values of this
property. For example “Group 1” contains all dependencies,
where only one service is called, “Group 2” contains all
dependencies where two and three services are called and so

1 For the sake of readability the full path names of the files
are left out.

on. The division of the dependencies into quantiles can be
done automatically by a statistic program like SPSS [23].

The results of steps 2.1, 2.2 and 2.3 are used in step 2.4 to
identify correlations between the number of errors and the
dependency properties. For every property we use the
Kruskal-Wallis-H test. We check whether the property has a
correlation with the number of errors of the dependent and/or
the independent file. For every group the Kruskal-Wallis-H
test computes the average rank based on the number of
errors. The higher the averages rank the higher is the number
of errors. The average rank for each group can be graphically
represented. Such a representation can be seen in Figure 2. It
is taken from our case study and represents results of the
correlation analysis of the software system Eclipse in version
2.0.

Figure 2 Results of a Kruskal-Wallis-H test (Eclipse 2.0)

This figure shows the average rank in the groups of the
property Number of called services. As one can see, the first
group “1” where only one service is called has the lowest
average rank (28,240) and the last group “>4” has the highest
average rank (30,960). In our approach we are only
interested in the group with the highest average rank,
because this group can be used to select the test focus in the
later steps. Furthermore, we are interested in groups that
range above the average rank of all dependencies
(represented by the solid horizontal line in the diagram). If
we find the highest group of a property and if it is above the
average rank of all dependencies, we have to test whether
this group significantly differs from all the other groups of
the considered property. For example in Figure 2 we test
whether the group “>4” significantly differs from the groups
“1”, “2” and “3”. If this is not the case, the correlation found
is not statistically significant. A first indicator is the
computed significance of the Kruskal-Wallis-H test. It
indicates whether at least two groups are significantly
different or not. However, if at least two groups differ, the
test cannot show which ones. If the test indicates that no
groups differ significantly, no statistically significant
correlation between the property and the number of errors is

found. However, if at least two groups differ, more tests are
required. We use the statistical test of Mann and Whitney.
This test is applied to two groups and checks whether the
groups differ significantly. We apply the Man-Whitney-U
test to all combinations of the group having the highest
average rank that is above the average rank of all
dependencies with all the groups not selected of the property.
For the example in Figure 2 we have to perform 3 Mann-
Whitney-U tests: for the combination (1; <4), (2;<4) and (3-
4;<4). Only if all three tests indicate that the groups
significantly differ, we found a correlation between the
property and the number of errors2.

Figure 3 Example of a non-trivial correlation

In our approach we distinguish between two types of
correlations: trivial and non-trivial correlations. A trivial
correlation is a correlation, where the highest average rank
can be found in the highest-valued group (referring to the
order of the groups) in respect of the property considered. An
example of a trivial correlation is shown in Figure 2. A non-
trivial correlation is a correlation, where the group with the
highest average rank does not contain the dependencies with
the highest values in respect of the property considered. In
other words the group with the highest average rank is not
the group on the right side of the diagram. An example of a
non-trivial correlation can be found in Figure 3. As shown,
the second group (0.0-0.09 complex input parameters per
service calls) has the highest average rank.

For every property we have to perform the Kruskal-
Wallis-H test twice: first, to identify a correlation between
the property and the number of errors in the dependent file
and second, to identify a correlation between the property
and the number of errors in the independent file.

2 To reduce the risk of Type I errors, Bonferroni's correction
[1] has to be applied.

B. Selecting the Test Focus
The last main step of our approach uses the correlation

information gathered in the second main step. A correlation
can be used for the test focus selection, if it exists in all of
the previous versions. All properties that have a correlation
between the numbers of errors of the dependent and/or the
independent file (as defined above) are used to select the test
focus for the current version of the system. However, to get
better prognostic results, the threshold (average rank of all
dependencies) has to be increased, because we are interested
in the properties that are highly above the average rank of all
dependencies. An existing correlation is used for the test
focus selection, if and only if the group (according to a
property) with the highest average rank is above a given
threshold. As we defined earlier, a correlation only exists, if
the group with the highest average rank is higher than the
average rank of all dependencies. To compute the threshold
for the test focus selection, we increase the average rank of
all dependencies by a given percentage. In Figure 2 and
Figure 3 the dotted horizontal line indicates the new
threshold that is 5% higher than the average rank of all
dependencies. The new threshold can be computed by the
following formula:

Average Rank + Average Rank * Percentage

If the average rank of the group with the highest rank is

above the computed threshold, the corresponding group of
the property is used in the test focus selection. As one can
see, the property in Figure 2 will be used. The percentage
depends on the information about the errors that are
available. For example, if there is only a small number of
files that contain a small number of errors, the average rank
of all groups is very near to the average rank of all
dependencies (see case study in section 4.2.). In this case the
percentage value has to be very small to compute the
required threshold. The following formula can be used to
estimate the required percentage value.

 max(ARprop)- ARdep

Pdep = 2 * _____________________________
 Ndep * Nprop

Pdep … Percentage value of dependent file
ARprop_i… Average Rank of highest property group
ARdep …Average Rank of all dependencies
Ndep … Number of all dependencies
Nprop … Number of correlating properties

The main idea of the formula is to use the maximal

difference of the group with the highest average rank of all
correlating properties and the average rank of all
dependencies. In our case studies this formula works fine to
determine a first estimation for the threshold.

Before we can select a test focus, the dependencies and
properties of the current version have to be identified (step
3.1). The result is a dependency table similar to the
dependency table represented in Table 1, but without the
number of errors per file. In the next step (3.2) the

dependencies have to be grouped using the same method as
in step 2.3. If we used deciles (dependencies divided into 10
groups) in the previous steps, we also have to use deciles
here.

In the last step we have to select all error-prone
dependencies as a test focus for the integration testing
process.

Definition: A dependency is error-prone, if it has at least

one error-prone property and is assigned to a group with the
highest average rank in previous versions.

Definition: An error-prone property is a property that

correlates with the number of errors of the dependent or
independent file in previous versions.

Using this information, we can assign a test priority to

every dependency. A dependency with no error-prone
property gets No Test Focus. A dependency that has one or
more properties that correlate with the number of errors of
the dependent files gets Test Focus Dependent File. A
dependency that has one or more properties that correlate
with the number of errors of the independent files gets Test
Focus Independent File. The test priority Test Focus Both
Files indicates that the dependency possesses properties that
correlate with the number of errors in the dependent and
independent file.

The test priority indicates which dependencies should be
tested. Moreover, it gives hints on the error location, i.e.
whether more errors are likely to be found in the
independent, the dependent or in both files.

IV. CASE STUDIES
We applied our approach in two case studies. We chose

two real large-sized software projects written in the
programming language Java. For both projects we used two
previous versions of the system to identify the correlation
between the number of errors and the dependency properties.
These correlations are used in a third version to select the
test focus of this version. In a last step we demonstrate that
the selected dependencies are more error-prone than the ones
not selected.

The first system we applied our approach to is the open
source development tool Eclipse [21]. For this tool the
number of defects is available for three versions (2.0, 2.1 and
3.0) in [18]. For this reason we only use two previous
versions to identify correlations between errors and
properties. The second system the approach was applied to is
a commercial tool to manage and monitor financial
subventions. This tool does not define versions in the same
sense as Eclipse. The tool is continuously enhanced by new
functionalities. To select the versions to be used in our case
study, we chose three different points in time where large
numbers of errors could be found. To compare the results of
both case studies, we also chose two versions of the second
tool to identify the correlations and to select the test focus for
the third version.

A. Eclipse
Eclipse is a Java IDE (Integrated Development

Environment) to support developers to create, compile,
debug and execute source code. It is realized itself in the
programming language Java and can be downloaded from
[21]. In our work we analyzed the versions 2.0 and 2.1 to
identify the correlations. Version 3.0 was used to select the
test focus and to check whether the more error-prone
dependencies are selected. A list of defects per file is
provided by Zimmermann et al. in [18]. Zimmermann et al.
in their work distinguish between two kinds of errors: pre-
release and post-release errors. In our work it is not
necessary to distinguish between these two types. Therefore,
the number of errors is the sum of the pre- and post-release
errors.

The Version 2.0 consists of 6,747 source code files and
1,361,739 lines of code (LOC). We identified 56,765
dependencies between these files. Version 2.1 consists of
7,908 files and 1,678,952 LOC. 71,182 dependencies can be
identified between these files. In both versions 5.2% of the
dependencies have inheritance properties only, 5.7%
dependencies have inheritance and Client/Server properties
and 89.1% dependencies have Client/Server dependencies
only. 2,891 (43%) files of version 2.0 and 2,426 file (31%)
of version 2.1 contain at least one error (see [18]).

In a first step we identified the dependencies in version
2.0 and version 2.1. Furthermore, the properties of every
dependency were identified and documented by SISSy. We
group all dependencies into ten groups (deciles) according to
the properties and perform the Kruskal-Wallis-H tests to
every property.

As a result we found that in version 2.0 11 properties
correlate with the number of errors in the dependent file as
defined is section 2.1. Furthermore, we found eight
properties that correlate with the number of errors of the
independent file. In version 2.1 we identified ten properties
that correlate with the number of errors in the dependent file
and seven properties that correlate with the number of errors
in the independent file. All correlations found are shown in
Table 2. The table contains all 13 properties (column 1) and
the identified correlations for Eclipse 2.0 (column 2 and 3)
and Eclipse 2.1. A positive value X in a cell indicates that for
a given property the Xth group has the highest average rank
and is above the computed threshold of 5% for version 2.0
respectively 6.2 for version 2.1 and significantly differs from
all other groups. A negative value indicates that there is no
correlation between this property and the corresponding
number of errors. One example: For the property # Services
called (row 5) and the version 2.0 the group with the highest
average rank for the dependent file (column 2) is the group
“10”. The average rank of this group is above the threshold
and significantly differs from all other groups. The property
Average number of input parameters (row 12) shows no
correlation with the number of errors in the dependent file in
version 2.0. This is indicated by the value “-1” in the
corresponding cell.

A cell with a gray background indicates that a correlation
between the property and the number of errors in the

dependent/independent file exists in both versions
considered, i.e. in both versions the group with the highest
average rank is the same. For example in both versions the
group with the highest average rank for the property #
Services called (row 5) is “10” for the dependent file.

In most cases the groups with the highest average rank
are the groups that contain all dependencies with the highest
values of the given property (mostly group “10”). That
means most of the uncovered correlations are trivial
correlations. However, there are also non-trivial correlations.
A non-trivial correlation is indicated by a positive cell value
smaller than “10”, for example in row 11. The group with the
highest average rank for the property Average number of
complex input parameters is “4”. This group significantly
differs from the other groups, has an average rank that is
above the threshold and exists in both versions for the
dependent and independent file.

TABLE 2 PROPERTY CORRELATIONS (ECLIPSE)

Eclipse 2.0 Eclipse 2.1

Property
Dependent

File
Independent

File
Dependent

File
Independent

File

Overridden services 10 -1 10 -1

New Services 10 -1 10 -1

New Attributes 10 -1 -1 -1

Attribute Accesses 10 10 10 -1

Services called 10 10 10 10

Complex Input
Parameter 10 9 10 -1

Input Parameter 10 -1 -1 10

Services with
Complex Output 10 10 10 10

Services called with
at least one Input
parameter

10 10 10 10

Services called with
two Parameters of the
same type

10 -1 -1 5

Average number of
complex input
parameters

4 4 4 4

Average number of
input parameters -1 8 -1 -1

Percentage of Services
with complex output -1 5 7 5

The information contained in Table 2 is used to select the
test focus for Eclipse 3.0. All properties with cells that are
highlighted with a gray background are used to select the test
focus of version 3.0. In a first step the 96,476 dependencies
and their properties are identified. Next, the dependencies are
grouped according to their properties. Afterwards those
groups of dependencies are selected that had the highest

average rank in the previous versions. As a result 1,352
dependencies are selected because they possess properties
that correlate with the number of errors in the dependent file.
7,737 dependencies possess properties that correlate with the
number of errors in the independent file and 5,230
dependencies are selected because they possess properties
that correlate with the number of errors in both files. That
means about 16% of all dependencies in version 3.0 are
selected as test focus.

To check that we have selected the right dependencies as
test focus, we compute the average rank of the selected test
focus. Figure 4 represents the average rank of the selected
test focus divided by the test priorities Not Test Focus, Test
Focus Dependent file, Test Focus Independent File and Test
Focus Both Files. The average rank is computed for the
number of errors in the dependent file (light gray bar) and
the number of errors in the independent file (dark gray bar).
As one can see, dependencies not selected as test focus have
the smallest average ranks. The dependencies selected as
Test Focus Dependent File have the highest average rank
(54,975) of number of errors in the dependent file. The
dependencies selected as Test Focus Independent File have
the highest average rank (56,264) of number of errors in the
independent file. Dependencies selected as Test Focus Both
Files possess an average rank of errors in the dependent and
independent file that is above the average rank of
dependencies not selected as test focus.

Figure 4 Average rank of selected test focus (Eclipse 3.0)

B. Subvention Management Tool
The subvention management tool is a highly distributed

software system. It is used to register applications for
subventions, offers tool support to check, refuse or accept
applications, and monitors the money flow from the
government to the companies. It is realized in Java and offers
two different graphical user interfaces (Swing, HTML).

It consists of about 23.000 source code files containing
more than four million lines of code. It contains about
153,000 dependencies between the source code files: 8,000
dependencies with inheritance properties only, 12,000
dependencies with inheritance and Client/Server properties

and 133,000 dependencies with Client/Server properties
only.

At the beginning of the case study the number of errors
per file had to be determined by using the information of a
bug tracking system and the version control system
Subversion. The realizing company uses Lotus Notes [25] as
the documentation tool for errors. Every error is documented
in Lotus Notes and gets a unique ID. If an error is fixed, the
developer checks the changed source code files into the
control version system. The system creates a new revision
number. This revision number is added to the error report by
the developer. The revision number is used to identify all
files that have to be changed to fix an error. Using this
information the number of errors can be determined.

The tool has no fix release cycles and therefore no major
releases are defined. We selected three snapshots of the
system to perform our case study. These snapshots were used
as versions. The first snapshot was from the end of June, the
second from the end of July and the third from the middle of
September of the same year. The first version contains 602
files (2.62%) that have at least one error, the second 643 files
(2.77%). At this time it was unclear whether such a small
number of error-prone files could be used to find correlations
between properties and the number of errors. However, as
shown in Table 3, a lot of correlations were found.

TABLE 3 PROPERTY CORRELATIONS (SUBVENTION)

Version 1 Version 2

Property
Dependent

File
Independent

File
Dependent

File
Independent

File

Overridden services -1 4 -1 -1

New Services 10 -1 10 -1

New Attributes -1 -1 -1 -1

Attribute Accesses -1 10 -1 8

Services called 3 -1 10 -1

Complex Input
Parameters 7 10 -1 10

Input Parameters 9 10 -1 10

Services with
Complex Output 2 -1 10 2

Services called with
at least one Input
parameter

6 10 10 10

Services called with
two Parameters of the
same type

5 -1 -1 10

Average number of
complex input
parameters

8 7 -1 7

Average number of
input parameters 10 -1 4 -1

Percentage of Services
with complex output 2 4 -1 4

In the first version we found ten properties that correlate
with the number of errors of the dependent file and seven
properties that correlate with the number of errors of the
independent file. In the second version five correlations
between properties and the number of errors in the dependent
file and eight correlations between properties and the number
of errors of the independent file were found. However, only a
few correlations could be used to select the test focus,
because the groups of the correlating properties differ from
version to version.

As a result 18.7% of all dependencies in the third version
were selected as test focus. 838 dependencies were selected
as Test Focus Both Files. 27,920 dependencies were selected
as Test Focus Independent File and 1,373 dependencies are
selected as Test Focus Dependent File. To check that the test
focus selection was correct we also computed the average
rank. The results are shown in Figure 5.

Figure 5 Average rank of selected test focus
(Subvention Management Tool)

As one can see, the dependencies with Test Focus
Dependent File have the highest average rank (57,200) of the
number of errors in the dependent file (second light gray
bar). Dependencies selected as Test Focus Independent File
have the highest average rank (56,952) of errors in the
independent file. The average rank of dependencies with Test
Focus Both Files is above the average rank of dependencies
not selected as test focus. The small difference between the
average rank of dependencies not selected and dependencies
with Test Focus Both Files according to the number of errors
in the independent file can be explained by the small number
of all files that contain at least one error.

V. RELATED WORK
In the literature several approaches can be found that deal

with defect prediction. They can be divided into three
categories. Approaches of the first category try to predict the
probability that a file will contain at least one error (e.g. [2],
[15]). The second category predicts the exact number of
errors that will be contained in a file (e.g. [14], [17]). The
last category tries to predict the error density of a file (e.g.
[10], [11]). Our approach belongs to the latter category. We
identify dependencies with an error density above average

Different statistical tests and approaches can be used to
predict errors. Basili et al. uses in [2] the rank correlation
coefficient by Spearman to identify correlations. In a second
step they use linear regression to predict the probability that
a file will contain an error. These statistical tests can only be
used to identify trivial correlations. However, we are also
interested in non-trivial correlations. Therefore, we use the
Kruskal-Wallis-H test to identify the groups with the highest
number of errors.

In [18] Zimmerman and Nagappan state that One
drawback of most complexity metrics is that they only focus
on single elements, but rarely take the interactions between
elements into account (page 531). They found out that not
only the properties (metrics) of one single file should be used
to predict errors. In fact the dependencies and their properties
are important. However, their approach does not use
properties of one single dependency. The authors aggregate
the dependency information like the number of clients
(dependent files) or the number of servers (number of
independent files) within one file and therefore, they only
identify correlations between file properties and the number
of errors.

None of the existing approaches uses properties of
dependencies where a dependency only exists between two
files. First ideas about the usage of dependency properties to
select the test focus within the integration testing process can
be found in [6]. There we use the one-way ANOVA to
identify error-prone properties of dependencies. This
analysis however cannot be used for every software system
because of its assumptions [9]. Therefore the non-parametric
Kruskal-Walli-H tests and the Mann-Whitney-U tests should
be used as proposed in this paper.

VI. CONCLUSION
In this research paper we introduce an approach to select

the test focus in the integration test process. We use
information about the test objects of the integration test: the
dependencies. We identify correlations between dependency
properties and the number of errors of the dependent and
independent files in previous versions of the software system
under test. The correlations found are used to select the
dependencies that have a higher probability to contain errors.
The statistical tests used (Kruksal-Wallis-H and Mann-
Whitney-U test) can find trivial correlations as well as non-
trivial correlations.

Two case studies indicate that our approach works fine.
We apply our approach to real large-sized software systems
and extract the dependencies between the source code files
of the systems. We use information about the number of
errors to identify the error-prone properties from two
previous versions of the systems. Figure 4 and Figure 5 show
that we selected error-prone dependencies. This can be seen
by the average rank. Dependencies selected as Test Focus
Dependent File and Test Focus Both Files have a higher
average rank of errors in the dependent file (light gray bar)
than not selected dependencies. Dependencies selected as
Test Focus Independent File and Test Focus Both Files have
a higher average rank of errors in the independent file (dark
gray bar) than not selected dependencies.

In our future research work we will focus on the
improvement of the test focus selection approach to better
predict the error-prone dependencies. We try to combine
properties to decrease the number of selected dependencies
with a higher number of errors in the dependent and
independent files.

Furthermore, the test focus supports the localization of
possible errors, because it indicates whether the error is in
the dependent file (test focus dependent file) or in the
independent file (test focus independent file).

One important advantage of our approach is the fact that
nearly all steps of our approach can be performed
automatically. Once the properties to be uncovered are
specified, the dependencies and their properties can
automatically be extracted by a source code analyzer (like
SISSy). The computation of the number of errors per file can
also be executed automatically. The statistical tests (Kruskal-
Wallis-H, Mann-Whitney-H) are mathematical formula that
can easily be implemented.

REFERENCES

[1] Abdi, H.: The Bonferonni and Šidák Corrections for Multiple
Comparisons. In: Salkind, N. (Ed.), The encyclopedia of
measurement and statistics, Sage, Thousand Oaks, 2007

[2] Basili, V.R., Briand, L. C., Melo, W.L.: A Validation of Object-
Oriented Design Metrics as Quality Indicators, IEEE Transaction on
Software Engineering, Vol. 22, No. 10, 1996, pp. 751-761

[3] Binder, R., Testing Object-Oriented Systems. Addison-Wesley, 2000
[4] Binder, R., Testing Object-Oriented Software: A Survey, Journal of

Software Testing, Verification and Reliability, Vol. 6, 1996. pp. 125-
252,

[5] Borner, L., Illes, T., Paech, B., The Testing Process - A Decision
Based Approach, Proceedings of The Second International
Conference on Software Engineering Advances, Cap Esterel (France),
2007, IEEE Computer Society, pp. 41-49

[6] Borner L., Paech B., Testfokusauswahl im Integrationstestprozess,
Software Engineering, Kaiserslautern (Germany), 2009, GI, pp. 139-
150

[7] Briand, L.C., Feng, J., Labiche, Y., Using Genetic Algorithms and
Coupling Measures to Devise Optimal Integration Test Orders,
International Conference on Software Engineering and Knowledge
Engineering, Ischia (Italy), 2002, ACM Press, pp. 43-50

[8] Harrold, M.J., McGregor, J., Incremental Testing of Object-Oriented
Class Structures, International Conference on Software Engineering,
Melbourne (Autralia), 1992, ACM Press, pp. 68-80

[9] Janssen, J., Laatz, W., Statistische Datenanalyse mit SPSS für
Windows, Springer Verlag, 2003

[10] Knab, P. Pinyger, M. Bernstein, A., Predicting Defect Densities in
Source code Files with Decision Tree Learners, International
Workshop on Mining Software Repositories, Shanghai (China), 2006,
ACM Press, pp. 119-125

[11] Nagappan, N., Ball, T.: Static Analysis Tools as Early Indicators of
Pre-Release Defect Density, International Conference on Software
Engineering 2008, St. Louis (MO, USA), 2008, ACM, pp. 580-586

[12] Nagappan, N., Ball, T., Zeller, A.: Mining metrics to predicts
component failures, International Conference on Software
Engineering, Shanghai (China) 2006, ACM Press, pp. 452-461

[13] Orso, A.: Integration Testing of Object-Oriented Software, PhD
Thesis, 1998

[14] Ostrand, T.J., Weyuker, E.J.: How to Measure Success of Fault
Prediction Models, Proceedings of the Fourth international workshop
on Software quality assurance 2007, Dubrovnik (Croatia), September
2007, pp. 25-30

[15] Ratzinger, J. Sigmund, T., Gall,H.C.: On the Relation of Refactoring
and Software Defects, International Working Conference on Mining
Software Repositories, Leipzig (Germany), 2008, ACM Press, pp. 35-
38

[16] Suliman, D., Paech, B., Borner, L., Atkinson, C., Brenner, D.,
Merdes, M., Malaka, R.: The MORABIT Approach to Runtime
Component Testing, Annual International Computer Software and
Applications Conference, Chicago (Illinois, USA), 2006, IEEE
Computer Society, pp. 171-176

[17] Zhang, H.: An Initial Study of the Growth of Eclipse Defects,
International Working Conference on Mining Software Repositories,
Leipzig (Germany), 2008, ACM Press, pp. 141-144

[18] Zimmermann, T. and Nagappan, N. 2008. Predicting defects using
network analysis on dependency graphs, International Conference on
Software Engineering, Leipzig (Germany), 2008, ACM Press, pp.
531-540.

[19] Zimmermann, T., Premraj, R., Zeller, A., Predicting Defects for
Eclipse, International Conference on Software Engineering, Leipzig,
2007, ACM Press, pp. 531-540

[20] Bugzilla, http://www.bugzilla.org/, 2009
[21] Eclipse, www.eclipse.org, 2009
[22] SISSy,http://sissy.fzi.de/SISSy/CMS/index_html, 2009
[23] SPSS, http://www.spss.com/, 2008
[24] Subversion, http://subversion.tigris.org/, 2009
[25] Lotus Notes,http://www-01.ibm.com/software/de/lotus/
[26] http://www.uml.org/

