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a b s t r a c t

Context: The knowledge about particular characteristics of software that are indicators for defects is very
valuable for testers because it helps them to focus the testing effort and to allocate their limited resources
appropriately.
Objective: In this paper, we explore the relationship between several historical characteristics of files and
their defect count.
Method: For this purpose, we propose an empirical approach that uses statistical procedures and visual
representations of the data in order to determine indicators for a file’s defect count. We apply this
approach to nine open source Java projects across different versions.
Results: Only 4 of 9 programs show moderate correlations between a file’s defects in previous and in cur-
rent releases in more than half of the analysed releases. In contrast to our expectations, the oldest files
represent the most fault-prone files. Additionally, late changes correlate with a file’s defect count only
partly. The number of changes, the number of distinct authors performing changes to a file as well as
the file’s age are good indicators for a file’s defect count in all projects.
Conclusion: Our results show that a software’s history is a good indicator for ist quality. We did not find
one indicator that persists across all projects in an equal manner. Nevertheless, there are several indica-
tors that show significant strong correlations in nearly all projects: DA (number of distinct authors) and
FC (frequency of change). In practice, for each software, statistical analyses have to be performed in order
to evaluate the best indicator(s) for a file’s defect count.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

The knowledge about particular characteristics of software that
are indicators for defects is very valuable for testers because it
helps them to focus the testing effort and to allocate their limited
resources appropriately. Information about the software project
can be collected from versioning control and bug tracking systems.
These systems contain a large amount of information documenting
the evolution of a software project.

In practice, this information is often not deeply analysed in or-
der to gain information which facilitates decisions in the present.
Based on historical characteristics extracted from versioning con-
trol systems, e.g. the number of defects in previous versions of a
file, estimates for the future evolution can be made. For example,
the expected defects can be predicted allowing accurate testing.
Similarly, knowing defect detection rates of former releases over
time, one can make predictions on remaining defects at the current
point of time. This helps decide whether the software should be re-

leased. Information contained in versioning control and defect
tracking systems can also be combined. For example, the relation-
ship between historical characteristics (e.g. a file’s age) and soft-
ware quality (e.g. measured by the defect count) can be explored.
It is very useful to know particular historical characteristics of a file
indicating its fault proneness because it helps testers to focus their
testing effort on these specific files [19,9,7].

In this paper, we present the results of an empirical study
exploring the relationship between historical characteristics and
quality in open source programs. For this purpose, we analysed
nine open source Java products during their whole lifetime. We
use the defect count of a file as an indicator for its software quality
and relate this measure to historical characteristics of that file. Par-
ticularly, we analyse the following questions:

(1) Do past defects correlate with a file’s current defect
count?

(2) Do release characteristics, e.g. late changes or hot fixes, cor-
relate with a file’s defect count?

(3) Is a file’s age an indicator for its defect count?
(4) Is there a history indicator that correlates with a file’s defect

count in all projects?
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To answer these questions, we propose an empirical approach
that uses several statistical procedures and visual representations
of the data in order to determine those files that are responsible
for poor quality (expressed by a high defect count). For interval
and ratio scaled variables (e.g. the number of past defects), we
use correlation analyses to determine the (linear) association be-
tween historical characteristics of files and their defect count. For
nominal or ordinal scaled variables, we analyse visual representa-
tions of the data; then we apply statistical procedures to support
statistically the significance of the results obtained by visual anal-
yses. We call this analysis simple analysis of defect variance. In a
further step of our approach, detailed analyses are performed in
order to get more precise results. By combined analyses of defect
variance, the relationship between more independent variables
and a file’s defect count is analysed. For instance, we analyse the
extent to which the defect count of a file depends on its age and
on the number of changes performed to this file. Similarly to the
simple analyses, combined analyses of defect variance consist of
both visual and statistical procedures.

The advantage of this approach is its applicability in practice.
Due to the proposed visual representations, an easy interpretation
of the data is allowed, thus making this approach an intuitive one.
On the other hand, the approach aims at deriving reliable conclu-
sions from data by requiring statistical tests that support the re-
sults derived visually.

The remainder of this paper is organized as follows. Section 2
introduces basic definitions and concepts. Section 3 presents the his-
torical characteristics analysed in this study. The design of our study
is described in Section 4. In Section 5, data collection and in Section 6
analysis procedures are reported. Section 7 details the empirical ap-
proach applied to analyse the relationship of a file’s history and its
defect count. Sections 8–11 contain the results of our empirical
study and Section 12 the discussion of these results. In Section 13,
the threats to validity are presented and in Section 14 an overview
of related work is given. Finally, Section 15 concludes the paper
and describes our future work.

2. Basic terms and definitions

In this section, basic concepts and terms used in this paper are
introduced.

Versioning Control Systems (VCS) are useful for recording the
history of documents edited by several developers. In order to edit
a file, a developer has to checkout this file, edit it and commit this
file back into the repository. Each time a developer commits a file,
a message, describing what has been changed, can be optionally
added. CVS,1 ClearCase,2 SourceSafe3 and SVN4 are examples for
such systems.

History Touch (HT). We define a history touch to be one of the
commit actions where changes made by developers are submitted.
Amongst others, each HT has the following attributes: author, af-
fected files(s), date of change, and message.

Birth of a file denotes the point of time of its first occurrence in
the VCS, i.e. the date, the file has been added to the VCS.

Death of a file denotes the point of time of its removal from the
VCS.

Present denotes the point in time where our empirical study
started.

The system age is computed as Present – Birth of the ‘‘old-
est” file.

History. The history of a file comprises all HTs that occurred to
that file from its birth until present or until its death.

Release denotes a point in time in the history of a project
which denotes that a new or upgraded version is available. In this
study, we considered only final releases of the open source
projects.

In this paper, we use the definition of defects and failures pro-
vided in [14]: a defect is ‘‘a flaw in a component or system that can
cause the component or system to fail to perform its required func-
tion. A defect, if encountered during execution, may cause a failure
of the component or system”. Thus, a failure is the observable
‘‘deviation of the component or system from its expected delivery,
service or result‘‘.

Defect count is the number of defects identified in a software
entity. In this paper, we count the number of defects of a file.
The file a is more fault-prone than the file b if the defect count
of the file a is higher than the defect count of the file b.

3. Historical characteristics

In this paper, we distinguish four categories of historical charac-
teristic: defect history, release history, change history, as well as
file age and analyse their relationship to the defect count of a file.

Defect history of a file concerns previously found defects.
Release history of a file concerns the time between two re-

leases at which a HT occurs. For a detailed analysis, we divide
the period between two releases into five phases.

hotFix: Denotes the first 5% of time of the total period between
two releases.

post-Release: This phase follows the hotFix phase and de-
notes the next 10% of the total period between two releases.

pre-Release: This phase denotes 10% of the total period
immediately before the lastMinuteFix phase.

lastMinuteFix: This phase denotes the last 5% of time before
release.

moderation: This phase denotes the period between the
post-Release and pre-Release phase and makes up 70% of
the total period between two releases.

Fig. 1 illustrates the release history phases.
The change history of a file comprises the number, size and

author(s) of the HTs performed to that file. As presented in [13],
we define the following three change historical characteristics:

� FC (Frequency of Change): Number of HTs per file performed
between two consecutive releases.

� DA (Distinct Authors): Number of distinct authors that performed
HTs to a file between two consecutive releases.

� CF-SUM/AVG (Co-Changed Files): Total/average number of files
that have been conjointly checked in with a file between two
consecutive releases.

Stable files are files have been changed (according to their FC
metric) less than average; unstable files have been changed more
than average.

1 http://www.nongnu.org/cvs/.
2 http://www-306.ibm.com/software/awdtools/clearcase/.
3 http://www.microsoft.com/ssafe/.
4 http://subversion.tigris.org/.
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Fig. 1. Release history.
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Fluctuating files have been changed by an above average
number of distinct authors (DA metric) and non-fluctuating

files have a below average DA metric.
File age; according to age, we classify files in one of the follow-

ing categories5:
Newborn: A file is newborn at its birthday.
Young: <0.5 � SystemAge AND not Newborn (all files that are

not older than the half of a system’s age and that are not classified
as Newborn)

Old:P0.5 � SystemAge (all files that are older than or equal to
the half of a system’s age).

4. Study design

In this section details on the experiment are described.

4.1. Goal and research hypotheses

The main goal of this empirical study is to analyse the relation-
ship of different historical characteristics of a file and its defect
count. These are our research hypotheses and their rationale:

H1: The number of defects found in the previous release of a file
correlates with its current defect count. The rationale behind
this hypothesis is that files that tend to be not well understood
and fault-prone remain not well understood and fault-prone.
H2: Release characteristics of a file correlate with its defect
count. Specifically, the following sub-hypotheses can be
formulated:
H2.1: The defect count of a file increases with the number of
HTs in the hotFix and in the post-Release phase. The ratio-
nale behind this hypothesis is that changes that occur shortly
after a software release are quickly implemented and represent
not well tested patches which lead to further defects in the cor-
responding file.
H2.2: The defect count of a file increases with the number of
HTs in the pre-Release and in the lastMinuteFix phase.
The rationale behind this hypothesis is that last minute changes
and features are not well tested and also increase a file’s defect
count.́
H3: A file’s age is an indicator for its defect count. Particularly,
the following sub-hypotheses can be formulated:
H3.1: Newborn and Young files are the most fault-prone files.
The rationale behind this hypothesis is that Newborn and
Young files represent new features that might be not well
understood and consequently more fault-prone than Old files.
H3.2: Old files have the lowest defect count. The rationale
behind this hypothesis is that Old files represent stable func-
tionality which matured over years so that most of the defects
have already been removed.
H4: There is a historical characteristic that is a good indicator
for a file’s defect count in all projects. The rationale behind this
hypothesis is that there are historical characteristics that influ-
ence the defect proneness of files independent of an applica-
tion’s domain or other program characteristics.

4.2. Independent variables

The independent variables’ definitions are based on the histor-
ical characteristics described in Section 3 and are summarized in
Table 1.

4.3. Dependent variable

The dependent variable of our study is the defect count of a file
that occurred between two consecutive releases during its history.
Thus, DCURRi denotes the number of defects reported for a file after
release i and before release i + 1.

We relate a change in release i of a file to the defect count re-
ported to that file between release i and release i + 1. Fig. 2 illus-
trates how file characteristics are related to corresponding defect
densities for particular releases.

4.4. Subject projects

In this study, we analysed nine open source projects that we
searched in large repositories for open source projects, mainly
SourceForge6 and Java-Source.7 As required in [12], the following
criteria have been applied when selecting the projects:

(1) The project is of a large size in order to permit significant
results. Thus, the size of the selected projects ranges from
about 70,000 LOC to about 240,000 LOC. This criterion guar-
antees that the empirical results are statistically significant.

(2) A well documented defect history is available. We searched
for projects for which a bug tracking system is available. The
availability of a bug tracking is a prerequisite for a project to
be considered in the empirical study.

(3) A well documented history is available. In order to extract his-
torical characteristics automatically, we searched for projects
for which a VCS is available. For each HT, at least the following
information has to be available: author, date, and message.

(4) The project is mature so that effects will have appeared if pres-
ent. According to this criterion, we selected projects with a
number of check-ins (we call them history touches – HT) in
a versioning control system (VCS) greater than 50,000.

timeRelease i-1
Rn-1

Release i
Rn-1

Release i+1
Ri+1

Characteristic j(f)i

DCURRi(f)
# Defects reported
after Ri and before Ri+1

related to

Fig. 2. Defect count and characteristics of a file.

5 We adopted the classification of class hierarchy histories presented in [9].

6 http://sourceforge.net/.
7 http://java-source.net/.

Table 1
Independent variables.

ID Description

DPREi Number of defects reported for a file between release i � 1 and
release i.

HF Number of HTs performed on a file in the phase hotFix

PreR Number of HTs performed on a file in the phase pre-Release

PostR Number of HTs performed on a file in the phase post-Release

LM Number of HTs performed on a file in the phase lastMinuteFix

Mod Number of HTs performed on a file in the phase moderation

FC Frequency of change
DA Distinct authors
CF Co-Changed files
F-N NewBorn file
F-Y Young file
F-O Old file
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For comparability and generalisation of the results a single pro-
gramming language, Java, has been chosen. We included OSCache,
a project that does not fulfil all criteria defined above, in order to
compare the results obtained for all other projects with a smaller
but mature project (this project exists since 2000). As a result of
the search, the following PROJECTs have been identified.

Apache Ant (Apache Ant)8 is a Java application for automating
the build process using an XML file where the build process as well
as its dependencies can be described.

Apache Formatting Objects Processor (Apache FOP)9 is a Java
application that reads a formatting object (FO) tree and renders
the resulting pages to a specified output. Output formats are e.g.
PDF, PS, XML or PNG.

Chemistry Development Kit (CDK)10 is a Java library for bio-
and chemo-informatics and computational chemistry.

Freenet11 is a distributed anonymous information storage and
retrieval system. Users can use Freenet, e.g. for publishing websites,
communicating via message boards or sending emails.

Jetspeed212 is an open portal platform and enterprise informa-
tion portal.

Jmol13 is a Java molecular viewer for three-dimensional chemical
structures. Features include reading a variety of file types and output
from quantum chemistry programs as well as animation of multi-
frame files and computed normal modes from quantum programs.

OSCache14 is a Java application which performs fine grained dy-
namic caching of JSP content, servlet responses or arbitrary objects.

Pentaho15 is a Java based business intelligence platform that in-
cludes reporting, analysis (OLAP), dashboards, data mining and data
integration.

TV-Browser16 is a Java based TV guide.
Table 2 summarizes the attributes of the analysed projects. A�

behind the data in the column ‘‘Project since” denotes the date of
the registration of the project in SourceForge.17 For the rest, the
year of the first commit in the versioning system is indicated.
The column ‘‘OS-Project” contains the name of the project followed
by the project’s latest version for which the metrics ‘‘LOC” (Lines of
Code) and the number of files have been computed. The 3rd and
the 4th columns contain the number of defects registered in the
defect database and the number of HTs extracted from the VCS.

5. Data collection

In this section, data collection procedures used in this study will
be described.

5.1. Computing the defect count per file

In order to analyse the relationship between defect count and
historical characteristics of files, the defect count per file has to
be computed. Usually, defect tracking systems contain information
on the defects recorded during the lifetime of a project, amongst
others the defect ID and additional, detailed information on the de-
fect. However, the defect tracking systems, usually, do not give any
information on which files are affected by the defect. Therefore,
information contained in VCS has to be analysed. For this purpose,
we extract the information contained in the VCS into a history ta-
ble in a data base. Additionally, we extract the defects of the corre-
sponding project into a defect table in the same data base. Similar
to the approach used in [8,4,26], we then use a 3-level algorithm to
determine the defect count per file. At each level, a particular
search strategy is applied.

5.1.1. Direct search
First, we search for messages in the history table containing the

defect-IDs contained in the defect table. Messages containing the
defect-ID and a text pattern, e.g. ‘‘fixed” or ‘‘removed”, are indica-
tors for defects that have been removed. In this case, the number of
defects of the corresponding file has to be increased.

5.1.2. Keyword search
In the second step, we search for keywords, e.g. ‘‘defect fixed”,

‘‘problem fixed”, within the messages which have not been inves-
tigated in the step before. We use about 50 keywords.

5.1.3. Multi-defects keyword search
In the last step, we search for keywords which give some hints

that two or more defects have been removed (e.g. ‘‘two defects
fixed‘‘). In this case, we increase the number of defects accordingly.

5.2. Keyword definition and validation

The definition and validation of keywords is an iterative process
consisting of the following procedures.

5.2.1. Validation of the direct search
In a first step, we analysed whether the HTs found by direct

search actually contain an indication that a defect has been cor-
rected. For this purpose, 20% of all HTs found by the first algorithm
step have been validated manually. Almost all messaged found in
this step (99% or more in all projects) have been classified correctly
by the algorithm. One reason for this is that the messages are sim-
ple, using standard phrases like:

‘‘Bugfix #<BUG-ID>: <What has been done>”
‘‘Fixed bug related to PR: <Problem Report-ID> submitted by
<Submitter>”
‘‘A fix to . . . PR: <Problem Report-ID> submitted by <Submitter>”
‘‘A bug in . . .. Bugzilla report <BUGID> submitted by <Submitter>”
‘‘Correction of <What has been corrected>, #<BUGID> . . .. ‘‘
‘‘Fix problem . . .. #<BUGID> submitted by <Submitter>”
‘‘Fix for #<BUGID>”
‘‘Fix problem with . . .. #<BUGID>”

5.2.2. Validation of existing keywords
The main goal of this step is to determine whether the HTs iden-

tified by the second and third level of the algorithm actually con-
tain an indication that a defect has been corrected. If this is not
the case, the corresponding keyword may be too general, ambigu-
ous or incorrect and must be either refined or removed. A total of
10% of the HTs found by the algorithm have been selected ran-

Table 2
Subject programs.

OS-Project Project since # Defects # HTs LOC # Files

1. Ant (1.7.0) 2000 4804 62,763 234,253 1550
2. FOP (0.94) 2002� 1478 30,772 192,792 1020
3. CDK (1.0.1) 2001� 602 55,757 227,037 1038
4. Freenet (0.7) 1999� 1598 53,887 68,238 464
5. Jetspeed2 (2.1.2) 2005 630 36,235 236,254 1410
6. Jmol (11.2) 2001� 421 39,981 117,732 332
7. OsCache (2.4.1) 2000 2365 1433 19,702 113
8. Pentaho (1.6.0) 2005� 856 58,673 209,540 570
9. TV-Browser (2.6) 2003 190 38,431 170,981 1868

8 http://ant.apache.org/.
9 http://xmlgraphics.apache.org/fop/index.html.

10 http://sourceforge.net/projects/cdk/.
11 http://freenetproject.org/whatis.html.
12 http://portals.apache.org/jetspeed-2/.
13 http://jmol.sourceforge.net/.
14 http://www.opensymphony.com/oscache/.
15 http://sourceforge.net/projects/pentaho/.
16 http://www.tvbrowser.org/.
17 http://sourceforge.net/.

542 T. Illes-Seifert, B. Paech / Information and Software Technology 52 (2010) 539–558



Author's personal copy

domly and validated in such a way. Thus, incorrect patterns have
been removed and ambiguous ones refined.

5.2.3. Searching for missing keyword patterns
The main goal of this step is to identify keyword patterns not

included in the search so far. For this purpose, HTs containing weak
keywords like ‘‘fix” or ‘‘problem” have been analysed in order to
determine missing complex patterns like ‘‘error fixed” or ‘‘problem
corrected”.

Finally, HTs that have not been selected by any of the levels of
the algorithm have been analysed in order to determine if some
keywords are missing. For each project 100–200 HTs have been
selected randomly and investigated for additional keywords. Only
in the case of the OSCache project was one additional keyword
found.

5.3. Algorithm performance

Formally, determining whether a HT is defect correcting
(dc_HT) or not (ndc_HT) is a classification problem. Accordingly,
each HT is mapped to one of the element of the set {positi-
ve = (dc_HT), negative = (ndc_HT)}. The algorithm represents a
classification model that predicts whether an instance is positive
or negative. Given a HT, there are four possibilities:

� True positive (TP): This is the case if the HT is positive (= dc_HT)
and it is classified as positive by the algorithm.

� False negative (FN): The HT is positive but classified as negative
(= ndc_HT).

� True negative (TN): The HT is classified as negative and it is actu-
ally negative.

� False positive (FP): The HT is actually negative but classified as
positive.

In order to determine the overall performance of our search,
three analyses have been performed: true-positives analysis,
anti-pattern analysis, and the overall performance analysis.

For the true-positives analysis we randomly selected 10% of all
HTs found by the algorithm and analysed whether the HTs have
been correctly classified as dc_HTs. Table 3 summarizes the results
of our analysis. For each project, the percentage of correctly classi-
fied dc_HTs (true positives) is indicated. The results show high
classification accuracy with respect to the correctly classified
dc_HTs that ranges from 97% to 99%.

For the anti-pattern analysis, we defined a set of keyword
‘‘anti-patterns” that indicate a non-defect-correcting HT, e.g. ‘‘ini-
tial revision”, ‘‘refactoring” or ‘‘removed warnings”. Then we com-
puted the intersection of both: the set of non-defect-correcting HTs
and the set of defect-correcting HTs. All HTs that lie in the intersec-
tion can be a sign for an erroneous classification. Table 4 shows the
results of this analysis. For each project, the percentage of HTs ly-
ing in the intersection set is indicated (relative to the total number
of dc_HTs identified by the algorithm). The last column indicates
the percentage of correctly classified dc_HTs in the intersection set.

This analysis underlines the results obtained by the true-posi-
tives analysis. The classification accuracy with respect to the cor-
rectly classified dc_HTs in the intersection set ranges from 94% to
100%.

In order to evaluate the overall performance of the algorithm
we randomly selected 1000 HTs in each project and analysed
whether it was a TP, TN, FP, or FN. Then, we compared precision
and accuracy of the classification by the algorithm.

The precision can be calculated as:

precision ¼ TP

TPþ FP

The precision indicates the probability that the HT is actually
‘‘positive” when the algorithm computes this.

The overall accuracy of the algorithm can be calculated by:

accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

Table 5 summarizes precision and accuracy for all projects. The
precision of the algorithm is high across all projects. It ranges from
0.917 to 0.985. Thus, it is very probable that a HT is actually posi-
tive if this is determined by the algorithm.

The overall accuracy is also high and ranges from 0.958 to
0.989. In six cases, the overall accuracy is higher than the precision.
In two other cases, both values (precision and accuracy) are quite
similar.

5.4. Defect correction density

On average, 14% of all HTs contain messages reporting a defect
(defect-correcting message). The maximum is 31.9% in case of Jet-
speed2 and the minimum is 2.9% in case of TVBrowser. Fig. 3 illus-

Table 3
Algorithm performance: percentage of correctly classified HTs out of 10% of all HTs
found by the algorithm.

Project % of correctly classified dc_HTs

1 FOP 0.993
2 Ant 0.974
3 CDK 0.987
4 Freenet 0.997
5 Jetspeed2 0.994
6 Jmol 0.998
7 OSCache 0.999
8 Pentaho 0.996
9 TVBrowser 0.995

Table 4
Algorithm performance: anti-pattern analysis results.

Project % of the number of HTs in the
intersection relative to the number
of dc-HTs found by the algorithm

Classification
accuracy

1 Ant 0.03 0.947
2 FOP 0.06 0.941
3 CDK 0.03 0.947
4 Freenet 0.29 0.994
5 Jetspeed2 0.27 0.990
6 Jmol 0.01 1.000
7 OSCache 0.21 1.000
8 Pentaho 0.04 0.955
9 TVBrowser 0.03 0.900

Table 5
Algorithm performance: overall performance.

Ant FOP CDK Freenet Jetspeed2 Jmol OSCache Pentaho TV-Browser MIN MAX

Precision 0.945 0.985 0.917 0.977 0.981 0.968 0.964 0.977 0.969 0.985 0.917
Accuracy 0.979 0.983 0.968 0.958 0.989 0.981 0.972 0.975 0.970 0.989 0.958
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trates the percentage of defect-correcting messages (these are
messages which have been found in one of the steps of the algo-
rithm presented in Section 5.1) for each project. Consequently,
most of the HTs are non-defect correcting (e.g. initial check-in,
extension of the functionality, etc.) than defect correction.

In almost all programs, the percentage of HTs found by direct
search makes up the biggest part of all HTs found by any level of
the algorithm. For example, in the case of Jetspeed2, 28.7% of all
HTs (in the history table) contain a reference to a bugID in the de-
fect table, 1.4% of all messages contain one of the keywords found
by direct search and 1.8% of all messages contain keywords that
indicate that more than one defect has been corrected (found by
the multi-defect keyword search). Pentaho is the only program
for which the most of the defects have been found by the multi-
keyword search. Fig. 4 illustrates the percentage of defect-correct-
ing HTs per each level of the algorithm (direct search, keyword
search, multi-defect keyword search) for each project.

6. Data analysis

In order to analyse the relationship between the defect count
and historical characteristics of files, we use several analyses
depending on the measurement scale of the variables. For ratio
and interval scaled variables, we perform correlation analyses.

For nominal and ordinal scaled variables, simple respectively com-
bined analyses of defect variance are performed. For both analyses
of defect variance we use visual means and statistical procedures.
The statistical procedures serve to statistically support the signifi-
cance of the results obtained by visual analyses.

We used SPSS,18 version 11.5, for all statistical analyses.

6.1. Correlation analysis

The dependency between two interval or ratio variables, such as
the number of HTs performed to a file (measured by the FC metric)
and a file’s defect count, can be expressed by the Spearman rank-
order correlation coefficient. This coefficient is a measure for the
(linear) dependency between two variables [29]. The coefficient
can take values between �1 and 1, whereas 0 represents no linear
correlation. Another statistical measure of the association between
two variables is the Pearson correlation coefficient. This coefficient
is not as robust as the Spearman rank correlation coefficient bea-
cause it assumes a normal distribution and is not robust in case
of atypical values (e.g. outliers) [7]. For the sake of completeness,
we mostly indicate both coefficients.

6.2. Simple analysis of defect variance

We use this analysis in order to determine the relationship be-
tween a nominal or ordinal independent variable and a file’s defect
count, i.e. we analyse the variance of the defect count in different
categories of the independent variable. A nominal or ordinal vari-
able classifies the entities according to an attribute. For example,
the age metric of a file classifies the entities with respect to their
age into one of the categories: Newborn, Young orOld..

For analysis, we display the data in a diagram that we call defect
variance analysis diagram (DVA). This diagram relates the mean de-
fect count to each of the defined categories as follows: the x-axis
contains the category. On the y-axis, the mean defect count in each
of these categories is indicated. The mean defect count is the arith-
metic mean, computed as the sum of the defect counts of the files
in each category divided by the number of files in each group. For
example, Fig. 5 shows the DVA diagram for the program ‘‘Ant” with
respect to the independent variable age. The mean defect count for
Newborn files (F-N) is 0.612, for Young (F-Y) files 0.842 and for Old
files (F-O) 0.993. Based on the DVA, we can see that Old files are
the most fault-prone files.

In order to obtain statistical evidence for the results we derived
visually, we perform the Kruskal–Wallis [29] non-parametric test.
A non-parametric test does not make any assumptions concerning
the distribution of parameters (in contrast to parametric tests). Dif-
ferences between several populations can be analysed with the help
of the Kruskal–Wallis test (in our example, differences between
Newborn, Young and Old Files). The null hypothesis is that the de-
fect count is the same in both groups; the alternative hypothesis is
that it is not.

6.3. Combined analysis of defect variance

In order to analyse the relationship between two categorial
independent variables and a file’s defect count, we again use the
DVA diagram for the visual analysis. We obtain the categories by
combining the original ones and perform the analysis as described
for the simple categorial analysis. For example, we can analyse to
what extent the defect count of a file depends on its age AND on
its stability. Thus, we analyse the extent to which Old files, that
have been frequently changed (these are Old and unstable files)
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18 SPSS, http://www.spss.com/.
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are more fault-prone than Old files that have not been frequently
changed (Old and stable files). In this example, the refined cate-
gories can be defined as shown in Table 6.

The DVA relates the mean defect count to each of the refined
categories. For instance, for the project Ant (see Fig. 6), the mean
defect count of Young and unstable files (Y-unst) is 1.745. The
highest defect count have Newborn and unstable files (defect
count is 1.808). Stable files have on average lower defect counts
than unstable files. To confirm the results obtained by the visual
analysis statistically, the Kruskal–Wallis test has to be applied.
Similarly to the simple categorical analysis, the null hypothesis is
that there are no differences in the mean defect counts among
the refined categories, the alternative hypothesis is that it is not.

7. Empirical approach

In this section, we present an empirical approach that can be
used to determine indicators for quality lacks in software.

7.1. Identification of software and software releases

In the first step, the objects of investigation have to be deter-
mined. Thus the software or software components and the corre-

sponding releases are to be analysed. In this study, we identified
nine open source projects and for each of them, we determined
major releases.

The following criteria increase the success and significance of
the analyses.

(a) Size: As described in Section 4.4, the size of the software or of
the analysed components guarantees that the results are sta-
tistically significant.

(b) Maturity: The maturity of software guarantees that effects
will have appeared if present.

(c) Version controlled source code: In order to be able to identify
different releases of software the availability of a VCS con-
trolled source code is a prerequisite.

(d) Documented history: The availability of a documented his-
tory, mostly in terms of a VCS is a prerequisite for all analy-
ses concerning the relationship between historical
characteristics and software quality.

(e) Documented defect history: In the case that the quality of the
software is measured in terms of defects, the availability of a
documented defect history is also indispensable. Usually, the
defect history is documented within a defect tracking
system.

(f) Source code: The availability of source code is a prerequisite
for all analyses concerning the relationship between code
characteristics and software quality. In the case that COTS
components for which the source code is not available are
part of the software to be analysed, structural analyses are
difficult.

In this study, the size (a), the maturity (b), version controlled
source code (c) and the availability of a documented history within
a VCS (d) were criteria that have been applied when selecting the
open source projects. We expressed quality in terms of the number
of defects that occurred in a file. Consequently, the availability of a
documented defect history (e) in terms of a defect tracking system
was also a prerequisite for a project to be included in the study.
Since the correlation of structural code characteristics with soft-
ware quality metrics was not in focus of this study, criterion (f)
was not a prerequisite. However, since we plan to analyse the rela-
tionship between history and source code characteristics in combi-
nation in our future work, we searched for open source projects for
which the source code is available (criterion f).

7.2. Definition of granularity

The granularity of the analyses to be performed has to be de-
fined. In this study, we performed all analyses at the file level. Nev-
ertheless, more detailed analyses at the class level or more
synthesised analyses at the package level are also possible.

7.3. Definition of quality

In this step, the dependent variable has to be defined. How
should quality be measured? In this study, we measured quality
in terms of the number of defects that occurred in a file. More de-
tailed analyses that differentiates, for example, between pre-re-
lease (defects that occurred before release) and post-release
(defects that occurred after release) defects as quality measures
are also possible.

7.4. Definition of quality indicators

In this step, the dependent variable(s) have to be defined. In the
first step, hypotheses on possible quality indicators for a software’s
quality should be formulated. Based on these hypotheses, the

Table 6
Category definition matrix for age � stability.

Stability

Stable Unstable

Age Newborn N-stab N-unst

Young Y-stab Y-unst

Old O-stab O-unst

ANT

0.1850.2430.115

1.6611.7451.808
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Fig. 6. Combined DVA for Ant: mean defect count vs. file age and stability.
According to the Kruskal–Wallis non-parametric test, the results are statistically
significant at the 0.01 significance level.
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dependent variables and corresponding metrics can be derived.
Usually, a lot of metrics can be calculated automatically. Thus,
the selection of the ‘‘right” set of variables is not easy. Testers’
experience and results from previous analyses can be used as input
to define a manageable set of independent variables. This step also
includes the definition of the measurement scale for the variables.
For example, we divided the data in three groups according to a
file’s age: Newborn, Young and Old. Thus, the variable age is on
ordinal scale.

7.5. Measurement

In this step, data defined in steps 3 and 4 for all identified soft-
ware entities at the level defined in step 2 has to be collected. In
addition, collection procedures have to be validated for a randomly
selected part of the data. In this study, a file’s defect count has to be
determined retrospectively. Since the number of HTs is too high for
a manual classification in defect-correcting and non-defect-cor-
recting HTs, we analysed the HTs automatically (The algorithm is
presented in Section 5.1).

7.6. Simple analyses

In this step, first analyses that show the first tendency with re-
spect to the hypotheses formulated in step 4 have to be performed.
Correlation analyses and simple analyses of variance of the depen-
dent variable can be performed for ratio scaled respectively for
nominal or ordinal scaled variables. In this study, we conducted
correlation analyses for all ratio scaled variables. For instance, we
analysed the correlation between the number of distinct authors
who changed a file (metric DA) and a file’s defect count. In addi-
tion, we performed simple analyses of defect variance for nominal
and ordinal scaled variables. For example, we analysed the vari-
ance of the defect count among the categories Newborn, Young
and Old for the variable age.

7.7. Detailed analyses

In order to refine the results obtained by simple analyses, the
relationship between more than one independent variable and
the dependent variable has to be analysed. Detailed analyses can
be performed to get more precise results. For example, based on
simple correlation analyses, a strong correlation between the de-
fect count and the metrics DA (distinct authors) and FC (frequency
of change) could be determined. In the second step, we combined
these metrics in order to get more precise results on fault-prone
files. Proceeding this way, we found out that fluctuating

unstable files are the most fault-prone files. For the independent
variable ‘‘age”, we performed a simple analysis of defect variance
in the first step. As the results were surprising – Old files proved
to be the most fault-prone ones, we performed a detailed analysis
and examined the influence of age and stability, as well as age and
fluctuation in combination. These detailed analyses revealed a
more precise view. Based on the results, it could be concluded that,
for instance, Old unstable or Old fluctuating files are the
most fault-prone ones. In addition, Old non-fluctuating or

stable files are much less fault-prone than Old fluctuating

or unstable files.

7.8. Synthesis of results

In this step, conclusions on the results have to be drawn. Which
are good indicators for software quality? Which indicators persist
across several releases? Based on the results of the synthesis, it
can be decided which measures can be taken to improve the qual-

ity and who (i.e. which roles) should be involved in improving the
quality.

8. Do past defects correlate with a file’s current defect count?

In order to analyse H1, we performed a correlation analysis, i.e.
we computed the correlation between the defect count of each two
consecutive releases, DPREi and DCURRi. The results are listed in Table
7. For each project, we computed the Spearman rank-order corre-
lation coefficient between DPREi and DCURRi. The first and second
columns indicate the releases for which the correlation coefficients
have been computed. The third column indicates the Spearman
rank correlation coefficient. For instance, in the open source project
Ant a moderate correlation (0.353, 0.338 respectively 0.334) be-
tween DPREi and DCURRi can be determined for all analysed releases.
These correlations are significant at 0.01 level (��). For the sake of
completeness, the last column contains the Pearson correlation
coefficient.

Only for the project Ant, a significant correlation with a Spear-
man coefficient above 0.3 between DPREi and DCURRi can be deter-
mined in all releases. In three of the projects (CDK, Jmol and

Table 7
Correlation analysis for H1. Correlations significant at 0.01 level (��), and at 0.05 level
(�).

Release i � 1 Release i Spearman Pearson

Ant
1.5.3.1 1.6.0 0.353 ** 0.454 **

1.6.0 1.6.1 0.338 ** 0.461 **

1.6.1 1.7.0 0.334 ** 0.476 **

Apache FOP
pre 0.2 0.103 ** 0.12 **

0.2 0.93 0.148 ** 0.25 **

0.93 0.91 0.111 0.012

CDK
CDK-2001 CDK-2002 0.473 ** 0.429 **

CDK-2002 CDK-2004 0.349 ** 0.389 **

CDK-2004 CDK-2005 0.3 ** 0.328 **

CDK-2005 CDK-2006 0.063 * 0.216 **

CDK-2006 1.0 0.123 ** 0.179

Free net
0.4 0.5.0 0.176 ** 0.708 **

0.5.0 0.5.1 �0.017 0.527 **

0.5.1 0.5.2 0.112 0.213 *

0.5.2 0.7 0.605 ** 0.956 **

Jetspeed2
pre 2.0 0.201 ** 0.187 **

2.0 2.1 0.1 ** 0.115 **

Jmol
1 2 0.42 ** 0.69 **

2 6 0.178 * 0.068
6 9 0.025 -0.032
9 10.0 0.053 -0.014
10.0 10.2 0.485 ** 0.71 **

10.2 11 0.481 ** 0.837 **

11 11.2 0.512 ** 0.905 **

OSCache
pre 2.1 0.429 ** 0.214
2.1 2.4 0.202 0.326 *

Pentaho
pre 1.2.0 0.068 ** 0.203 **

1.2.0 1.2.1 0.089 0.092 *

1.2.1 1.2.6 0.218 ** 0.307 **

TVBrowser
0.9 1.0 0.225 ** 0.281 **

1.0 2.0 0.184 ** 0.091
2.0 2.2 0.265 ** 0.217 **

2.2 2.6 0.399 ** 0.38 **
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OSCache), at least the half of the analysed releases show a signifi-
cant correlation with a Spearman coefficient above 0.3 between
past and current defects in files. Three of the projects, Freenet, Pen-
taho and TVBrowser show significant correlations in 25–33% of the
analysed releases. For two projects (ApacheFOP and Jetspeed2),
none of the analysed releases show significant correlations with
a Spearman coefficient above 0.3 between DPREi and DCURRi. These
results are summarized in Fig. 7.

Based on the results of the correlation analysis, our research
hypothesis H1 cannot be confirmed. The number of defects found
in the previous release of a file does not correlate with its current
defect count.

9. Does a file’s release history correlate with its defect count?

In order to explore the relationship between the defect count
and the release history of a file, we performed a correlation

100

60 57
50

33
25 25

0 0
0

20

40

60

80

100

120

Ant
CDK

Jm
ol

OSCac
he

Pen
ta

ho

Fre
en

et

TVBro
wse

r

Apa
ch

e
FOP

Je
tsp

ee
d2

Open source project

%
 o

f 
re

le
as

es
 w

it
h

 a
 S

p
ea

rm
an

 c
o

rr
. 

co
ef

f 
>

 0
.3

Fig. 7. Correlation results for defect characteristics.

Table 8
Correlation analysis for release characteristics and defect count.

ID OS-Prog ram MAX (Spearman) MIN (Spearman) % Releases with significant
corr. above 0.3

% Releases with
significant corr.

% Releases without
significant corr.

Hotfix
1 Ant 0.572 * 0.021 25 25 75
2 Apache-FOP 0.458 ** 0.335 * 100 100 0
3 CDK 0.284 ** 0.098 0 40 60
4 Freenet 0.457 ** 0.248 60 60 40
5 Jetspeed2 0.181 ** 0.106 ** 0 67 33
6 Jmol 0.707 ** 0.016 50 50 50
7 OsCache 0.091 0.091 0 0 100
8 Pentaho 0.696 ** 0.001 50 50 50
9 TV-Browser 0.584 ** �0.087 80 60 40

Post-release
1 Ant 0.259 * 0.051 0 25 75
2 Apache-FOP 0.501 ** 0.045 67 67 33
3 CDK 0.571 ** 0.032 20 40 60
4 Freenet 0.588 ** 0.396 ** 60 60 40
5 Jetspeed2 0.366 ** 0.065 33 33 67
6 Jmol 0.646 ** 0.093 25 63 38
7 OsCache 0.494 ** 0.033 67 33 67
8 Pentaho 0.781 ** 0.188 ** 50 100 0
9 TV-Browser 0.648 ** �0.026 40 40 60

Pre-release
1 Ant 0.455 * 0.277 * 75 100 0
2 Apache-FOP 0.405 * 0.097 67 67 33
3 CDK 0.629 * 0.004 20 40 60
4 Freenet 0.552 * 0.322 * 100 100 0
5 Jetspeed2 0.249 * 0.153 * 0 67 33
6 Jmol 0.659 * 0.087 50 75 25
7 OsCache 0.943 0.378 100 0 100
8 Pentaho 0.531 ** �0.121 50 50 50
9 TV-Browser 0.384 ** 0.292 ** 80 100 0

LastMinuteFix
1 Ant 0.293 ** �0.017 0 50 50
2 Apache-FOP 0.132 0.074 0 0 100
3 CDK 0.425 ** 0.069 20 40 60
4 Freenet 0.679 ** �0.003 60 60 40
5 Jetspeed2 0.27 ** 0.118 * 0 67 33
6 Jmol 0.596 ** �0.074 25 38 63
7 OsCache 0.559 0.559 33 0 100
8 Pentaho 0.361 ** �0.274 ** 50 75 25
9 TV-Browser 0.618 ** �0.026 60 40 60

Table 9
Maximum/minimum percentage of files in each of the categories Newborn, Young

and Old.

Project Newborn Young Old

MAX
(%)

Min
(%)

MAX
(%)

Min
(%)

MAX
(%)

Min
(%)

1 Ant 43 18 74 410 44 8
2 FOP 40 40 60 48 41 24
3 CDK 54 21 70 44 9 4
4 Freenet 51 19 68 29 4 2
5 Jetspeed2 48 13 57 56 30 9
6 Jmol 64 27 63 35 6 2
7 OSCache 39 9 45 8 72 16
8 Pentaho 63 63 71 37 10 0
9 TVBrowser 86 22 59 12 96 24
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analysis, i.e. we computed the correlation between the dependent
variable (DCURRi) and the independent variables (HF, PreR, PostR,
LM). In this case, the Spearman rank-order correlation coefficient
measures the extent to which the number of changes performed
on a file during a phase (e.g. hotFix) correlates with the later defect
count of a file. Thus, the Spearman coefficient it is a measure for
the correlation between DCURRi and HF.

Table 8 shows the results of the correlation analysis. For each
phase, the table shows the ID and name of the analysed program.

We computed the Spearman rank correlation coefficient for each
release of the analysed programs. In the columns ‘‘MAX (Spear-
man)” and ‘‘MIN (Spearman)” the maximum respectively the min-
imum computed Spearman coefficient is indicated. The next two
columns indicate the percentage of releases with a significant cor-
relation coefficient above 0.3 and the percentage of releases with a
significant correlation (that can be below 0.3). The last column
indicates the percentage of the analysed projects that do not show
any significant correlation.
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Fig. 8. DVA: mean defect count vs. file age and stability. According to the Kruskal–Wallis non-parametric test, all results are statistically significant at the 0.01 significance
level.
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Do hotfixes that occur shortly after a program’s release induce
more defects? Looking at the correlation coefficients for the phases
‘‘hotFix” and ‘‘post-Release” we can derive the following
conclusions:

(1) Most of the projects show high correlation coefficients
between the number of changes performed in the hotFix,
respectively in the post-Release phase and the defect
count in at least one release. In the case of the hotFix

phase, 6 of 9 and in the case of the post-Release phase
8 of 9 programs show a correlation coefficient above 0.3 at
least in one of the analysed releases.

(2) However, there is only one single project that shows a corre-
lations coefficient above 0.3 in all analysed versions (Apache
FOP, in the hotFix phase). Four of the nine projects show
signigicant correlations in fewer than half of the analysed
releases. This is true for both hotFix and the post-

Release phase. Thus, we have to reject H2.1.

The defect count of a file does not increase with the number of HTs
performed in the hotFix and in the post-Release phase.

Do late changes that occur shortly before a program’s release in-
duce more defects? When we analyse the correlations coefficients
for the phases ‘‘pre-Release” and ‘‘lastMinuteFix” we can de-
rive the following conclusions:

(1) Most of the projects (8 of 9) show high correlation coeffi-
cients between the number of changes performed in the
pre-Release phase in at least one release.

(2) In the case of the lastMinuteFix phase, only 5 of 9 pro-
jects show high correlation coefficients in at least one
release. In case of the pre-release phase, two projects
(Freenet and OSCache) show high correlation coefficients
in all analysed releases. Seven of the nine projects show sig-
nificant correlations in at least the half of the analysed
releases.

(3) In case of the lastMinuteFix phase, only two projects
show significant correlations above 0.3 in more than the half
of the analysed releases.

Based on the conclusions stated before, we can partly reject the
research hypothesis H2.2.

The defect count of a file increases with the number of HTs in the
pre-Release phase. This is not true for the lastMinuteFix phase.
Finally, we can conclude, that there is little statistical evidence
for the correlation of a file’s release history with its defect count.

10. Is a file’s age and indicator for its defect count?

In order to analyse the relationship between a file’s age and its
defect count, we grouped the data into three categories: Newborn,
Young and Old files and performed a simple analysis of defect var-
iance: have Newborn and Young files on average a higher defect
count than Old files? Fig. 14 shows the percentage of files in each
of the categories Newborn, Young and Old for each release of the
Ant program. At the beginning of the project, the Newborn files
make up the most of all files in the project. Later in the develop-
ment cylcle, the percentage of Young and Old files increases. Such
a diagram is characteristic for most of the projects. Detailed infor-
mation on the maximum/minimum percentage of files in each of
the categories Newborn, Young and Old for each project is indi-
cated in Table 9.

Fig. 5 shows the mean defect count for the program ‘‘Ant” in
each category: Newborn (F-N), Young (F-Y), Old (F-O).

In nearly all projects (7 of 9) the mean defect count for Old files
is the highest and that for Newborn files is the lowest one. In 2 of 9
projects, the Young files have the highest defect count. According
to the Kruskal–Wallis non-parametric test, these results are signif-
icant at the 0.01 significance level.

Due to the surprising results, we performed two more detailed
analyses. For this purpose, we refined our categories and analysed
the following questions, applying a combined analysis of defect
variance:

1. To what extent does the defect count of a file depend on its age
AND on its stability?

2. To what extent does the defect count of a file depend on its age
AND on its fluctuation?

In order to answer the first question, we relate the mean defect
count to each of refined categories presented in Table 6. Then, we
built the DVA diagram. Fig. 8 shows the DVA diagrams for all pro-
jects. For 6 of 9 projects (CDK, Freenet, Jmol, Oscache, Pentaho,
TVBrowser), the highest defect count is found in files that are
Old and frequently changed. In three projects (Ant, Jetspeed2
and Pentaho), the defect count for unstable files does not differ
very much in any of the Newborn, Young and Old files. In only
one single case (Apache-FOP), Newborn and Young files that are
unstable show a significantly higher defect count than Old

unstable files. In nearly all projects (except Pentaho), Newborn
stable files have the lowest defect count. In 6 of 9 projects, New-
born unstable files are less error-prone than unstable Young

and Old files. Independent of the file age, stable files are less er-
ror-prone than unstable files.

Unstable old files are three times (ApacheFOP) to 22 (OSC-
ache) times more fault-prone than stable Newborn files. In the
case of TV-Browser, the factor is as high as 85.

We can conclude that in 6 of 9 projects the file’s age is a good indi-
cator for its defect count. In other cases, the stability of a file is a

Table 10
Category definition matrix for age � fluctuation.

Fluctuation

fluctuating Non-fluctuating

Age Newborn N-F N-nF

Young Y-F Y-nF

Old O-F O-nF

ANT
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Fig. 9. DVA: mean defect count vs. file age and fluctuation for Ant. According to the
Kruskal–Wallis non-parametric test, the results are statistically significant at the
0.01 significance level.
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better indicator for a file’s defect count. In this case the following
holds: the more changes have been performed on a file, the higher
is its defect count.

To answer the second question, we relate the mean defect count
to each of refined categories, presented in the matrix in Table 10.

Then, we build the DVA diagram. For instance, for the project
Ant (see Fig. 9), the mean defect count of Young and fluctuating

files (Y-F) is 2.28. The highest defect counts have Newborn and

fluctuating files (defect count is 2.84). Non-fluctuating files
have on average lower defect counts than fluctuating files.

Fig. 10 shows the DVA for all projects. For 6 of 9 projects (CDK,
Freenet, Jetspeed2, Jmol, OsCache, Pentaho), the highest defect
count is found in files that are Old and fluctuating. In the case
of Ant and TVBrowser, fluctuating and Newborn files are the
most fault-prone ones. Only in case of the Apache-FOP project,
non-fluctuating Young files have the highest defect count.
The lowest defect count show non-fluctuating Newborn files.
This is the case for all projects.
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Fig. 10. DVA: mean defect count vs. file age and fluctuation. According to the Kruskal–Wallis non-parametric test, all results are statistically significant at the 0.01
significance level.
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Independent of the file age, non-fluctuating files are less er-
ror-prone than fluctuating files.

Fluctuating Old files are two times (ApacheFOP) to 15 (OSC-
ache) times more fault-prone than non-fluctuating and New-

born files. In the case of TV-Browser, the factor is as high as 41.

Only in three projects (CDK, Freenet, Jetspeed2), the defect
count for non-fluctuating files does not differ very much
in any of the Young and Old files. In these cases, non-fluctu-
ating Young and Old files are about two times more fault-
prone than non-fluctuating Newborn files. Thus, the file’s
age is a good indicator for its defect count.

We can conclude that by combining the two metrics (a file’s age
and its fluctuation or a file’s age and its stability), more detailed
conclusions on the relationship between these metrics and a file’s
defect count can be drawn than this is the case when analysing the
metrics each taken separately.

Our research hypothesis H3 can be largely confirmed, a file’s age is
a good indicator for its defect count. In addition, we must reject the
research hypotheses H3.1 and H3.2. Newborn and Young files are
not the most fault-prone files. Based on our analyses, Old and
unstable files, as well as Old and fluctuating files are the most
error-prone files.

11. Is there a history indicator that persists across all projects?

In order to answer this question, we compare the Spearman
rank-order correlation coefficients representing the dependency
between historical characteristics and a file’s defect count. A de-
tailed analysis of the relationship between the DA, FC and CF met-
rics and a file’s defect count along with descriptive statistics is
presented in our previous work [13].19

Table 11 shows the results of this comparison. The columns
contain the Spearman rank-order correlation coefficients for the

corresponding metrics. In the column ‘‘Past defects”, we included
the maximum correlation coefficient for a particular project ob-
tained by the correlation analysis presented in Section 8. We in-
cluded the corresponding value only in the case when at least
half of the analysed releases contain significant correlations above
0.2. The same way we proceeded with the information on the Re-
lease history when including correlation coefficients obtained by
the analysis in Section 9.

Based on this first analysis, it can be concluded that there is no indi-
cator that shows the strongest correlation in all projects. But the
metrics DA and FC prove to be reliable indicators across all projects,
i.e. even if in some projects there are stronger correlations than
those for DA and FC, these metrics show significant correlations
above 0.4 across most analysed projects.

For a detailed analysis, we performed a combined analysis of
defect variance. For this purpose, we refined our categories and
analysed to what extent the defect count of a file depends on its
stability AND on its fluctuation. Thus, we analyse, for example, to
what extent non-fluctuating files, that have been frequently
changed (these are non-fluctuating and unstable files) are
more fault-prone than non-fluctuating files that have not been
frequently changed (Old and stable files). Consequently, we re-
late the mean defect count to each of refined categories, presented
in Table 12.

Fig. 11 shows the DVA for all projects. The highest defect counts
have unstable fluctuating files (F-unstab). This is true for 8
of 9 projects. One exception is the Jmol project. In this case, the
highest defect counts have unstable files that have been changed
by distinct authors below average. The lowest defect counts show
stable and non-fluctuating files (nF-stab). This is the case
for 7 of 9 projects (Ant, Apache-FOP, CDK, Freenet, OSCache, Pen-
taho and TVBrowser). In other two cases, the defect count for
unstable files does not differ very much in any of the fluctuat-
ing and non-fluctuating files.

Unstable fluctuating files are three times (Jetspeed2) to 15
(OS-Cache) times more fault-prone than stable and non-fluc-

tuating files. To obtain statistical evidence, we performed the
Kruskal–Wallis non-parametric test. According to this test, all re-
sults are statistically significant at the 0.01 significance level.

Based on the analysis results presented in this section and in
Section 10, H4 can be confirmed to a certain extent. The number
of distinct authors that performed changes to a file (DA metric) as
well as the number of HTs (FC metric) show strong correlations
with a file’s defect count. In combination, these indicators can be
used to determine the files that are most fault-prone: In nearly
all cases, these are unstable fluctuating files.
As analysed in Section 10, a file’s age in combination with its fluc-
tuation and stability is a good indicator for its fault-proneness. In
all cases, old fluctuating and old unstable files are the most fault-
prone files.

Table 11
Comparison of correlation coefficients for several historical characteristics.

ID OSP DA FC CF-SUM CF-MAX Past defects Release history

HF Post R Pre R LM

1 Ant 0.684 �� 0.597 �� 0.504 �� 0.399 �� 0.353 �� – – – –
2 Apache-FOP 0.38 �� 0.431 �� 0.285 �� 0.203 �� – 0.458 �� 0.501 �� 0.455 �� –
3 CDK 0.415 �� 0.437 �� 0.211 �� 0.142 �� 0.473 �� – – – –
4 Freenet 0.741 �� 0.641 �� 0.22 �� �0.02 �� – 0.457 �� 0.588 �� 0.552 �� 0.679 ��

5 Jetspeed2 0.741 �� 0.641 �� 0.22 �� �0.02 �� 0.201 �� – – – –
6 Jmol 0.16 �� 0.408 �� 0.141 �� �0.042 �� 0.512 �� – – – –
7 OSCache 0.48 �� 0.626 �� 0.517 �� 0.036 �� 0.429 �� – 0.494 �� 0.943 �� –
8 Pentaho 0.352 �� 0.503 �� 0.416 �� 0.272 �� – – – – –
9 TV-Browser 0.471 �� 0.442 �� �0.189 �� �0.248 �� – 0.584 �� – 0.384 �� 0.618 ��

Table 12
Category definition matrix for stability � fluctuation.

Stability

Stable Unstable

Fluctuation Fluctuating F-stab F-unstab

Non-fluctuating nF-stab nF-unstab

19 On average, 1.14 – 2.91 distinct authors performed HTs to a file. The minimum
count of distinct authors is 1 in all projects, whereas the maximum count is 40
authors in case of the Freenet project. The ratio between stable and unstable files
ranges from 1.8 to 3.3. The ratio between non-fluctuating and fluctuating files ranges
from 0.4 to 7.0. Table 16 summarises basic characteristics of OSPs with respect to the
DA metric and the ration between stable/unstable respectively no-fluctuating/
fluctuating files.
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Fig. 11. DVA: mean defect count vs. fluctuation and stability. According to the Kruskal–Wallis non-parametric test, all results are statistically significant at the 0.01
significance level.
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12. Discussion

In this Section, we discuss an alternative, coarser grained cate-
gorisation for release history and show that this categorisation
does not differ significantly from the results obtained in Section
9. In addition, we discuss advantages and disadvantages of analy-
ses on different granularity levels e.g. on file vs. on package level.
The more detailed a categorization is the more precise are the re-
sults. But increasing the analysis granularity means on the other
hand that the effort to evaluate the results increases, too. Thus, a
trade-off between a coarse grained (=easy to apply and analyse
in practice) and fine grained (=precise results but costly to analyse)
has to be performed.

Definition of time bands. To investigate hypothesis H2, we
analysed whether a file’s release history correlates with its defect
count. For this purpose, we subdivided the time between two re-
leases into five phases. These phases represent percentages of time
between the considered releases (5%, 10%, etc.). Our results show
that there is little statistical evidence that release characteristics
as defined in Section 3 correlate with a file’s defect count. For the
analysed projects, the time between two releases ranges from
about 5 months to 2 years. The average time interval between
two releases in all projects is about 1 year (1.1 years). Accordingly,
the time interval for HF and LM phases (both denoting 5% of the
whole time period between two releases) ranges from 7 to 37 days.
The average time interval for HF and LM is 20 days. The time inter-
val for PostR and PreR (10% of the whole time period between
two releases) ranges from 14 to 74 days. The average time intervals
for PostR and PreR are 40 days. Fig. 13 summarises the different
ranges of time intervals in terms of box plots. Fig. 13a shows the
box plot for time intervals between two releases for the analysed
projects (in years). Fig. 13b shows the box plot for the time inter-
vals for the HF and LM phases and Fig. 13c shows the box plot for
time intervals for the PostR and PreR phases (in days).

Nevertheless, the results may differ in case of agile projects or
projects having short release cycles. In these cases, e.g. 5% of the
time may represent only few days. In addition, the definition of re-
lease historical characteristics may be adapted for such projects by
e.g. comprising several release cycles to one or by subdividing the
time between two release cycles into fewer phases.

We performed an additional, coarser grained analysis in which
we merged the phases defined before. The resulting phases are HP
(hotFix and post-Release) and PL (pre-Release and last-

MinuteFix). The resulting phases denote the first respectively
the last 15% of time between two releases. The analysis results
are similar to the results obtained by the detailed analysis in Sec-
tion 9. Only two projects show significant correlations in more
than half of the analysed releases for PL as well as for the HP

phases. Only one project shows significant correlations above 0.3
in all analysed releases. Thus, this analysis underlines the results
obtained in Section 9. Based on the data, there is little statistical
evidence for the correlation of a file’s release history with its defect
count.

Detailed results are shown in Table 13. For each of the aggre-
gated phases (HP = hotFix and post-Release, PL = pre-Re-

lease and LastMinuteFix) the table shows the ID and the
name of the analysed project. In the columns ‘‘MAX (Spearman)”
and ‘‘MIN (Spearman)” the maximum respectively the minimum
computed Spearman coefficient is indicated. The next two columns
indicate the percentage of releases with a significant correlation
coefficient above 0.3 and the percentage of releases with a signifi-
cant correlation (that can be below 0.3). The last column indicates
the percentage of the analysed projects that do not show any sig-
nificant correlation.

12.1. Aggregating information

Exploring the history of software projects requires the cleaning
up, processing, transformation, analysis and interpretation of a
high amount of data. Thus, measurements that synthesize the
evolution of a software entity have to be defined [9]. For analys-
ing correlations between a file’s defect count and its age, we clas-
sified the data into three groups (Newborn, Young and Old). A
more detailed classification would lead to more precise results.
However, we choose a simple categorisation for the following
two main reasons:

(a) Applicability in practice. The main advantage of the empirical
approach presented in Section 7 is its applicability in prac-
tice. The definition of simple categories supports this
approach because the more detailed a categorisation is, the
more time-consuming to analyse and interpret in practice.

(b) Metaphorisation: By having less but meaningful categories, it
simplifies the communication and interpretation of the
results. It is more difficult to find meaningful names for
e.g. 10 categories.

Table 13
Correlation analysis for aggregated release characteristics and defect count.

ID Project MAX (Spearman) MIN (Spearman) % Releases with sign.
corr. above 0.3

% Releases with
sign. corr.

% Releases without
significant corr.

HP: Hotfix and Post-release
1 Ant 0.208 � �0.111 �� 0 33 67
2 Apache-FOP 0.472 �� 0.204 �� 25 50 50
3 CDK 0.499 �� 0.151 �� 17 50 50
4 Freenet 0.451 �� 0.359 �� 100 100 0
5 Jetspeed2 0.32 �� 0.104 �� 33 100 0
6 Jmol 0.477 �� 0.182 � 33 67 33
7 OSCache 0.494 �� 0.494 �� 33 33 67
8 Pentaho 0.763 �� 0.25 �� 50 75 25
9 TV-Browser 0.547 �� 0.167 � 40 60 40

PL: Post-release and LastMinuteFix
1 Ant 0.405 �� 0.268 �� 33 83 17
2 Apache-FOP 0.366 �� 0.228 �� 25 75 25
3 CDK 0.544 �� 0.192 �� 17 50 50
4 Freenet 0.632 �� 0.293 �� 67 83 17
5 Jetspeed2 0.229 �� 0.117 �� 0 67 33
6 Jmol 0.561 �� 0.2 � 44 56 44
7 OSCache – – – – –
8 Pentaho 0.406 �� �0.229 �� 25 75 25
9 TV-Browser 0.421 �� 0.18 � 60 100 0
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A trade-off between a coarse grained (=easy to apply and ana-
lyse in practice) and fine grained (=precise results but costly to
analyse) has to be performed. In addition, an existing categorisa-
tion can be refined. This can be necessary when e.g. current results
differ significantly from results obtained in past analyses. In
addition, the testers’ experience may play an important role when
deciding to perform detailed analyses. In cases that the results do
not reflect the testers’ expectations/hypotheses, a detailed categor-
isation would help to get more precise results.

For analysing correlations between a file’s defect count and its
change history, we performed correlation analyses. For detailed
analyses (e.g. combined analyses of defect variance, see Section
6), we classified the data into two groups. The reasons for choosing
only two groups are the same as for the independent variable
‘‘age”. In addition, for combined analyses, the analysis and inter-
pretation complexity increases with the number of categories.
Thus, for analysing two independent variables with each three cat-
egories, nine (3 � 3) results have to be analysed.

All analyses have been performed at file level. The main reason
for not performing analyses on a higher level e.g. on package level
is that a package consists of several very heterogeneous files with
respect to their age, number of authors performing them, etc. Thus
an aggregation (by computing the sum, maximum, average, or
median) is difficult and looses too much information. An aggrega-

tion is best suited for e.g. the lines of code metric (LOC). The total
LOC of a package has a ‘‘meaning” and can be computed by sum-
ming up the LOC-metrics of the files/classes contained in it. The
loss of information is also the reason for not performing the anal-
yses across all project, i.e. by computing the correlation between
one independent variable and the defect count in files across all
projects. For example, the informative value that in 7 of 9 projects
a particular independent variable correlates with a file’s defect
count is much higher than the indication of a correlation coeffi-
cient of e.g. 0.4 computed by merging files of all projects together.
An aggregated correlation coefficient of 0.4 would not give any
information whether all projects show this moderate correlation
or whether some projects correlate very strong while others corre-
late very weak so that the overall result is a moderate correlation.

13. Threats to validity

Internal validity is concerned with the degree to which conclu-
sions about the causal effect of the independent variables on the
dependent variable can be drawn [29]. One threat to validity is
the problem of collective check-ins. Collective check-ins denote
HTs where a set of files are checked in after a developer has re-
moved two or more defects. Suppose that a developer has removed
defect1 in files A and B and defect2 in the files B and C. Then, the
developer checks in the files A, B, and C with the HT message
‘‘ . . . two defects removed . . . ” The algorithm presented in Section
5.1 would increase the defect count of each of the files A, B and C
by two, instead of increasing the defect count in file A and C by 1
and only in file B by two. The following example shows a check-
in in the program Ant that contains references to seven bugIDs:

‘‘Fix label length issues Other fixes unearthed after major refactor-
ing of VSS tasks PR: #11562 #8451 #4387 #12793 #14174 #13532
#14463 Submitted by. . .”

It is not clear if the correction of a defect affected all files that
have been checked in conjointly. Thus, collective check-ins
represent a threat to validity and can lead to imprecision in the

Table 14
Average, maximum and minimum defect count per HT.

ID Project Average defect
count per HT

Maximum defect
count per HT

Minimum defect
count per HT

1 Ant 1.06 7 1
2 FOP 1.57 11 1
3 CDK 1.04 3 1
4 Freenet 1.34 19 1
5 Jetspeed2 1.04 5 1
6 Jmol 1.02 2 1
7 OsCache 1.16 4 1
8 Pentaho 1.11 2 1
9 TV-Browser 1.04 2 1
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Fig. 12. Percentage of HTs for different defect counts per HT. For the sake of clarity, values below 0.7 are not displayed in the chart. Nevertheless, the values are displayed in
the data table below the chart.
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computation of the defect count. The assumption is that such mes-
sages are uniformly distributed among all developers and files.
Additionally, the average defect count per HT is low in all projects.
This fact diminishes the threat to validity.

The average defect count per HT ranges from 1.02 (in case of the
Pentaho program) to 1.57 (in case of the ApacheFOP program). In
case of three programs (Jmol, Pentaho and TVBrowser), the maxi-
mum defect count per HT is only two. Only in case of two pro-
grams, Freenet and ApacheFOP, the maximum defect count per
HT is above 10. Table 14 summarizes the average, maximum and
the minimum defect count per HT for all programs.

In almost all programs, above 90% of the HTs contain references
to only a single defect. Only in case of the Pentaho and the Freenet
programs, 88.8% respectively 79.9% of the HTs contain a single de-
fect. A very low percentage of the HTs contain two defects. Apart
from ApacheFOP and OSCache, nearly zero percent of the HTs con-
tain more than three defects. Fig. 12 shows the percentage of HTs
for each project for different defect counts per HT.

Another threat to validity is that not all developers deliver
meaningful messages when they check-in files. Developers, for
example, can also check in files without specifying any reason,
even though they had corrected a defect. Thus, the defect count
of a file can be higher than the defect count computed by our algo-

rithm. This concern is alleviated by the size of the analysed
projects.

External validity is concerned with the degree to which results
can be generalized [29]. We choose programs from different appli-
cation domains in order to increase the representativeness of the
study results. However, historical characteristics of open source
projects and of commercially produced software may differ from
each other. In addition, our results may differ to results which
one would obtain when analysing toy projects or projects in a par-
ticular domain, e.g. automotive. Furthermore, analyses of addi-
tional programs that are intended in our future work would
increase the external validity.

14. Related work

In this Section, related work is presented. First, we give an over-
view on related work concerning the fact extraction, i.e. the prob-
lem of determining the defect count of a software entity. Then, we
present related work focusing on the analysis of the relationship
between software characteristics and software quality.

14.1. Fact extraction to determine the defect count for a software
entity

A key problem when analysing defects in software is to compute
the defect count of the analysed software entity. Usually, in open
source, as well as in commercial versioning control systems, it is
not possible to distinguish between a HT that reports a defect (so
called defect-correcting HTs) and a HT that reports any other
change, e.g. the introduction of new functionality, performed to
the software. The authors in [27] report on several empirical studies
in which different procedures to determine the defect count of an
entity have been applied. Depending on the analysis context, e.g.
the kind of software (open source or commercial) and on the auto-
mation degree there are several approaches for assigning the type
(defect-correcting, non-defect-correcting) to a HT. Table 15 com-
pares the different approaches and gives references to literature
where the corresponding approach has been applied. Approach 1
is the only one which is applied at development stage thus being
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the most reliable approach. Approach 2 is a manual approach, too.
But since it is a retrospective assignment, it is only suited for
small-sized projects. Approach 3 has been applied in this study.
As described in Section 5.1, the HT messages are automatically ana-
lysed for containing keywords (e.g. Bug IDs contained in the bug
tracking system or keywords like ‘‘bug fixed”) indicating that a de-
fect has been removed. Main drawback of this approach is the pos-
sibility of misclassification: non-defect-correcting HTs that have
been categorized as defect-correcting HTs and accordingly, de-
fect-correcting HTs that have been categorized as defect-correcting
HTs. In [8] an approach for combining data of VCSs and defect track-
ing systems is presented. The messages recorded in the VCS are
searched for Bug IDs contained in the defect tracking system using
regular expressions. In [4], HTs are searched for keyword patterns
like ‘‘Fixes bug ID” or ‘‘ID:”. In [26,30], the authors combined the
Bug ID search with the keyword search. In the first step they look
for Bug IDs contained in the defect tracking system that are refer-
enced in the text of a HT’s message. In order to increase the trust le-
vel of the results obtained in the first step, the messages obtained in
the first step are search for keywords such as ‘‘fixed” or ‘‘bug”. The
first step of the algorithm presented in Section 5.1 basically corre-
sponds to the approach presented in [26,30]. The second step of
the algorithm corresponds to the approach described in [4]. The
multi-defects keyword search has not been considered in literature
yet. Approach 4 classifies HTs as defect-correcting and non-defect-

correcting depending on the number of Co-Changed files. Approach
5 classifies files with respect to the development stage at which the
HT has been performed.

Since each of the automatically computed classification of HTs as
defect-correcting or non-defect-correcting rely on assumptions
(Approaches 3–5), which when violated lead to misclassifications,
the manual classifications proposed in Approach 1 and Approach
2 are more reliable. Due to the drawbacks presented for Approach
3, this approach has been mainly used for analysing open source
projects because this is the only possibility to categorize HTs in
such projects. Usually, neither in case of commercial systems, nor
in case of open source projects the type of HT is tracked. In addition,
Approach 2 can only be applied for very small projects. The projects
analysed in this study have too many HTs so that a retrospective
analysis of all HTs is impossible. The assumption about the locality
of the defects (Approach 4) can vary from project to project. In addi-
tion, in open source projects, usually the division of the develop-
ment process into several sub-phases (e.g. integration testing,
system testing) is missing respectively is not transparent. Thus, it
is not possible to apply Approach 4 and 5 in an open source context.

14.2. Indicators of software quality

To our knowledge, this is one of few studies that analyses the
relationship of a file’s history and its defect count deeply.

There are several other studies that focus on predicting the de-
fect count of a software entity by combining product metrics and
history metrics [10,1,15,20,3,25,21,23,31]. One of the main fea-
tures that distinguish our study from these studies is its magni-
tude. While most of the studies considered only one program, we
have analysed nine projects. Additionally, in contrast to our study,
the aim of these studies is defect prediction.

Our main goal is to analyse the extent to which historical char-
acteristics are good indicators for the software’s defect count with-
out selecting the best prediction model. Another difference to
these studies, except of the study reported in [25], is that all other
studies analyse commercial software. In [30], open source and
commercial software has been analysed.

In [10,15,20,3,21,23] age is used as an independent variable but
the definitions used in these studies differ from our classification.

Table 15
Approaches for classification of HTs as defect-correcting and non-defect-correcting HTs.

Approach Assumption, description Automation degree Limitations References

Approach 1
Classification by explicit
link in the VCS

The VCS system provides the
possibility to track the type of HT
performed (defect-correcting
and non-defect-correcting HT)

Manual assignment of a HT’s
type when files are checked-in
(at development time)

The quality of the classification
depends on the discipline to
indicate manually the type of the
HT. Nevertheless, the most
reliable classification approach

[27]

Approach 2
Classification by retrospective
manual assignment

Manual assignment is the most
reliable

Retrospective manual assignment
of a HT’s type

Applicable only for small-sized
projects

[27]

Approach 3
Classification by keyword
analysis

HTs contain keywords within
their messages that indicate
whether the HT is a defect-
correcting or a non- defect-
correcting HT

Automated keyword analysis of
the HT messages

Misclassification possible: false
positives and false negatives

[31,26,8,4,13]

Usually, the only possibility to
classify HTs in open source
projects

Approach 4
Classification by the number
of co-changed files

Small changes (affecting 1–2
files) are indicators for defect-
correction. Larger changes
(affecting more than two files)
are indicators for ‘‘real” changes
(e.g. new functionality)

Automated analysis of the
number of co-changed files.
Empirical evidence required for
the analysed program in order to
validate the assumption

Assumption that faults are local
does not always apply. It may
depend on the program/project
if such classification is
appropriate

[27]

Approach 5
Classification by the
development stage

HTs performed after ‘‘official”
unit testing are considered
defect-correcting HTs

Automated analysis of HTs
depending on the phase of their
check-in

Overlapping of development and
testing phases may lead to
misclassification

[27]

Table 16
Statistics for different historical characteristics.

Project DA Avg ratio stable/
unstable files

Avg ratio non-
fluctuating /
fluctuating files

Max Min

1 Ant 17 1 1.9 2.2
2 FOP 14 1 2.1 2.1
3 CDK 10 1 1.8 2.5
4 Freenet 40 1 3.3 1.8
5 Jetspeed2 7 1 2.4 1.3
6 Jmol 11 1 2.5 2.3
7 OSCache 4 1 2.7 0.4
8 Pentaho 3 1 1.8 5.6
9 TVBrowser 7 1 2.4 7.0
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For instance, in [10,11] only two file categories are defined: ‘‘new”
and ‘‘pre-existing in a previous release”. In [7], the age of a file is mea-
sured by the number of previous releases in which that file appeared,
whereas in [8] the age is measured in months. All these studies con-
firm our hypothesis that age is an indicator for a file’s defect count.
But in contrast to our study, they report contrary results. Indepen-
dent of the measures used for a software entity’s age, the studies re-
port that the younger a file the higher its defect count. One cause for
such different results can be that that the architecture in open source
programs is not as stable as in commercial development. Old files
are and must be (as a result of bad design) frequently changed and
these changes induce more defects.

Previous defects are considered in the studies [16,10,1,15,20,3,
25,21,23]. In [10,15,23], all defects (that occurred in all previous re-
leases) are considered. In [7,25,21], pre-release defects are ana-
lysed. In [20,3], the number of defects identified in the prior
release is considered. The results are contradictory. The results in
[10,3,25,21] confirm our results that previous defects correlate
with the current defect count only partly. The other studies lead
to contrary results. We can conclude that the number of past de-
fects may be an indicator for the number of current defects but
there are other more reliable indicators.

To our knowledge, the relationship between release history and
defect count has not been analysed empirically previously.

Except the study reported in [25], all other studies [1,10,15,22,
20,3,28,25] support our finding with respect to the relationship be-
tween the number of changes performed to a software entity and
its quality. In [25], only pre-release defects correlate with the
number of changes performed to software entities. The authors de-
fine pre-release defects to be all defects found 6 months before
release.

The studies presented in [3,28,25], and in [10] analyse the rela-
tionship between the number of authors performing changes to
files and the software’s quality. The study reported in [28] confirms
our results. In [25], only pre-release defect correlate with the num-
ber of authors performing changes. The results reported in [3] and
in [10] differ from our results. A possible explanation for this differ-
ence is that there is no common understanding of the problem do-
main in open source development so that changes to a software
entity, performed by different developers induce more defects than
it is in the case of commercial development as reported in the stud-
ies [3,10].

The number of co-changed files is not reported in any study.
Most studies analysing this relationship are more fine-grained,
i.e. they analyse the extent to which the number of changed lines
of code impacts on the defect count, for example in [18,17] and
in [24].

A huge amount of research papers analyse the relationship be-
tween other metrics of a software entity and its defect count,
amongst others in [5,2,6,19] and in [11].

15. Conclusion and future work

In this paper, we investigated the relationship between a file’s
historical characteristics and its defect count. Contrary to our
expectation, the defect count of a previous release of a file does
not correlate with its current defect count in most of the analysed
projects. Additionally, the defect count does not increase with the
number of changes (HTs) performed shortly after release. Stronger
statistical evidence can be derived for the relationship between the
number of changes performed shortly before a file’s release and its
defect count. The defect count of a file increases with the number
of HTs performed in the period between 85% and 95% of the time
before release. Very late changes (in the last 5% of the time before
release) do not correlate with a file’s defect count.

Our results show that a software’s history is a good indicator
for its quality. In this study, we express quality by the number
of defects. We did not find one indicator that persists across all
projects in an equal manner. Nevertheless, there are several indi-
cators that show significant strong correlations in nearly all pro-
jects: DA (number of distinct authors) and FC (frequency of
change).

One explanation of the strong correlations between a file’s DA
metric and its defect count is the lack of responsibility for that par-
ticular file that leads to uncoordinated and fault-prone changes so
that ‘‘too many cooks spoil the broth”. A second possible explanation
is that files that are changed by many authors capture too much
functionality that is used and changed by a lot of authors. Thus, these
files are indicators for bad design leading to a high defect count.

Strong significant correlations of the FC metric with a file’s de-
fect count indicates that particular parts of the application are not
well understood and often need rework. Consequently, these files
are fault prone.

The empirical results did not support all hypotheses concerning
the influence of a file’s age on its defect count. In fact, a file’s age is
a good indicator for its defect count. In almost all cases, the mean
defect count differs significantly depending on a file’s category
(Newborn, Young and Old). But in contrast to our expectation,
Old files proved to be the most fault-prone files.

Detailed analyses can be performed in order to get more precise
results and to restrict the set of defect prone files. For this purpose,
the relationship between more independent variables and a file’s
defect count can be determined. We analysed whether a file’s sta-
bility and its age in combination are indicators for its fault-prone-
ness. The most fault-prone files are Old files that have been
changed above average. In addition, in nearly all projects, the
youngest stable files – the Newborn files – have the lowest defect
count. Similarly, we also analysed whether a file’s fluctuation and
its age in combination are good indicators for its defect count. Fluc-
tuation is an indicator for the number of distinct authors that per-
formed changes to that file. Old fluctuating files are the most
fault-prone files whereas Newborn non-fluctuating files have
in average the lowest defect count. One reason for these results
might be that unstable fluctuating Old files are indicators
for bad design. Every time a change occurs, Old files are also af-
fected, which causes defects in each release. In addition, these files
lack of responsibility so that a lot of authors perform changes that
lead to defects, too.

By analysing different indicators in combination, more detailed
results can be derived. Such a detailed analysis should be done in
order to specify the results obtained by a simple analysis. Thus,
the set of fault-prone files can be constrained. In this study, we
analysed the relationship between a file’s stability, its fluctuation
and the defect count. The results show that unstable fluctuat-
ing files are 3–15 times more fault-prone than stable and non-

fluctuating files. In one particular case, the factor is as high as
40. In addition, we analysed the influence of a file’s stability and
age as well as of a file’s fluctuation and age on its fault-proneness.
Unstable old files are 3–15 times more fault-prone than stable

Newborn files. In one particular case, the factor is as high as 47.
Similarly fluctuating Old files are 3–22 times more fault-prone
than non-fluctuating Newborn files. In one particular case, the
factor is as high as 85.

Knowing which particular historical characteristics are indica-
tors for a file’s quality (in this study expressed by its defect count)
is useful for different roles in the development process. Testers can
focus their testing activities on particularly fault-prone files, e.g. on
Old unstable and fluctuating files. Quality engineers can
monitor development activities and initiate reviews, e.g. for often
changed Old files in order to prevent a high defect count. Addition-
ally, Old files changed too often by a number of authors above
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average and causing high defect counts can be indicators for bad
design. Thus, maintainers can identify candidates for refactorings.

All analyses presented in this paper have been performed by
applying an empirical approach that gives guidance in finding indi-
cators for (poor) software quality. This approach consists of several
steps: after the identification of the software and software releases,
the granularity of the analyses (e.g. analyses on file level) has to be
decided. Next, the definition of the dependent variable (the defini-
tion of how quality will be expressed) and of the independent vari-
ables (e.g. the definition of all historical characteristics) has to be
performed. During the measurement step, all data has to be col-
lected. The next two steps consist of analyses that have to be per-
formed depending on the scale of the variables. Finally, the results
have to be synthesized and conclusions have to be derived. The ap-
proach has several strengths. First, it is easy to understand. In order
to be applicable in practice, the approach has to be easily compre-
hensible and intuitive. For this purpose, the results should not be
encrypted within complex formula. In addition, visual representa-
tions for the analyses are used in order to enable a standardized
intuitive interpretation of the results. Second, the approach follows
statistical procedures. All results obtained by visual means are sta-
tistically validated. Thus, more reliable decisions can be taken be-
cause the probability of accidental effects is minimized.

Our future work will focus on analysing further measures for a
file’s age and its previous defects, as reported in related work, in
order to get more precise comparison between our results and
the results reported in literature. Additionally, we will focus on
analysing to what extent historical characteristics combined with
code characteristics, e.g. code complexity metrics, can be consid-
ered as good indicators for a file’s defect count. We expect that his-
torical characteristics improve the quality of the indicators that are
based on code characteristics only. For instance, we expect that
Old, often changed and complex files are more fault-prone than
old and complex files that have not been changed frequently.
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