UNICASE Trace Client: (Semi-) Automatic Tracing of Requirements
and Code During Development for Small and Medium Enterprises

Alexander Delater, Barbara Paech

Institute of Computer Science, University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany

{delater, paech}@informatik.uni-heidelberg.de

1 Introduction

Corporations are constantly making progress in their ef-
forts towards traceability in software development. One
challenge faced by small and medium enterprises (SMEs)
is to create traceability links between requirements and
code [1], e.g. to use them to prove to their customers
that they implemented all requirements. However, these
links are often created after development [2], which can,
for example, result in increased costs and development
time. In [3], we presented an approach to (semi-) au-
tomatically create links between requirements and code
during development using artifacts from project man-
agement. Based on this approach, we developed the
lightweight tool UNICASE Trace Client (UTC) [4]. Tt
is an extension to the model-based CASE tool UNI-
CASE [5], which is an Eclipse plug-in developed in an
open-source project. As SMEs prefer tools supporting
multiple aspects of software development, e.g. require-
ments, project management and code, UTC is particu-
larly suited for them. In this paper, we introduce UTC
and describe why it is valuable for SMEs.

2 Background

We defined a Traceability Information Model (TIM)
[3] (see Figure 1) consisting of artifacts from require-
ments engineering (system model), project management
(project model) and code (code model). An extended
UML notation was used to represent the three models
with their artifacts.

System Model | Project Model Code Model
[t oo ottty Bty Attt 1.
: related to Sprint Sode 1F,."e
H realized in ?aTe fileName
! T vf;l:l;i?ns projectName
! athinProject
! 1.0 dueDate B 1]
! Feature status o
| name o [3 contained in
1 _| description containedin | 81"
1| priority - Revision
! - Work Item
! functionalRegs Ndentfier | date
! 1 [name author
! relatedlio | yescription | crehtes number |
' details lizedin | @ssignee 1 17 repositoryUr
| ’,%Le‘% dueDate " | pathInRepository
\ " status commitMessage
! L — changedCodeFiles
' Functional assignedto| =0 f[———————
| Requirement 1. ! Legend !
1 I
L= name. . Developer | Traceable artifact type i
1-*| description name | Existing taco & |
: xisting trace types |
feature assignments T Inferred trace types !

Figure 1: Traceability Information Model [3]

A feature is realized in a sprint and is detailed in
one or more functional requirements. Functional re-
quirements are realized in work items. One work item
must have one or more linked functional requirements.
Work items are contained in sprints and are assigned to
developers. A work item can create one or more revi-
sions, each containing one or more changed code files.
All these artifacts can be found in common software
development projects performed by SMEs [1].

We presume the following situation in a development
project. First, a list of features and functional require-
ments exists. Second, a project manager has planned
the implementation of the features in sprints and s/he
has broken down the implementation schedule of the
functional requirements into work items for the devel-
opers. Third, all work items are already assigned to de-
velopers. As SMEs often use agile software development
techniques and issue management [1], this situation is
common to them. Below we use the term requirement
to refer commonly to features and functional require-
ments to avoid misunderstandings.

3 UNICASE Trace Client

UTC implements the TIM and integrates itself seam-
lessly in Eclipse and its supporting plug-ins, e.g. Sub-
version. It supports various features for the (semi-) au-
tomatic creation and usage of links between require-
ments and code. The features are divided into basic
features for link creation and advanced features for link
usage. The basic features for link creation are:
Capturing Traceability Links: First, the devel-
oper selects a work item from his/her list of assigned
work items. While working on the work item, all re-
quirements the developer looks at during implementa-
tion are automatically captured by UTC. After the de-
veloper finishes coding, UTC asks him/her to validate
all captured requirements. The validated requirements
are linked to the work item and the created revision
is linked to the work item. This results in traceability
between requirements, work items and code.
Inferring Traceability Links: The created links
are used to infer direct links between requirements and
code. They are represented as dashed lines in Figure 1.
In [3], we have presented an algorithm for inferring links
between requirements and code. The inference algo-
rithm is executed when the status of a work item is

changed by the developer from assigned to done. The
algorithm connects in a brute force manner all linked
requirements of a work item with all the code files in
the linked revisions of a work item.

Summing up, the only manual work in our approach
is to establish initial links between work items and re-
quirements (which is typical for issue management) and
to validate the captured links (which should be easy as
the links refer to the work just finished). Besides this,
no other additional work is required by SMEs to achieve
traceability between requirements and code. UTC pro-
vides the following advanced features for link usage:

Traceability between Requirements & Code:
Using inferred links between requirements and code, one
can analyze which code contributes to the realization of
which requirement. This helps SMEs proving to their
customers that they have implemented all requirements.

Requirements Context: During implementation,
a developer can look at the requirements context that
shows all requirements linked to the currently open code
file. Due to agile software development techniques, de-
velopment teams can change quickly. For example, this
feature can support SMEs during development, when
new developers are joining and trying to understand
the purpose of the implemented code.

Progress of Implementation: Work items have a
completion status and are linked to requirements. Thus,
work items enable to identify not implemented require-
ments as well as the progress of their implementation.
This helps SMEs to see how far they have already imple-
mented all requirements, as well as identifying not im-
plemented requirements requiring increased attention.

Requirements Impact Analysis: If a SME needs
to change a requirement to reflect changed customer de-
mands, all related artifacts potentially affected by this
change can be identified. Affected requirements and
work items can be identified, e.g. if a change in a re-
quirement is comprehensive, related requirements and
their planning of realization described in work items
needs to be adapted. An initial set of code files can be
identified, which can be a starting point for detailed im-
pact analysis. The changes in the code files can result
in additional changes in other code files.

4 Related Work

There exist various commercial tools used by SMEs
supporting traceability between requirements and code.
We analyzed 12 tools by comparing various criteria,
e.g. support for managing requirements, project man-
agement and code as well as their ability to (semi-)
automatically create links and let developers use these
links, especially for impact analysis. In this paper, we
only present UTC compared to the best three other
tools. Table 1 shows the tools UTC, IBM Rational
Team Concert (RTC), Polarion Requirements (POL)
and Atlassian JIRA (JIRA). During comparison, an ex-
ample project with all necessary artifacts was used.
UTC and RTC are based on Eclipse, whereas POL

and JIRA are web-based. SMEs prefer integrated tools,
e.g. in an development environment (IDE) like Eclipse,
which ensure a seamless traceability between all ar-
tifacts of the development process and reduced time
for switching between different tools. All four tools
support requirements specification and project manage-
ment. However, only UTC supports code files and re-
visions, whereas all other tools only support code files.
Revisions help to identify who changed what in the code
files. Furthermore, only UTC supports the manual and
(semi-) automatic creation of links, whereas in all other
tools links have to be created manually. This means
that in all other tools, people from the SME need to
link all artifacts by hand, which can, for example, result
in increased development time or incorrect traceability
links. RTC is the only other tool besides UTC support-
ing impact analysis, but only for code files. Compared
to RTC, UTC supports combined impact analysis be-
tween requirements and code. This enables SMEs to es-
timate the potential impact of a changing requirement
to the code, and vice verca.

Table 1: Tools for Tracing Requirements and Code

[Criterion [UTC [RTC [POL [JIRA |
Platform Eclipse Eclipse | Web ‘Web
IDE integration | Yes Yes No No
Requirements Yes Yes Yes Yes
Project Mgmt. Yes Yes Yes Yes
Code/Revisions | Yes/Yes Yes/No | Yes/No | Yes/No
Link Creation Auto.&Man.| Man. Man. Man.
Impact Analysis | Yes (Yes) No No

5 Conclusion

We developed UTC which supports the (semi-) auto-
matic creation of links between requirements and code
using project management artifacts. Currently we are
in the midst of evaluating our approach in an exten-
sive case study to get a better understanding of the
creation and usage of links between requirements and
code in practice. We want to compare the effort and
quality of our created traceability links to the results of
other conducted exploratory case studies.

References

[1] Aranda, J., Easterbrook, S., Wilson, G.: Requirements in
the wild: How small companies do it, In RE 07: 15th In-
ternational Requirements Engineering Conference, pp. 39-48
(2007)

[2] Cleland-Huang, J., Heimdahl, M., Huffman-Hayes, J., Lutz,
R., Maeder, P.: Trace queries for safety requirements in high
assurance systems, In REFSQ 12: 18th International Confer-
ence on Requirements Engineering: Foundation for Software
Quality, pp. 179-193 (2012)

[3] Delater, A., Narayan, N., Paech, B.: Tracing Requirements
and Source Code During Software Development, In ICSEA
12: 7th International Conference of Software Engineering Ad-
vances, pp. 274-282 (2012)

[4] UNICASE Trace Client at Google
http://code.google.com/p/unicase/wiki/TraceClient

[5] UNICASE, http://www.unicase.org/

Code,

