
Enhanced Traceability in Model-based CASE Tools using
Ontologies and Information Retrieval

Nitesh Narayan, Bernd Bruegge

Institut für Informatik
Technische Universität München

Boltzmannstrasse 3, 85748 Garching, Germany
{narayan, bruegge}@in.tum.de

Alexander Delater, Barbara Paech

Institute of Computer Science
University of Heidelberg

Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
{delater, paech}@informatik.uni-heidelberg.de

Abstract—Model-based CASE tools provide mechanisms to
capture and store heterogeneous artifacts produced during the
software development process. These tools incorporate a meta-
model describing artifact types and traceability links. Although
model-based CASE tools provide required means to create and
link different artifact types, still the process of linking artifacts
is primarily manual resulting in missing or broken traceability
links. This paper proposes a novel approach to create and
utilize a project-specific ontology derived from the textual and
structural information available in the development artifacts
to assist the traceability link creation process. We discuss the
benefits and challenges of incorporating the proposed approach
in a model-based CASE tool.

Keywords-artifacts, CASE tool, information retrieval, ontol-
ogy, traceability link

I. INTRODUCTION

Traceability between development artifacts plays an im-

portant role throughout the software development process.

Traceability facilitates in program comprehension, mainte-

nance, impact analysis, software reuse and prevention of

misunderstandings [1] by utilizing the relationship informa-

tion available in the software development artifacts.

Model-based CASE tools (Computer-Aided Software En-

gineering) aim at providing a centralized repository to cap-

ture and work with heterogeneous artifacts. As an example,

UNICASE is a model-based CASE tool [2] merging two

models: project model and system model. The possibility

to incorporate model elements based on the context eases

the creation and deployment of domain-specific models

for special needs. The underlying meta-model defines the

artifact types, e.g. requirements, use cases, UML diagrams,

along with the traceability links artifacts can have between

each other [3].

The links defined in the meta-model are called explicit

traceability links. Explicit traceability links are directed

references between two artifacts [4]. Each link has a specific

type (e.g. refine, realize, verify etc.). For example, an artifact

of type requirement can have a link of type ”realize” with

an artifact of type source code. So the meta-model provides

a predefined standard set of relationship types that can be

supported by a model-based CASE tool [5]. However, the

links which are frequently observed in the artifact instances

in a project-specific scenario can not be foreseen, thus not

all possible explicit links are included in the meta-model [6].

In addition to explicit traceability links, implicit traceabil-

ity links can exist between artifacts. In contrast to explicit

links, these links are not defined in the meta-model. The

identification of implicit traceability links requires the analy-

sis of existing explicit links to identify new traceability links

not yet considered, but which are of importance, e.g. when

performing change impact analysis to existing systems [7].

For example, artifact A is involved in realizing requirements

R1 and R2 and explicit traceability links exist between them.

Furthermore, code section C is based on artifact A and they

are connected by an explicit traceability link, as well. Based

on this knowledge, we can conclude that code section C

is involved in realizing requirements R1 and R2 and that

implicit traceability links exist between these artifacts. [7]

Thus, the available information, for instance, can be used

to verify if all requirements are implemented in the code.

Similarly, the knowledge that two artifacts reference the

same requirement could be used to derive a traceability link

between these two artifacts.

Although model-based CASE tools provide required

means to create and link different artifact types, still the

process of linking artifacts is primarily manual resulting in

missing or broken traceability links. Apart from explicitly

defined traceability links, it is difficult to identify and

incorporate new explicit link types not included in the

meta-model. Additionally, identifying implicit links is only

feasible if explicit links exist.

There are several approaches assisting the traceability

link identification process, e.g. using ontologies [8] [9] and

information retrieval techniques [10] [11]. These approaches

either consider the structural information available in the

model or the textual information available in the artifacts.

Moreover, there is no clear separation between approaches

considering explicit links and implicit links.

In this paper, we present a novel approach, which creates

and utilizes a project-specific ontology over a model-based

artifact repository to assist the traceability link creation

24
978-1-4577-0938-8/11/$26.00 ©2011 IEEE

process. The proposed approach considers the textual in-

formation available in the artifacts, along with the structural

information in the meta-model. By considering the explicitly

identified traceability links in the meta-model for a given ar-

tifact type, the approach assists in creating missing or broken

links between the artifact instances. Therefore, the manual

effort is reduced. Furthermore, the proposed approach eases

the process of identifying new explicit link types frequently

occurring within the artifacts.

The paper is structured as follows: In section 2, a moti-

vation describes the problem in more detail and discusses

related work regarding model-based traceability, ontologies

and information retrieval. In section 3, we present our novel

approach and describe it theoretically. In section 4, we

apply our approach to a running example. The approach is

discussed in section 5 and section 6 provides a conclusion.

II. MOTIVATION

There are several approaches trying to deal with the

problem of identifying traceability links. We highlight the

benefits and limitations of the approaches while also pre-

senting how they can be combined together to improve

traceability link identification and creation.

A. Model-based Traceability

In model-based traceability, a meta-model describes the

artifacts types, their attributes, as well as all possible explicit

traceability links between the artifacts. A model-based trace-

ability approach helps organizations to gain full benefit from

the traces they develop and to allow project stakeholders to

plan, generate, and execute trace strategies [3].

Model-based traceability supports creating pre-defined

traceability links between artifacts. However, the process of

traceability link creation is primarily manual. Moreover, only

pre-defined link types are possible.

B. Ontologies and Traceability

Ontologies are used to define the terms that describe and

represent a knowledge domain. They include the definition

of concepts and relationships among them, allowing know-

ledge to be shared and reused [8]. Ontologies have been con-

sidered in several research work to support the traceability

between artifacts, e.g. integrating ontologies into the Unified

Process to provide concept-based traceability throughout

the software lifecycle [8], or for recovering traceability

links between existing source code and documentation to

support reverse engineering [9]. Additionally, ontologies can

substantially help in automating the link recommendation

process using its built-in logical reasoning capabilities [9].

However, ontology-based approaches currently miss the

possibility to utilize the available textual information within

the artifacts. They only consider the structural information

and rely on other mechanisms for ontology population. Usu-

ally, the focus is on a particular artifact type with predefined

link types identified to be included in the ontology. Thus, the

extensibility of the approach requires the base ontology to be

modified for every newly introduced artifact and relationship

type.

C. Information Retrieval

Information Retrieval (IR) techniques have been shown

to assist with the automated generation of traceability links

by reducing the time it takes to generate the traceability

mapping [10]. Researchers have applied techniques such as

Latent Semantic Indexing [11], vector space retrieval, and

probabilistic IR. These approaches use natural language pro-

cessing (NLP) to analyze the textual information available

within the artifacts to identify possible traceability links.

IR techniques rely on textual analysis (lexical or seman-

tic). Compared to ontologies, they do not consider the struc-

tural information of the artifacts. Artifact type, applicable

traceability link type and existing knowledge of traceability

links is not considered, as well.

D. Combining Approaches

Until now, all these three approaches for traceability

link creation are applied independently from one another.

The combination of model-based traceability, ontology-

based approaches and IR techniques would bring a more

comprehensive traceability between artifacts by identifying

additional traceability links. As model-based technologies

have matured enough, it is possible to provide easy and

effective tool support for a model-based CASE tool with an

extensible meta-model for domain-specific needs. Ontology-

based approaches help to identify missing, broken or even

new traceability links between the artifact instances. At the

same time, IR techniques can help during the ontology pop-

ulation by analyzing the textual information of the artifacts.

III. APPROACH

The process of the transition from artifacts to a project-

specific ontology and the creation of traceability links is

shown in Figure 1. The Artifact Analyzer (AA) module

extracts the artifact types and explicitly defined traceability

links from the Meta-model. This information provides in-

sight into predefined sets of traceability links. Artifact types

defined in the meta-model provide the possibility to focus on

certain identified artifact types and the applicable properties.

Additionally, the AA module extracts the information

from the artifact instances. Existing traceability links and

various attributes, which if changed, can implicitly invoke

changes in various artifacts. A simple example can be a

priority attribute associated with a requirement, which if

changed, causes the priority change of all tasks which are

necessary to realize it. Existing traceability links between

artifacts can assist in the link recommendation process. For

example, suppose a task T needs an assignee and is linked

to a requirement R (existing traceability link). T can be

25

assigned to the developer who has worked on the similar

task (similarity analysis using structural or textual analysis)

within the same requirement as T. Model-based tools support

this using structural information, but the process is manual

and specific to a given scenario.

Traceability Links

Artifact Instances

Artifact attributes,
and existing

traceability links

Artifact and
relationship

types

Artifact Analyzer (AA)

Natural Language

Artifact Ontology
Constructor (AOC)

Generic Ontology
Constructor (GOC)

Part of Speech
Tagging

Parsing

Global Entity Extraction (GEE)

Project Ontological
Reasoner (POR)

Meta Model

Figure 1. Process flow

The Global Entity Extraction (GEE) module utilizes two

toolkits from the Stanford NLP group [12]. The Stanford

Part-Of-Speech Tagger is used to extract named entities

from the natural language text in the artifacts. It considers

every noun term as an important entity irrespective of it

representing the name of an artifact completely or partially

(composite name). Next, the Stanford Parser within the GEE

module extracts the typed dependencies for the identified

named entities. Stanford Dependencies provide simple and

effective representation of grammatical relationships within

a sentence. Thus, named entities along with the relationships

they have semantically with other entities in the sentences

are extracted.

The Artifact Ontology Constructor (AOC) and Generic
Ontology Constructor (GOC) get the input from the AA

and GEE module, respectively, and create an ontological

representation of the information automatically. Class hier-

archies identified for the ontology have two major elements:

artifact (see Figure 2) and traceability link (see Figure 3).

Analyzing the meta-model along with the instances derived

from it gives a clear understanding of the artifact types and

project-specific terminology to represent them.

The GOC module takes the input from the GEE module

and populates the ontological class NamedEntity. Seman-

tically named entities can have relationships as captured

by the Stanford Dependencies. A simple sentence such as

”Eclipse crashes on Mac”, can be processed to identify

subject as ”Eclipse” with traceability link ”crashesON” to

a named entity ”Mac”.

The Project Ontological Reasoner (POR) combines the

ontologies created by the AOC and GOC modules to derive

traceability links. It derives the missing or broken explicitly

type
Artifacts affects
Artifacts affectedBy
TraceabilityLink link

Artifact

TraceabilityLink link
Named Entity 1*

representedBy

Figure 2. Excerpt showing Artifact Classes (UML notation)

identified link types in Meta-model, based on the artifact

type extracted by AOC. This requires considering the ontol-

ogy created by linguistic analysis of natural language text by

GOC module. Identified named entities, which as a whole

represent an artifact, are among the first candidates for a

possible target of an explicit link type. While in scenarios

where a named entity is not self-sufficient to represent an

artifact completely, POR looks for semantic relationships

between every known named entity in the source artifact.

For example, if there is a requirement R which can be linked

to a task T using the explicitly defined traceability link of

type realize from the meta-model, POR takes all the named

entities within the textual description of R and maps them

to all the tasks T with named entities semantically related.

Explicit

Meta-model Observed

Implicit

Traceability
Link

Figure 3. Excerpt showing Traceability Link Classes (UML notation)

Explicit traceability links Observed are the links which

appear frequently within the artifacts and are not part of the

meta-model. These traceability links are derived based on

the semantic relationship between named entities in various

artifacts within a software development project. Based on

the frequency and importance, these links are prime candi-

dates to become part of the meta-model. Traceability links

between artifacts and additionally ”observed” explicit links

supports reasoning to derive new knowledge of ”implicit”

traceability links.

IV. EXAMPLE

We apply our approach to an example project specified in

the model-based CASE-tool UNICASE [2]. It describes a

small supermarket and documents the requirements, classes,

stakeholders as well as all tasks to realize them. The entire

project contains 61 artifacts and 63 traceability links between

them. To present the entire project structure and all artifacts

within the project is beyond the purpose of this paper. There-

fore, we only present a small subset of the artifacts, their

structural and textual information as well as their existing

and newly identified traceability links, to demonstrate the

presented approach.

26

Suppose in our meta-model, we have the artifact types

use case, initiating actor, class and bug report. In Figure 4,

a graph of a subset of the artifacts is shown. The use case

Walk through automatic door has an initiating actor Shopper
and both are connected with an explicit traceability link. The

class AutomaticDoor is linked to a bug report DoorBug with

textual description The door should only open if a human
approaches. The bug report was created because the door

also opened on the detection of small animals (e.g. dogs).

The bug report is assigned to a developer who shall fix the

problem. The objective is now to identify new explicit and

implicit links between the artifacts.

(Use Case)
Walk through

automatic door

(Actor)
Shopper

(Class)
AutomaticDoor

(BugReport)
DoorBug

existing: explicit
type: initiating actor

new: explicit
type: identified class

new: implicit

existing: explicit
type: annotes

(Developer)
Guy

existing: explicit
type: assignee

Figure 4. Identified traceability links using approach

The AA module extracts information from the meta-model

about what artifact types and traceability links the artifact

can have, along with any constraint on the artifact type as

a target. It identifies that the class AutomaticDoor has a

missing explicit link to the use cases it participates in. At the

same time, there is an existing use case Walk through auto-
matic door with initiating actor Shopper. To derive the target

of type ”use case” for explicit link type ”participatesIN”

from source class AutomaticDoor, our approach considers

the relationship between the extracted named entities and

the existing structural information.

The GEE module is used to parse the description of the

use case (This use case describes how a user enters the

supermarket through the automatic door) and identifies the

named entity ”automatic door”. This named entity represents

another artifact completely, which is of the required type

to create the missing link as specified in the meta-model.

Furthermore, parsing the textual description of the bug report

DoorBug (see Figure 5) which is linked to class ”automatic

door” by traceability link type ”annotate” reveals the named

entity ”door”, which is also an existing entity in the project

representing the super class of ”automatic door”.

Thus, based on the reasoned output of GEE and AA, we

create a new explicit link between use case Walk through
automatic door and class AutomaticDoor (see Figure 4).

Additionally, parsing the description of bug report ”Door-

Bug” identifies a semantic constraint on door functionality,

i.e. open only prep if a human approaches (see Figure 5).

The

door

should

open

only

a human

approaches

nsubj

det

aux advmod

prep_if

amoddet

Existing artifact
and a named entity

Identified semantic
 constraint

det: determiner
nsubj: nominal subject
aux: auxiliary
advmod: adverbial modifier
prep_if: prepositional modifier
amod: adjectival modifier

Figure 5. Linguistic processing of description of DoorBug

Now that explicit links between use case Walk through
automatic door, class AutomaticDoor and bug report Door-
Bug exist, a new implicit link can be derived between them.

”Door” is already identified as a named entity after parsing

description of use case. The same entity is identified in the

description of the bug report as these entities have syntacti-

cally the same term and are semantically related through

the structural information of explicit links. Because both

artifact types do not have an explicit specified relationship in

the meta-model, our approach has identified a new implicit

traceability link (see Figure 4). It is clear that if a use case

is changed or adapted, a linked bug report can become

obsolete. Moreover, the developer has now the advantage

that the bug report is already linked to the related use

case that needs to be revised. Our approach has improved

the overall traceability between the considered artifacts by

introducing new and useful traceability links.

V. DISCUSSION

There exist different terms for explicit and implicit links.

For example, Spanoudakis et al. [13] are using the terms

direct/indirect links or dependent links, while Maeder et

al. [4] use explicit/implicit links, as well. Implicit links are

sometimes called transient of multi-hop links because they

represent a connection between two elements in a transitive

closure. Although in our work we additionally consider the

relationships entailed by semantics and not only by literally

present hops as implicit links.

Furthermore, a main difference is with respect to the syn-

tactic matching and consideration of the semantic aspects of

the artifacts. Spanoudakis et al. [14] use rules to syntactically

match the terms to find traceability links, while the proposed

approach uses IR by semantic similarity, instead. Moreover,

they only consider standard a set of relationships between

artifacts, while our proposed approach additionally leaves

enough room to identify project-specific traceability links

by logical reasoning.

In our approach, an ontology of named entities and

the relationships between them extracted using linguistic

processing allows us to identify missing, broken or new

traceability links. We believe that having similar terms in

two different artifacts does not sufficiently represent a link

27

between them. Even if these artifacts have any relationship,

it needs to be identified carefully with the proper semantics.

Most of the approaches identify generic relationships, i.e.

association. In our proposed approach, we consider a stan-

dard set of relationships, while leaving sufficient room for

newly identified relationships.

In the approach, the artifacts and standard set of explicit

relationships derived from the meta-model are separate from

the logic used to derive the traceability links. This enables

the applicability of the proposed approach to wide range of

model-based artifact repositories.

From the implementation point of view, the extraction of

the named entities as well as the ontology population from

the meta-model and artifacts is straight-forward. However,

extracting the named entities and recovering the semantic

relationships may require to include linguistic processing

techniques to identify semantic similarity and relatedness

between concepts.

VI. CONCLUSION

In this paper, we presented a novel approach, which

creates and utilizes a project-specific ontology over a model-

based artifact repository to assist the traceability link cre-

ation process. Our proposed approach extracts the explicit

information from a meta-model apart from extracting struc-

tural and textual information from artifact instances to

populate the ontology. We create two sets of ontologies,

i.e. one which considers meta-model, artifact instances and

the available structural information, while the other one is a

generic ontology created by linguistic processing of natural

language text available in the artifacts. These two ontologies

combined assist in creating missing and broken traceability

links along with the possibility to identify additional trace-

ability links.

In the future, we plan to implement and evaluate the

presented approach for the existing model-based CASE

tool UNICASE. In this work, we considered traceability

link creation and identification separately from utilization.

However, the proposed approach will create a large number

of explicit and implicit links, especially in the context of

large projects. Thus, the resulting volume of implicit links

is likely to be more of a problem than a benefit. We are

aware of this problem and plan to deal with this issue by

considering the work context and expertise of the traceability

user. Apart from standard heuristics used for evaluation of

traceability links, we plan to do an extensive evaluation

considering working context in which explicit and implicit

links are useful, e.g. during software development and its

corresponding project management.

REFERENCES

[1] Egyed, A., and Grunbacher, P. ”Supporting software under-
standing with automated requirements traceability”. Interna-
tional Journal of Software Engineering and Knowledge Engi-
neering, 2005, vol.15, no.5, pp. 783-810.

[2] Bruegge, B., Creighton, O., Helming, J., and Koegel, M.
”Unicase - an ecosystem for unified software engineering re-
search tools”. Third IEEE International Conference on Global
Software Engineering, ICGSE, 2007, vol. 2008.

[3] Cleland-Huang, J., Hayes, J. H., and Domel, J. M. ”Model-
based traceability”. In TEFSE 09: Proceedings of the 2009
ICSE Workshop on Traceability in Emerging Forms of Soft-
ware Engineering, Washington, DC, USA, 2009, IEEE Com-
puter Society, pp. 6-10.

[4] Maeder, P., Philippow, I., and Riebisch, M.; , ”A Trace-
ability Link Model for the Unified Process”. Eighth ACIS
International Conference on Software Engineering, Artificial
Intelligence, Networking, and Parallel/Distributed Computing,
2007, vol.3, no.1, pp. 700-705.

[5] Aizenbud-Reshef, N., Nolan, B. T., Rubin, J., and Shaham-
Gafni, Y. ”Model traceability”. IBM Syst. J., vol.45, no.3,
2006, pp. 515-526.

[6] Winkler, S., and Von Pilgrim, J. ”A survey of traceability
in requirements engineering and model-driven development”.
Softw. Syst. Model, vol.9, no.4, 2010, pp. 529-565.

[7] Aleksy, M., Hildenbrand, T., Obergfell, C., and Schwind, M.
”A Pragmatic Approach to Traceability in Model-Driven De-
velopment”, In Proceedings of the PRIMIUM Subconference
at the Multikonferenz Wirtschaftsinformatik (MKWI) 2008,
Garching, Germany, February, 2008, pp. 26-28.

[8] Noll, R. P., and Ribeiro, M.B., ”Ontological Traceability over
the Unified Process”. Proceedings of the 14th Annual IEEE
International Conference and Workshops on the Engineering
of Computer-Based Systems (ECBS07), March 26-29, 2007,
pp. 249-255.

[9] Y. Zhang et al., ”An Ontology-Based Approach for Traceability
Recovery”. Proceedings of the 3rd International Workshop on
Metamodels, Schemas, Grammars, and Ontologies for Reverse
Engineering (ATEM 2006), Genoa, October 1, 2006, pp. 36-43.

[10] Hayes, J. H., Dekhtyar, A., and Osborne, J. ”Improving
requirements tracing via information retrieval”. Requirements
Engineering, IEEE International Conference, 2003, pp. 138-
147.

[11] Marcus, A., and Maletic, J. I. ”Recovering documentation-to-
source-code traceability links using latent semantic indexing”.
In ICSE 03: Proceedings of the 25th International Conference
on Software Engineering, Washington, DC, USA, 2003, IEEE
Computer Society, pp. 125-135.

[12] Stanford Log-linear Part-Of-Speech Tagger
(version 3.0.1), Stanford Parser (1.6.6), Stanford
Dependencies, Stanford University, Available at
http://nlp.stanford.edu/software/index.shtml, April 2011.

[13] Spanoudakis, G., and Zisman, A. ”Software traceability: A
roadmap”. In Handbook of Software Engineering and Know-
ledge Engineering, World Scientific Publishing, 2004, pp.395-
428.

[14] Spanoudakis, G., Zisman, A., Perez-Minana, E., and Krause,
P. ”Rule-based Generation of Requirements Traceability Rela-
tions”, Journal of Systems and Software, vol.72, no.2, 2004,
pp. 105-127.

28

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

