

 © ACM, 2011. This is the author´s version of the work. It is posted here by permission of ACM
for your personal use. Not for redistribution. The definitive version was published in: Proceeding
SECSE '11 Proceeding of the 4th international workshop on Software engineering for computational
science and engineering. http://dl.acm.org/citation.cfm?id=1985785

http://2011.icse-conferences.org/�

Supporting the Testing of Scientific Frameworks with
Software Product Line Engineering – A Proposed

Approach
Hanna Remmel and Barbara Paech

Institute for Computer Science
University of Heidelberg

Im Neuenheimer Feld 326, 69120 Heidelberg,
Germany

+49 6221 54 – {5817, 5810}

{remmel, paech}@informatik.uni-
heidelberg.de

Christian Engwer and Peter Bastian
Interdisciplinary Centre for Scientific Computing (IWR)

University of Heidelberg
Im Neuenheimer Feld 368, 69120 Heidelberg,

Germany
+49 6221 54 – {8881,8261}

{christian.engwer, peter.bastian}@iwr.uni-
heidelberg.de

ABSTRACT
Testing scientific software involves dealing with special
challenges like missing test oracle and different possible sources
of a problem. When testing scientific frameworks, additionally a
large variety of mathematical algorithms and possible applications
for the framework has to be handled. We propose to use concepts
of software product line engineering to handle this variability.

The contribution of this paper is a two-step process for
reengineering a variability model out of a framework for scientific
software. This process is explained with a real case study.
Furthermore, we sketch how the variability model can be used to
systematically derive system test applications for the framework.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging; D.2.13
[Software Engineering]: Reusable Software – Domain
engineering; G.1.8 [Numerical Analysis]: Partial Differential
Equations

General Terms
Verification, Documentation.

Keywords
Scientific software, testing, framework, software product line
engineering, variability modeling.

1. INTRODUCTION
Testing scientific software is different from software testing in
general. The special challenges include missing test oracle, the
high priority of non-functional requirements over functional
requirements and the need for high performance parallel
computing [6]. Missing test oracle means that the expected output
of the software is not known. This is due to the fact that scientists

use software as a tool for their research. Hook and Kelly [10] state
that since the test oracle is missing, the scientists do not expect to
be able to prove the correctness of the scientific software. Rather,
they test its trustworthiness. Hook and Kelly propose using a well
chosen set of tests that may reveal a high percentage of code
faults and thus allow scientists to increase their trust. One
question that is not answered by Hook and Kelly is how to choose
the set of tests. This is something we are investigating.

When testing scientific software it is important to distinguish
between different possible sources of a problem: the underlying
science, the translation of the mathematical model of the field of
application to an algorithm and the translation of that algorithm
into program code [7]. Each possible source of problem should be
handled separately. Hook and Kelly point out that ideally these
steps should be carried out in a strict order: first check the
program code for bugs with code verification methods and then
verify the mathematical algorithm with numerical algorithm
verification methods. Only after these two steps, the scientists are
able to perform the scientific validation (evaluate whether the
output of the software is a reasonable proximity to the real world)
knowing that errors in code and mathematical algorithm are
already excluded.

Several methods have been introduced for each of these steps of
testing scientific software. Oberkampf et al. [13] give a broad
overview of existing methods for verification, validation and
prediction capability in computational science. Especially the
suitability of methods for algorithm verification (i.e. grid
convergence testing, symmetry and conservation tests) strongly
depends on the mathematical model used in the scientific
software. It is a challenge to choose a suitable combination of
different verification and validation methods for an application.

Scientific software engineering can help scientists in code
verification and algorithm verification. Code verification is often
done by unit testing in scientific software. On the other hand,
system tests are seldom systematically adopted for complex
scientific software. Case studies like [1] confirm the fact that
there is a lack in system testing. Ackroyd et al. found testing
actions in the analyzed scientific software insufficient and pushed
the developers to focus on an intensive usage of unit testing. The
authors admit that the problem that still remains is how to ensure
that code changes through continuous integration do not cause
problems, if system testing is insufficient. Even though unit tests

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SE-CSE'11, May 28, 2011, Waikiki, Honolulu, HI, USA.
Copyright 2011 ACM 978-1-4503-0598-3/11/05... $10.00.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SE-CSE’11, May 28, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0598-3/11/05 ...$10.00

10

can demonstrate that every unit works as expected, they still do
not ensure that these units work together.

Our research concentrates on system testing, in particular
algorithm verification, of scientific frameworks which provide
solutions for several similar mathematical problems like
numerical solving of partial differential equations (PDEs).
DUNE1, the software we deal with, is a complex scientific
framework with a large variety of fields of application (i.e. fluid
mechanics or heat transport), used mathematical algorithms and
numerical solutions. Developers of DUNE use unit testing to test
new and changed functionality. However there is no systematical
system testing. Our common goal with the developers of DUNE is
to set up system tests that cover all relevant fields of application
for the DUNE framework. Some questions we have to face are:

 How to model all the different possible applications for
a framework?

 How to choose a suitable set of applications for testing
from the many different possible applications?

 How can we systematically establish algorithm
verification in scientific frameworks that deals with
several mathematical models and fields of application?

 How to ensure reasonable test coverage for the system
tests?

Since it is not feasible to test every possible application of a
framework, we want to use the idea of Hook and Kelly to
carefully choose a set of tests. But how do we do this? Our idea is
to define the framework as a product line and use the variability
modeling of software product line engineering (SPLE) [17] to
model the necessary parts of the frameworks variability with a
variability model. Then, we use the created variability model as a
basis for systematically selecting the set of test applications.

In this paper, we discuss the feasibility of SPLE for scientific
software and especially for scientific frameworks. We show how
to create a product line variability model from an existing
scientific framework and sketch how SPLE can help testing a
scientific framework.

In the following sections we first present simulation of PDEs and
DUNE, the scientific framework in the focus of our research, and
then introduce SPLE for scientific software, especially for
scientific frameworks. After that we describe the creation of a
reengineering variability model for DUNE and the derivation of
system test applications from the variability model. After the
discussion of related work we summarize our findings and present
our future work.

2. SIMULATION OF PDES
Before we introduce the DUNE framework and SPLE, in this
section we explain some terminology in the context of numerical
simulations. For further reading we refer to [9].

2.1 Numerical Simulation Terminology
Starting from observations the first step is to describe a system of
components and their interaction. In natural science and
engineering these interactions are usually natural phenomena like
gravitation, fluid mechanics or heat transport, which are then

1 http://www.dune-project.org/

formulated as mathematical model, often in terms of partial
differential equations (PDEs) like the Poisson equation, Euler
equation or heat transport equation. In general, it is not possible to
solve these PDEs, or systems of PDEs analytically, thus
numerical methods are used to find an approximation for the
inaccessible analytical solution. The actual solution is obtained by
a computer simulation. This should scale from the scientists
laptop to high performance computers with thousands of cores. In
the following, we provide a small glossary of the terminology
used: A PDE is a relation involving an unknown function of
several independent variables and their partial derivates with
respect to those variables. They can be classified in elliptic (i.e.
Laplace equation, stationary heat equation), parabolic (i.e.
instationary heat equation) and hyperbolic (i.e. transport equation)
PDEs. The function is usually spatial varying and can be scalar,
like a temperature distribution, or vector valued, like a velocity
field. The analyzed problem can be stationary, meaning that it
does not depend on time or it can be instationary, meaning that
some characteristics like position or temperature change with
time.

We consider a bounded domain for which the mathematical
model is assumed to be valid. This domain of dimension d can be
embedded into a higher dimensional space of dimension w (e.g. a
surface in a three-dimensional world). Boundary conditions
complement the PDEs and describe the behavior of the solution
on the boundaries of the region. Appropriate boundary conditions
are necessary to guarantee the uniqueness of the solution.
Additionally the solution of the PDE can depend on spacially
varying parameters or functions, like source terms, material
parameters or external forces.

To solve the PDEs numerically the exact solution is approximated
by a discrete solution. Creating a numerical problem out of a
mathematical problem is called discretization. Different
discretization methods are possible and lead to different
approximations with different properties. The most well-known
classes of discretization methods are finite element methods
(FEM), finite volume methods (FVM) and finite difference
methods (FDM). All mentioned discretization methods are grid
based. A grid is a partition of the computational domain into non-
overlapping sub-regions called grid elements.

Instationary problems also need to be discretized in time. This
usually means different solutions are computed for different
discrete time steps. How the evolution from one time step to the
next can be computed depends on the chosen time stepping
scheme. For well-posedness of the problem, initial values are
needed in addition.

This discretized problem yields a large system of linear or non-
linear equations. Solvers are root-finding algorithms, which are
used to numerically solve the equation system. For non-linear
systems a non-linear solver (i.e. Newton’s method, fixed point
method) is used. Iterative non-linear solvers create a sequence of
linearized systems. For solving linear systems two types of linear
solvers are applicable: direct solvers (only for small problems)
and iterative solvers (i.e. Richardson, Krylov subspace methods).
The performance of an iterative linear solver can be improved by
applying a preconditioner (i.e. Jacobi, Gauss-Seidel, SOR, ILU,
multigrid) to the linear equation system.

11

2.2 Grid Terminology Example
As an example of a field of application for DUNE we take a
closer look at the grid terminology. This example will be further
used in the following sections. A detailed definition of a grid in
DUNE can be found in [3].

A grid is a partition of a bounded domain into a set of grid
elements, which can be described by a reference element, (e.g.
cube or simplex) and a transformation into global coordinates that
are transformations of specific reference element types. For
simplicity, all figures in this section use 2D grids.

A grid element consists of different subentities, like faces, edges
or vertices. A face is an entity of dimension d-1, in 2D it is the
line. Edges are entities of dimension 1 and vertices of dimension
0. An intersection describes the contact area between two
neighboring elements or an element and the domain boundary,
like faces they are of dimension d-1. As we will describe later,
intersections do not necessarily correspond to the faces.

A grid is single-element-type when all elements correspond to the
same reference element. In a multi-element-type grid different
reference elements are allowed. Figure 1 and 2 show examples of
single-element-type and multi-element-type grids.

A structured grid is a grid with congruent grid elements. An
unstructured grid is more flexible, since the grid elements may be
used in an irregular pattern. Figures 3 and 4 show examples of
structured and unstructured grids. Note that a structured grid is
always a single-element-type grid.

A conforming grid is one where the intersection of two elements
is either empty or a face of each of the two elements. Otherwise
the grid is called nonconforming. Figure 5 shows examples of
conforming and non-conforming grids.

To obtain a better numerical solution, it is possible to refine the
grid. The refined grid is obtained by sub-dividing elements into
smaller elements. Successive refinement leads to a hierarchy of
grids.

A grid can be globally or locally refined. Global refinement
means that all elements are refined, whereas local refinement
means that only a subset of the elements is refined. Figures 6 and
7 illustrate the difference between global and local refinement.

Note that locally refined conforming grids are either multi-
element-type or simplicial grids.

3. DUNE – A SCIENTIFIC FRAMEWORK
DUNE, the distributed and unified numerics environment, is a
free software licensed framework for solving PDEs with grid-
based methods [3], [4]. It supports the easy implementation of
discretization methods like finite element, finite volume and finite
difference methods. DUNE makes several grids and powerful
mathematical implementations available. Its main principles are
the separation of data structures and algorithms by abstract
interfaces, efficient implementation of these interfaces using
generic programming techniques and the reuse of existing finite
element packages (i.e. UG2, ALBERTA3 and ALUGrid4) with a
large body of functionality.

2 http://atlas.gcsc.uni-frankfurt.de/~ug/
3 http://www.alberta-fem.de/
4 http://aam.mathematik.uni-freiburg.de/IAM/Research/alugrid/

Figure 1. Single-element-type grids.

Figure 7. Hierarchy of locally refined grids.

Figure 6. Hierarchy of globally refined grids.

Figure 5. A conforming and a non-conforming grid.

Figure 2. Multi-element-type grids.

Figure 3. Structured grids

Figure 4. Unstructured grids.

12

DUNE consists of several separate modules. Its users can put
together a certain set of modules depending on their needs. The
core modules deliver the basic classes (dune-common), an
abstract grid interface (dune-grid), an iterative solver template
library (dune-istl [5]), an interface for finite element shape
functions (dune-localfunctions) and tutorials for using and
implementing the grid interface.

Additional to the core it is possible to use external modules in
DUNE. There are several of them including modules for complete
simulations, additional grid managers and discretization. In our
research we concentrate on dune-pdelab, a discretization module
for a wide range of methods.

Development of DUNE started about eight years ago. The
distributed development team for the core modules consists of 4-8
scientists from mathematics, computer science and physics.
Additionally there are up to 20 developers working on external
modules. DUNE core modules consist of about 200.000 LOC in
C++. It supports parallelism based on MPI.

Some users use DUNE’s interfaces to implement their own
external modules. Most of the users use core and external
modules to implement their own applications. Still others just use
ready implemented DUNE applications. In the following, we
focus only on DUNE users who implement their own DUNE
applications. Users of DUNE are mostly mathematicians,
computer scientists and physicists at universities in Germany and
abroad. Recently it was adopted for industrial applications for
flow and transport processes in porous media5. Altogether, there
are about 50-100 users.

The development team applies software engineering best practices
like version management and configuration management. New
requirements are collected using mailing lists and an issue
tracking tool. Rapid prototyping is used to some extent. Big code
changes are planned as milestones with some kind of a
prioritization, however, without defined scheduling. The
development is done when resources are available. The
documentation consists of detailed code documentation, a user
documentation and tutorials on mathematical concepts and their
implementation. The documentation is available online.

The most important software quality goals for DUNE are
flexibility, numerical correctness and portability, especially on
high performance computers. The quality of single modules is
tested with unit tests and there are some automated configuration
tests which are run on every commit or overnight. Still unsolved
challenges for DUNE are the systematic adaption of algorithm
verification and system tests.

4. SPLE AND SCIENTIFIC SOFTWARE
In this section we describe how we adopt SPLE to support testing
scientific frameworks. We only explain some basics of SPLE. A
more detailed description of SPLE can be found in the book
“Software Product Line Engineering - Foundations, Principles,
and Techniques” by Pohl et al. [17].

4.1 SPLE and Variability Modeling
In SPLE the idea is to develop a software platform and use mass
customization for the creation of a group of similar applications

5 http://www.sintef.no/Projectweb/GeoScale/Simulators/

that differ from each other in specific predetermined
characteristics [16]. The characteristics that can vary are called
variation points and the possible values for a variation point are
called variants. An example for a variation point for DUNE is a
“reference element type” and its variants, restricted in 2D, are
“cube” and “simplex”. There are always a finite number of
possible variants for a variation point.

Variation points are divided into external and internal variability.
External variation points are visible to the users and stakeholders,
like the variation point “reference element type”. Internal
variation points are hidden from the users and are only of interest
to the developers of the product line. Typical causes for internal
variation points are technical issues. Hiding such technical details
leads to reduced complexity for the users. It may be mandatory to
select a variant for a variation point or it may be optional. The
variation point “reference element type” is mandatory. However,
a variation point “grid refinement type” is optional, since it is
only needed, if the grid is locally refined. It can also be defined
how many variants (min, max) may be selected for a variation
point. Usually only one variant can be selected for a variation
point. In our example, the variation point “reference element
type” constitutes an exception, as for a multi-element-type gird
more than one variant can be selected.

Typically there are constraints between the different variation
points and variants. A variation point (or variant) may require or
exclude another variation point (or variant). For example, if we
have a variation point “grid structure type” with variants
“structured” and “non-structured” and a variation point “grid
element type quantity” with variants “single-element-type” and
“multi-element-type”, then the variant “structured” requires the
variant “single-element-type”, since a structured grid always
consists of only one element type.

A variability model includes all variations points and their
variants of a product line. It also includes constraints between the
variation points and variants. A variability model should answer
at least the following questions: what varies (variation points),
why does it vary (stakeholder needs, management decisions,
technical variability etc.), how does it vary (available variants)
and for whom is it documented (internal and external variability).
A variability model should also include traceability information
consisting of links to other development artifacts like use cases,
design models, test cases or source code.

Our goal is not to create a detailed variability model over the
whole range of applications that can be implemented with a
scientific framework. This would be oversized for our goal to
support the testing of a framework. With its huge range of
functionality (based on mathematics) a scientific framework often
includes almost unlimited variability. For our needs, the creation
of a high level variability model of the framework is sufficient
and more appropriate.

4.2 SPLE Development Processes
The SPLE process is divided into two development processes:
domain engineering and application engineering. In the domain
engineering process a reusable platform, including the
commonality (common characteristics for every application in the
product line) and variability, is defined for the product line [15].
The application engineering process is responsible for deriving

13

applications from the product line platform that was established
during domain engineering.

There are five key sub-processes in domain engineering: product
management, domain requirements engineering, domain design,
domain realization and domain testing. In the first sub-process,
product management, a roadmap describing the scope and the
goals of the product line is created [17]. The roadmap is used as
an input when the first version of a variability model is created in
domain requirements engineering. In traditional SPLE, the
commonality analysis in domain requirements engineering is used
to define the commonality for all product line applications. A high
amount of commonality reduces the effort in designing the
variability. Since we consider a scientific framework where the
commonality and variability are already implemented, we can
neglect the commonality analysis and concentrate on the roadmap
and variability modeling.

Traditionally, the variability model is described in more detail in
every further sub-process. The portion of internal variability
grows, when design and realization variability are included. Since
we consider an existing application, we are not particularly
interested in domain design or domain realization. As described in
Section 5, we first completed the sub-processes product
management and domain requirements engineering. Then we used
the variability model as an input for the domain testing sub-
process.

In the sub-process of domain testing the challenge is to test the
commonality and variability without access to the separate
applications that are only created in application engineering. Pohl
et al. [19] introduce several domain test strategies. One of the two
recommended test strategies is Sample Application Strategy
(SAS), where a few sample applications are used to test the
domain artifacts. As not all possible applications are tested,
application testing is still needed for the separate applications
created in application engineering.

SAS is the test strategy we want to use for testing the scientific
framework. Pohl et al. do not show how to choose the sample
applications for SAS. In Section 5.3 we demonstrate how we use
the high level variability model to do this.

The reusable domain artifacts (requirements, architecture,
components and tests) that result from the domain engineering
sub-processes include the product lines variability. In the
application engineering sub-processes application requirements
engineering, application design, application realization and
application testing this variability is bound meaning that a
specific variant is chosen for each variation point. Binding each
variation point in the variability model, results in a separate
application. The benefits of SPLE include a reduction of
development effort, since new applications can be implemented
by reusing the platform, an enhancement of quality, since the
artifacts in the platform are thoroughly tested in many
applications and a reduction of maintenance effort, since new
variants can be inserted for a variation point with a reasonable
effort.

4.3 SPLE and Scientific Frameworks
We apply SPLE to a scientific framework since we want to
systematically describe parts of the variability of the framework.
A framework consists of common code providing generic
functionality for specific fields of application. Frameworks differ

from software libraries, among other things, in the following two
ways. First, the flow of control is not dictated by the caller, but by
the framework (inversion of control). Second, a framework can be
extended by the user by overriding functionality or by
implementing interfaces [14]. In our approach, we consider the
framework as the product line platform. The applications
developed by the users of the framework are then regarded as the
product line applications.

This leads to a specific definition for the terms developers and
users in the case of scientific frameworks. Developers in the sense
of traditional SPLE carry out the domain engineering and
application engineering processes. The users of traditional
product lines at best can take a look at the set of external variation
points, choose the desired variants and at the end get to use the
separate application. When we apply SPLE to a scientific
framework, the developers only deal with domain engineering.
The developers set up a scientific framework including a huge
amount of variability. The application engineering, that is the
binding of the variability and the development of the application,
is done by the users of the scientific framework. When we are
talking about developers and users in this paper, we mean their
specific roles in the context of scientific frameworks. In these
terms the users of a scientific framework are at the same time the
developers in the application engineering process.

This also means that the borderline between internal and external
variability as a separation between the variability visible to
developers only and the variability also visible to users is shifted.
The users of a scientific framework have a more technical view
on the frameworks variability. Yet, there is still variability dealing
with implementation details that is only visible to the developers
of the framework. At this point of our research this internal
variability is not in our focus, since testing such implementation
details are covered by unit testing.

SPLE supports the users of a scientific framework as they are
developing their applications. Since most of the users of a
scientific framework are scientists in a specific field of research
who are not professional software developers, they often start a
new application as a copy of a similar application and simply
adjust it to their own needs. It can easily happen that the users do
not understand the source code in full detail. SPLE can help the
users to understand the source code better and to be aware of the
development decisions they have to make. When the users follow
the variability model and carefully bind every variation point they
know that every important decision for their separate application
has been made.

To developers of a scientific framework the importance of domain
engineering rises. They have a lot less impact on application
engineering which is performed by the users of the scientific
framework. In domain requirements engineering the developers
must keep in mind the needs of a wide range of different
applications. In fact, the developers can not foresee all
applications the users want to develop using the framework. In the
case of scientific frameworks, the mathematical models used set
some natural boundaries to their variability. Domain testing has a
high importance to the developers, since they need to test the
functionality of the scientific framework without knowing exactly
what kind of applications the users are going to develop.

14

5. A REENGINEERING VARIABILITY
MODEL FOR DUNE
In this section, we describe our process of creating the
reengineering variability model for DUNE. Reengineering means
the adjustment of a software system to improve the software
quality. Thereby the software functionality remains mostly the
same [2]. In our research, we created a variability model for an
existing software and therefore we call it a reengineering
variability model.

5.1 Reengineering Product Management
We decided to follow the instructions for creating a variability
model as described by Pohl et al. [15]. Like described in section
4.2, the first sub-process in domain engineering is product
management, where scope and goals of the product line are
described in a product roadmap for the product line. A product
roadmap determines the major common and variable features of
the products. In our case, we can ignore the marketing and
scheduling aspects of product management, since the framework
already exists.

DUNE is a framework that enables the implementation of various
applications of the product line, but does not include the
implementation of these applications itself. In product
management, we consider all possible applications of DUNE as
goals. We are not describing the framework itself but its
applications. Together with the scientists, we wrote down the
procedure a DUNE user follows when creating a DUNE
application and recorded the decisions she or he has to make
during this procedure. Additionally we analyzed the
documentation of DUNE and example DUNE applications, that
are part of the user documentation, to find out the alternatives a
DUNE user has. At this point, we did not analyze the source code,
since we wanted the variability model to be based on DUNE’s
requirements. We had to be careful not to get lost in details. Since
the whole framework already exists, it could easily happen that
we start writing down detailed features of the software that do not
belong to product management. This sub-process focuses on the
stakeholders’ view of the application. Thus, we were only
interested in the goals of the application, not the implementation
details. The following description sketches a rough version of the
roadmap we developed for DUNE. The terminology used in it is
explained in Section 2, including examples. The roadmap follows
the procedure of deriving a solution for a realistic problem. The
starting point of the procedure is the natural phenomenon that is
in the focus of the users’ research. The arrows symbolize the steps
of formulating the mathematical model for this natural
phenomenon and then choosing a numerical model for the
mathematical model (some detail decisions are listed as nested
bullet points).

Natural phenomenon

 Define the characteristics of the mathematical model:

o Create systems of PDEs

o For each equation: note if it is linear or non-linear

o Note if the problem is stationary or instationary

o Define boundary conditions, material parameters,
etc.

o If instationary: define initial values

 Decisions for the numerical model

o Decide whether the systems of PDEs are split or
solved monolytically

o If instationary: choose appropriate time stepping
scheme

o Set up a spacial discretization of the PDEs

 Define the used grid (dimension,
reference elements etc.)

 Select a discretization method (FVM,
FEM or FDM)

 If adaptive: choose adaption strategy
and error estimator

o For non-linear equations: choose a non-linear
solver

o Choose direct or iterative linear solver

 If iterative: choose preconditioner

The first part of the roadmap for DUNE characterizes the
different details of the mathematical model for the problem the
user is solving. This is something the user cannot choose, since
these characteristics are given by the mathematical problem. On
the other hand, the second part, which concerns the numerical
model, consists of decisions the user has to make mostly based on
the mathematical model. This is where the variable features of
DUNE can be seen. For example, the user has to decide whether
the PDEs should be split or not and what kind of grid should be
used. Many decisions depend on the characteristics of the
mathematical problem (i.e. if a time stepping scheme is needed)
or previous decisions (i.e. whether a preconditioner is needed or
not). The roadmap also shows which characteristics are common
for every DUNE application. Every application needs a grid, a
discretization method, a linear solver etc.

The main goal for DUNE is to support the implementation of all
grid-based methods in numerical solving of PDEs. In the roadmap
this goal is described in separate goals on a high level, like
supporting stationary and instationary problems or supporting
different discretization methods.

5.2 Domain Requirements Reengineering
The next sub-process in domain engineering is domain
requirements engineering. The goal is to create a high level
variability model based on the roadmap created in product
management.

The first step in the creation of the variability model for DUNE is
the identification of the variation points. We did this by
examining the roadmap and writing down the characteristics
where the applications differ from one other. For example, the
formulation “choose appropriate time stepping scheme” implies
that “time stepping scheme” is a variation point. Other examples
for variations points of the roadmap are the characteristics of a
grid: “grid dimension”, “grid reference element type” etc. Every
goal in the roadmap results in a variation point. After the variation
points were written down, the set of variants was defined for each
variation point. If the variants were not documented in the
roadmap, other documentation for DUNE or the mathematical
theory was used as a source for the variants.

15

Variation points from the first part of the roadmap describe the
characteristics of the mathematical model. Such variation points
are, for example, “equation linearity” with the variants “linear”
and “non-linear” or “stationarity” with the variants “stationary”
and “instationary”. Some characteristics of the mathematical
model (i.e. boundary conditions) cannot be formulated as
variations points with a finite number of variants. These
characteristics are handled separately when we derive the test
applications from the variability model (see Section 5.3).

Next, we defined the dependencies between the variation points
and the variants. This was done based on the scientists’
knowledge in the field of research and the mathematical theory
underlying the applications. Tables 1, 2 and 3 and Figure 8
demonstrate an example of the variability model. The notation we
used in the variability model is based on the notation by Pohl et
al. [16]. We extended their graphical notation with a textual
notation similar to Yu and Smith [21] who first introduced SPLE
for scientific software. Since the notation is already described in
detail in these two references, we only show a small example of
the variability modeling for DUNE. We consider the variation
points “Grid structure type”, “Grid conformity type” and “Grid
refinement type”.

Table 1. Textual notation of the variation point “Grid
structure type”

Variation Point Number VP1

Variation Point Name vpGridStructureType
Description Defines whether the grid is

structured or non-structured.
Variation dependency Mandatory
Variant Number Variant Name Possible Values
V1_1 vStructured Structured

V1_2 vNonStructured Non-structured

Table 2. Textual notation of the variation point
“Gridconformity type”

Variation Point Number VP2

Variation Point Name vpGridConformityType
Description Grid conformity type defines

whether the grid is conform or
non-conform.

Variation dependency Mandatory
Variant Number Variant Name Possible Values
V2_1 vConform Conform

V2_2 vNonConform Non-conform

Table 3. Textual notation of the variation point “Grid
refinement type”

Variation Point Number VP3

Variation Point Name vpGridRefinementType
Description Grid refinement type defines how

the grid is refined.
Variation dependency Mandatory
Variant Number Variant Name Possible Values
V3_1 vLocal Local

V3_2 vGlobal Global

5.3 Deriving System Test Applications from
the Variability Model
In this section, we describe the process we want to use to derive
system test applications for a scientific framework using the
variability model. This process corresponds to domain testing
using SAS test strategy (see Section 4.2).

For a specific test application we have to choose a mathematical
model with all its characteristics as described in the first part of
the roadmap. The variation points describing the characteristics of
the mathematical model are bound at this point. The
characteristics that could not be described as variation point (like
boundary conditions) are carefully documented and used when
the test application is implemented.

There are two possibilities to derive test applications. The
scientists can carefully choose mathematical models that DUNE’s
users typically want to solve and then bind the variability suitable
to these mathematical models. It may be possible to derive several

requires_V_V

excludes_V_V

excludes_V_V Variant excludes variant

V

Graphical notation:

Constraint dependencies:

VP

Grid
structure type

V

non-structured

excludes_V_V

Grid
conformity type

VP

V

conform

requires_V_V

requires_V_VP

V

VP

V

Variation point

Variant

Alternativ choise

requires_V_V

requires_V_VP Variant requires variation point

Variant requires variant

Figure 8. Example of the graphical variability model.

structured non-conform

VP

Grid
refinement type

V

global local
V

16

test applications based on one mathematical model. The other
possibility is to create allowed combinations of the variants in the
variability model and then complete the mathematical model
including the boundary conditions etc. These two ways can also
be combined when the set of test applications is being defined.

For the example of the part of DUNE’s variability model in
Figure 8, there should be at least one test application that uses a
structured grid. Because of the dependencies between the
variants, the only possibility for this test application is to use a
conforming grid with global grid refinement. To reach broad test
coverage, there should also be test applications that use non-
structured grids. In this case, there are no dependencies on the
other variants or variation points. Therefore, for reaching a 100%
test coverage on the high level, there should be test applications
with the combinations of conforming grid with local refinement,
conforming grid with global refinement, non-conforming grid
with local refinement and a non-conforming grid with global
refinement.

Ideally, the test applications cover the whole variability of the
high level variability model. This would mean a 100% test
coverage on the high level. This may be difficult to archive
depending on the amount of variation points, variants and
dependencies between them in the high level variability model.
Since it is not always feasible to construct test applications for all
possible combinations, it remains the responsibility of the
scientists to reject the combinations that don’t need to be included
in the test applications since they are unlikely to occur.

Using the variability model as a basis for choosing the test
applications gives the scientists the confidence that they do not
miss anything important. Being able to comprehend the test
coverage of the variability model, the scientists can gain trust in
their choice of test applications. They can ensure that the selected
test applications cover all typical uses of the framework. There
should be no critical gaps between the set of test applications and
the variability model that is every variant should be used at least
once in a test application and all typical variant combinations
should be covered by the test applications.

Next, every test application is implemented. At this point
algorithm verification is included in the test applications.
Depending on the used mathematical model in the test
applications, suitable mathematical tests, like grid convergence
testing, symmetry and conservation tests, are implemented for the
test application. We still have to take a closer look at establishing
algorithm verification in our research and to develop a way to
systematically include it in the test applications.

The output of the tests depends on the used mathematical tests.
There are self-contained tests which include evaluation logic and
deliver “Passed” or “Not passed”. Other tests may need a
reference output value that was gained in a previous test
application run. The test application output will then be compared
to the according reference output.

The implemented test applications can be integrated into an
automated system test environment for the framework.
Developers can use the test environment for system testing when
they commit changes in the source code. The test environment
can be automated and run on a regular basis.

Our high-level goal is to build a system test environment in which
a developer can choose the desired variants for each variation

point she or he wants to test. After that, the environment would
execute system tests which match to the selected combination of
variants.

6. RELATED WORK
Easterbrook and Johns [8] investigated a software development
process for a climate change simulation. There was an overnight
automated regression test for this software as a part of the
verification and validation process. These regression tests
consisted of a bit-wise comparison of simulation results with a
reference result to ensure the reproducibility of experiments. This
kind of regression testing is not practical in a general case for at
least two reasons. First, the differences in the outputs may also be
caused by an enhancement in the code. Second, it is not possible
to trace a problem in the code based on a change in the output.
Easterbrook and Johns admit that the overall quality is hard to
assess and the scientists tend to treat some errors as modeling
approximations, rather than defects. Later on, some of these
presumed approximations will be reported as bugs by the users.

As Kelly et al. [11] were testing scientific software for detecting
artifacts in astronomical imagery, they found out that the goal of
reaching 100% code coverage is not always necessarily a
worthwhile pursuit for scientific software. It makes more sense
that the scientists carefully consider which scientific goals the
software should fulfill and design test scenarios that suit these
scientific goals. Test data should be selected in a way that all
typical use cases for the software are covered. Kelly et al. do not
consider how the scientists can systematically determine the
different scenarios that the code must handle.

SPLE was first introduced in scientific software by Yu and Smith
[21] who used SPLE to describe the variability of one
mathematical model (beam analysis problems) and its solution
using PDEs and discretization method finite element analysis.
First, differing from their approach, we use SPLE for the
reengineering of an existing framework for several mathematical
models and the descretization methods for solving PDEs. The
second difference is the goal of using SPLE: Yu and Smith
wanted to create a variation model that supports scientists in
creating applications in the same field of application. Our purpose
is to model the variability in the scientific framework to use it for
systematically organizing the system testing of this framework.

SPLE is also adopted for the reengineering of legacy software in
other fields of research than scientific software. This is typically
applied when standalone applications in the same field of
application with a similar content are maintained separately.
There are several methods, architecture-centric or based on a
feature model, for merging such standalone applications into a
product line [12]. Yoshimura et al. [20] describe how they created
a product line out of standalone applications. The focus is in
merging software code of separate variants into one source code.
The variability and commonality emerge from the source code or
architecture analysis.

In our case we also apply SPLE to an existing application. Still,
there are some significant reasons why we did not want to apply
any existing product line reengineering methods in our research.
First, we are not dealing with standalone applications. We do not
have to merge any duplicated source code, since we are dealing
with an existing framework. Second, and even more important,
we do not want to derive the variability model from the source

17

code or architecture. The reason is that we want to use the
variability model for testing the framework. We want to test the
software against its requirements and goals. That is why we create
the variability model out of the requirement documentation. If the
source code does not fit to theis variability model, then the
software does not fulfill its requirements. Finding such
mismatches is one important goal of testing.

7. SUMMARY
In this paper, we showed the feasibility of applying some SPLE
sub-processes to scientific frameworks and introduced a way to
create a reengineering variability model from an existing
scientific framework. We discussed which parts of the SPLE
development process are essential for the creation of a
reengineering variability model. We argued for the high
importance of the domain engineering process when SPLE is
applied to a framework. We also sketched how the variability
model can be used to derive a set of system test applications for
this framework.

We believe that the combination of already existing unit tests for
code verification and the system tests with algorithm verification
described above build a stable structure for testing a scientific
framework. However, there are still many aspects that we have to
consider. Our work in the near future will include deriving and
realizing a system test applications for DUNE as described in
Section 5.3. In the course of a planned implementation sprint we
will apply the system test applications and analyze the outcome.

After this trial phase we are going to refine the variability model
of DUNE and insert more internal variability, including
parallelism, and traceability links to the source code. We also
need to take a closer look at the algorithm verification and its
systematical use in the system test applications.

8. REFERENCES
[1] Ackroyd, K.S., Kinder, S.H., Mant, G.R., Miller, M.C.,

Ramsdale, C.A. and Stephenson, P.C. 2008. Scientific
Software Development at a Research Facility. IEEE
Software 25, 44-51.

[2] Arnord, R.S. 1994. Software Reengineering. IEEE Compuer
Society Press.

[3] Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R.,
Ohlberger, M. and Sander, O. 2008. A generic grid interface
for parallel and adaptive scientific computing. Part I: abstract
framework. Computing 82, 103-119.

[4] Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R.,
Kornhuber, R., Ohlberger, M. and Sander, O. 2008. A
generic grid interface for parallel and adaptive scientific
computing. Part II: implementation and tests in DUNE.
Computing 82, 121-138.

[5] Blatt M. and Bastian, P. 2007. The Iterative Solver Template
Library. In Applied Parallel Computing. State of the Art in
Scientific Computing 4699, 666-675. Springer.

[6] Carver, J.C. 2009. Report: The Second International
Workshop on Software Engineering for CSE. Computing in
Science & Engineering 11, 14-19.

[7] Carver, J.C., Hochstein, L., Kendall, R.P., Nakamura, T.,
Zelkowitz, M.V., Basili, V.R. and Post, D.E. 2006.
Observations about Software Development for High End
Computing. In CTWatch 2(4A), 33-38.

[8] Easterbrook, S.M. and Johns, T.C. 2009. Engineering the
Software for Understanding Climate Change. Computing in
Science & Engineering 11, 65-74.

[9] Eriksson, K., Estep, D., Hansbo, P. and Johnson C. 1996.
Computatuional Differential Equations, Campridge
University Press.

[10] Hook, D. and Kelly, D. 2009. Testing for trustworthiness in
scientific software. In Proceedings of the 2009 ICSE
Workshop on Software Engineering for Computational
Science and Engineering, IEEE Computer Society, 59-64.

[11] Kelly, D., Thorsteinson S. and Hook D. 2010. Scientific
Software Testing: Analysis with Four Dimensions, Eds.
IEEE Software.

[12] Obbink, H., Pohl, K., Kang, K.C., Kim, M., Lee, J. and Kim,
B. 2005. Feature-Oriented Re-engineering of Legacy
Systems into Product Line Assets – a Case Study. In
Software Product Lines Springer Berlin / Heidelberg, 45-56.

[13] Oberkampf, W.L., Trucano, T.G. and Hirsch, C. 2004.
Verification, Validation, and Predictive Capability in
Computational Engineering and Physics. In Applied
Mechanics Rev, 345-384.

[14] Pasetti, A. 2002. Software frameworks and embedded
control systems, Springer-Verlang.

[15] Pohl, K., Böckle, G. and Linden, F. 2005. A Framework for
Software Product Line Engineering. In Software Product
Line Engineering, Springer Berlin Heidelberg, 19-38.

[16] Pohl, K., Böckle, G., Linden, F. and Lauenroth, K. 2005.
Principles of Variability. In Software Product Line
Engineering, Springer Berlin Heidelberg, 57-88.

[17] Pohl, K., Böckle, G., Linden, F. and Lauenroth, K. 2005.
Software Product Line Engineering - Foundations,
Principles, and Techniques, Springer Berlin Heidelberg.

[18] Pohl, K., Böckle, G., Linden, F. and Niehaus, E. 2005.
Product Management. In Software Product Line Engineering
Springer Berlin Heidelberg, 163-192.

[19] Pohl, K., Böckle, G., Linden, F. and Reuys, A. 2005.
Domain Testing. In Software Product Line Engineering
Springer Berlin Heidelberg, 257-284.

[20] Yoshimura, K., Ganesan, D. and Muthig, D. 2006. Defining
a strategy to introduce a software product line using existing
embedded systems. In Proceedings of the Proceedings of the
6th ACM & IEEE International conference on Embedded
software, Seoul, Korea2006 ACM.

[21] Yu, W. and Smith, S. 2009. Reusability of FEA software: A
program family approach. In Proceedings of the Proceedings
of the 2009 ICSE Workshop on Software Engineering for
Computational Science and Engineering, IEEE Computer
Society, 43-50.

18

	hannaPDF
	Remmel.pdf

