
Traceability between System Model,
Project Model and Source Code

Alexander Delater, Barbara Paech

Institute of Computer Science
University of Heidelberg

Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
{delater,paech}@informatik.uni-heidelberg.de

Abstract. Traceability from source code to system model elements like
requirements has been extensively researched. Even though existing ap-
proaches use various heuristics and methods to compute traceability links
automatically, they do not return very satisfying and dependable results.
In contrast to these approaches, we not only consider the system model,
but also the project model, which is used for planning and organization
in software development projects. In this thesis, we plan to create and
utilize traceability links between elements from system model, project
model and source code. We believe that by using elements from the
project model as mediator connectors, links between elements from the
system model and source code can be easily created. In this paper, we
present the research problems that need to be solved as well as our prin-
cipal solution ideas to tackle these problems.

Keywords: traceability, system model, project model, source code

1 Introduction

The software development process relies on traceability information captured
throughout the evolution of a software product. Traceability supports, amongst
others, program comprehension, change management, software maintenance,
software reuse and prevention of misunderstandings [10]. Traceability between re-
quirements and source code has been extensively researched in the past years and
much progress has been made in this field. Because the manual creation of trace-
ability links between requirements and source code is cumbersome, error-prone,
time consuming and complex [22], a major focus in research is on (semi-) auto-
matic approaches. Existing (semi-) automatic approaches use various techniques,
e.g. information retrieval, execution traces, static/dynamic analysis, subscription-
based or rule-based link maintenance or combinations of them. Even though
these approaches use different heuristics and methods to compute traceability
links between requirements and source code, they do not return very satisfying
and dependable results [22].

In software development projects, two different types of models are used for
abstraction: the system model and project model [16]. Model elements from the



system model describe the system under construction, such as requirements, use
cases, components or design documents. Model elements from the project model
describe the on-going project, such as work items, the organizational structure,
iterations or meetings (we use the term work item instead of task to avoid mis-
understandings with the term task used in requirements engineering). These two
models have already been integrated within a model called MUSE: Management-
based Unified Software Engineering [16]. The MUSE model is implemented in
the model-based CASE tool UNICASE [4].

While the MUSE model describes the system to be developed and its project
management, it does not provide traceability to the source code. Furthermore,
the MUSE model supports the manual creation of traceability links, but it does
not support the automatic creation of traceability links.

In this thesis, we want to extend the MUSE model by a new code model to
support traceability to the source code. We want to study the usage of trace-
ability links between these three models, namely system model, project model
and code model. Moreover, we want to present a (semi-) automatic approach for
creating traceability links between these three models. These traceability links
are expected to support various development activities, such as program compre-
hension, change management and software maintenance. We want to implement
the extended MUSE model and the proposed approach for (semi-) automatic
traceability link creation in UNICASE and evaluate it in various case studies.

This paper is structured as follows: Section 2 describes the research problems
concerning this thesis. Section 3 presents the proposed solutions and discusses
their novelty. Section 4 gives an overview about related work. Section 5 discusses
the applied research methods. Our progress concludes the paper in Section 6.

2 Problems

There are various problems that need to be solved in order to link source code
with elements from system model and project model.

P1-Representations of Source Code: A problem is to define the repre-
sentations of source code that make up the elements of the code model.

P2-Capturing & Inferring Traceability Links: The manual creation
of traceability links is cumbersome, error-prone, time consuming and complex.
Thus, a (semi-) automatic approach for capturing traceability links between the
three models is necessary. Support for direct navigation between elements of all
three models is also required.

P3-Identifying Relevant Traceability Links: The approach for solving
P2 might create a lot of links. Support for the derivation of the most relevant
links is necessary.

P4-Supporting Change Impact Analysis: With the different elements
from the code model from P1 and approaches for capturing and identifying
relevant traceability links from P2 and P3, several development activities can be
supported. In this thesis, we want to focus on supporting change impact analysis
and present an algorithm using the newly created traceability links.



3 Proposed Solutions

3.1 P1-Representations of Source Code

For the elements of the code model, we want to focus on file-based and change-
based representations, because they are widely used in software development
projects. For example, file-based representations are file resources containing
source code or line(s) of code in these resources. Change-based representations
are supported by a version control system (VCS), e.g. patch or revision/branch.

UNICASE is a plugin for the Eclipse integrated development environment
(IDE). The Eclipse IDE supports various programming languages through ad-
ditional plugins, e.g. Java, C++, Python etc. By integrating UNICASE and
Eclipse with plugins for VCSs like Subversion [23] or Git [12], we can provide a
comprehensive tool environment supporting the developers while they perform
various development activities. By using these plugins, we can access file-based
as well as change-based representations of source code.

3.2 P2-Capturing & Inferring Traceability Links

Work items represent a unit of work which describe changes to be performed to
the code as well as new developments. They are the task descriptions used in
many software development projects. As they are the basis of the daily work,
they are regularly kept up-to-date [14]. Furthermore, as work items are used
to describe pending work, they can also implicitly mention the relationships
between system elements relevant to the current work item within its textual
description, e.g. the requirement that needs to be implemented or a related
design element.

System Model 
e.g. requirement, 

use case etc.

(A) 
manual / 
capture

(B)
manual /
capture

(C) Infer Traceability Links

Code Model 
e.g. file resource, 

revision etc.

Project Model 
e.g. work item, 
developer etc.

Fig. 1. Traceability between system model, project model and code model

We believe that by using project model elements as mediator connectors,
traceability links between system model elements and code model elements can
be easily created (see Fig. 1). The core idea of creating traceability links be-
tween elements of system-, project- and code model is letting the developers
create these links themselves. First, the developer selects a work item and starts
implementation. While working on the work item, all system elements (e.g. re-
quirements, design documents) the developer looks at during implementation are
automatically captured (see A in Fig. 1). After finishing the implementation of a



work item, the developer does not immediately commit the changes to the VCS.
Instead, before the commit, s/he has to verify the list of captured traceability
links. This means that the developer has to accept all or reject some traceability
links that were captured. It is an open question whether traceability links could
be suggested as likely to be relevant. This additional work results in very little
overhead for the developers. After this verification, the newly created revision in
the VCS is linked to the work item (see B in Fig. 1). It must be studied whether
the set of links of one work item can be used efficiently to navigate between the
elements linked to that work item, e.g. the requirements and the code related
through that work item (see C in Fig. 1). Note that this approach also implicitly
alleviates the problem of link maintenance, if it is assumed that any relevant
change to a system element is performed only in context of a work item. The
links of the most recent work items always provide the most up-to-date links
between elements of the system model and code model.

3.3 P3-Identifying Relevant Traceability Links

The approach for capturing and inferring traceability links might create a lot of
links. Support for the derivation of the most relevant links is necessary. We plan
to implement an algorithm that provides a relevance ranking for each link based
on the change history of the elements connected by the link. The change impact
analysis can focus on the most relevant traceability links.

3.4 P4-Supporting Change Impact Analysis

We plan to implement an algorithm for change impact analysis using the most
relevant captured and inferred traceability links. This algorithm bridges the gap
between requirements and source code to answer questions as: What parts of
the source code need to be changed based on a change in a requirement? We
want to classify our new algorithm using the taxonomy presented by Lehnert
[17] and compare it to existing algorithms. We expect that this algorithm is
able to provide more detailed results during change management than existing
algorithms.

4 Related Work

Maintaining traceability links between source code and other artifacts is a chal-
lenging task and therefore a field of intense research.

To the best of our knowledge, no approach uses work items to create trace-
ability links between requirements and code. Either they create links between
requirements and code using mostly (semi-) automatic approaches (e.g. informa-
tion retrieval [1, 19, 20, 13, 6], execution-trace analysis [8, 11, 5], static/dynamic
analysis [2], subscription-based or rule-based link maintenance [18] or combina-
tions of them [7]) or only create links between work items and code [3].



Furthermore, other approaches only relate structures in the source code like
classes, methods, lines of code or modules, files and resources to other artifacts
like requirements [24]. This is also supported by our approach. However, our
approach is also able to track exact changes in the source code.

An approach similar to ours for the automatic capturing of links was pre-
sented by Omoronyia et al. [21]. They have achieved traceability between use
cases and source code. Their approach is based on tracing the operations car-
ried out by a developer called navigation trails. However, this approach requires
an elaborate model with rankings of navigation trails to derive the most rel-
evant links. It is an open question whether the availability of work items can
alleviate this ranking and how to define rankings for other elements, e.g. design
documents touched while implementing a use case. Their approach is also able
to identify which developer is involved in the realization of a specific use case.
The contribution of Omoronyia et al. shows that tracking changes displays some
advantages over the other approaches. For example, relating a developer to the
source code and use cases is almost impossible with the other approaches, but
very easy if changes/operations are tracked, like in our approach.

Except Omoronyia et al., all other approaches mentioned above try to create
traceability links after the implementation of the source code. In comparison,
our approach creates traceability links while the system is implemented. We
track the changes made to the source code and link them to the work items they
belong to. The work items themselves are linked to elements of the system model
and new traceability links can be captured between them during development.
Based on the intermediate work items, we expect to be able to infer reliable
traceability links between system model elements and source code.

5 Research Methods

The overall goal is to validate our proposed solutions. To reach this goal, we
apply a tool prototype driven approach where each conceptual research result
is developed in parallel with a tool prototype based on the model-based CASE
tool UNICASE. Thus, we are able to validate our results early by applying them
in academic projects (e.g. bachelor/master theses), in practical courses as well
as in the open source project UNICASE itself.

First case studies showed that links between system elements and project
elements provide useful information for the work (by shortening the navigation
paths of the developers) and that based on such links system elements are kept
more up-to-date [15]. We want to conduct more case studies using our presented
approach and developed tool support based on UNICASE.

For change impact analysis, traceability links can be evaluated by calculating
two metrics: the percentage of actual matches that are found (recall) and the
percentage of correct matches as a ratio to the total number of candidate links
returned (precision). We want to apply these metrics to our algorithm for change
impact analysis and compare the results to existing approaches, e.g. [1, 19, 20,
13, 6]. We want to compare the effort and quality of capturing traceability links



between requirements and source code of our presented approach to the results
of other conducted exploratory experiments, e.g. by Egyed et al. [9].

6 Progress

In 2011, defined the representations of source code that we want to focus on (P1).
Furthermore, we provided (semi-) automatic support for capturing traceability
links between project model and code model. We used patches and revisions in
a version control system as two possible types of representation of source code.
Changes to the source code are tracked and when the developer commits some
code changes, links between the code changes and the work item are captured
(P2).

In 2012, we plan to provide (semi-) automatic support for capturing trace-
ability links between system model and project model in UNICASE (P2). We
will implement an algorithm that provides a relevance ranking for each link based
on the change history of the elements connected by the link (P3). Furthermore,
we plan to implement an algorithm for change impact analysis using the most
relevant captured and inferred traceability links (P4). We will evaluate the algo-
rithm using data from the open source project UNICASE. We expect to finish
this thesis by mid 2013.

References

1. Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., Merlo, E.: Recovering trace-
ability links between code and documentation, IEEE Transactions on Software
Engineering, pp. 970-983 (2002)

2. Antoniol, G., Gueheneuc, Y.G.: Feature identification: A novel approach and a
case study, In ICSM ’05: Proceedings of the 21st IEEE International Conference
on Software Maintenance, pp. 357-366 (2005)

3. Anvik, J., Storey, M.A.: Task articulation in software maintenance: Integrating
source code annotations with an issue tracking system, In ICSM ’08: IEEE Inter-
national Conference on Software Maintenance, pp. 460-461 (2008)

4. Bruegge, B., Creighton, O., Helming, J., Koegel, M.: Unicase - an Ecosystem for
Unified Software, In ICGSE ’08: Distributed software development: methods and
tools for risk management, ICGSE Workshop 2008 (Bangalore, India, 2008)

5. Burgstaller, B., Egyed, A.: Understanding where requirements are implemented,
In 2010 IEEE International Conference on Software Maintenance, pp. 1-5 (2010)

6. De Lucia, A., Fasano, F., Oliveto, R., Tortora, G.: Recovering traceability links in
software artifact management systems using information retrieval methods, Trans-
actions on Software Engineering Methodology, vol. 16, no. 4, art. 13, ACM (2007)

7. Eaddy, M., Aho, A.V., Antoniol G., et al.: CERBERUS: Tracing requirements to
source code using information retrieval, dynamic analysis, and program analysis,
In the 16th IEEE International Conference on Program Comprehension (ICPC),
pp. 53-62 (2008)

8. Egyed, A.: A Scenario-Driven Approach to Trace Dependency Analysis, Transac-
tions on Software Engineering, vol. 29, no. 2, pp. 116-132, IEEE (2003)



9. Egyed, A., Graf, F., Grünbacher, P.: Effort and quality of recovering requirements-
to-code traces: Two exploratory experiments, In RE ’10: Proceedings of the 18th
International IEEE Requirements Engineering Conference (RE) (2010)

10. Egyed, A., Grünbacher, P.: Supporting software understanding with automated re-
quirements traceability, International Journal of Software Engineering and Knowl-
edge Engineering, vol. 15, no. 5, pp. 783-810 (2005)

11. Eisenberg, A.D., De Volder, K.: Dynamic feature traces: Finding features in unfa-
miliar code (2005)

12. Git - Fast Version Control System. http://git-scm.com.
13. Hayes, J.H., Dekhtyar, A., Osborne, J.: Improving requirements tracing via infor-

mation retrieval, International Conference on Requirements Engineering (2003)
14. Helming, J., Arndt, H., Hodaie, Z., Koegel, M., Narayan, N.: Semi-automatic as-

signment of work items, In ENASE ’10, pp.149-158 (2010)
15. Helming, J., David, J., Koegel, M., Naughton, H.: Integrating system modeling with

project management - a case study, In COMPSAC ’09: Proceedings of the 2009
33rd Annual IEEE International Computer Software and Applications Conference
(Washington, DC, USA, 2009), IEEE Computer Society, pp. 571-578 (2009)

16. Helming, J., Koegel, M., Naughton, H.: Towards traceability from project manage-
ment to system models, In TEFSE ’09: Proceedings of the 2009 ICSE Workshop
on Traceability in Emerging Forms of Software Engineering, pp.11-15. IEEE Com-
puter Society (2009)

17. Lehnert, S.: A taxonomy for software change impact analysis, In Proceedings of
the 12th International Workshop on Principles of Software Evolution and the 7th
annual ERCIM Workshop on Software Evolution (New York, NY, USA, 2011),
IWPSE-EVOL ’11, ACM, pp. 41-50 (2011)

18. Maeder, P., Gotel, O.: Towards Automated Traceability Maintenance, Journal of
Systems and Software (2011)

19. Marcus, A., Maletic, J.I.: Recovering documentation-to-source-code traceability
links using latent semantic indexing, In Proceedings of the 25th International Con-
ference on Software Engineering, pp. 125-135. IEEE Computer Society (2003)

20. Marcus, A., Maletic, J.I., Sergeyev, A.: Recovery of traceability links between soft-
ware documentation and source code, International Journal of Software Engineer-
ing and Knowledge Engineering, vol. 15, no. 5, pp. 811-836 (2005)

21. Omoronyia, I., Sindre, G., Roper M., Ferguson J., Wood, M.: Use case to source
code traceability: The developer navigation viewpoint, In 2009 17th IEEE Inter-
national Requirements Engineering Conference, pp. 237-242 (2009)

22. Spanoudakis, G., Zisman, A.: Software traceability: A roadmap, In Handbook of
Software Engineering and Knowledge Engineering, World Scientific Publishing,
pp. 395-428 (2004)

23. Apache Subversion. http://subversion.apache.org.
24. Treude, C., Storey, M.A.: How tagging helps bridge the gap between social and

technical aspects in software development, In Proceedings of the 31st International
Conference on Software Engineering (ICSE), pp. 12-22 (2009)


