

Copyright © [2013] IEEE.
Electronical version/reprinted from Proceedings of 2013 ACM / IEEE
International Symposium on Empirical Software Engineering and
Measurement (ESEM’13), pp. 25-34

This material is posted here with permission of the IEEE. Internal or
personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or
for creating new collective works for resale or redistribution must be
obtained from the IEEE by writing to pubs-permissions@ieee.org
By choosing to view this document, you agree to all provisions of the
copyright laws protecting it.

Tracing Requirements and Source Code During
Software Development: An Empirical Study

Alexander Delater, Barbara Paech
Institute of Computer Science, University of Heidelberg

Im Neuenheimer Feld 326, 69120 Heidelberg, Germany

{delater,paech}@informatik.uni-heidelberg.de

Abstract—[Context and motivation] In practice, traceability
links between requirements and code are often not created,
because this would require increased development effort. To ad-
dress this weakness, we developed in previous work an approach
that semi-automatically captures traceability links between re-
quirements and code during development. We do this by using
work items from project management that typically are stored in
issue trackers. [Question/problem] Practitioners and researchers
have discussed the practice of using work items to capture links
between requirements and code, but there has been no systematic
study of this practice. [Principal ideas/results] In this paper,
we present such an empirical study based on the application
of our approach. We applied our approach in three different
software development projects conducted with undergraduate
students. We evaluated the feasibility and practicability of our
approach and its tool support. The feasibility results indicate
that our approach creates correct traceability links between all
artifacts with high precision and recall during development.
At the same time the practicability results indicate that the
subjects found our approach and its tool support easy to use.
[Contribution] The empirical evaluation in this paper contributes
valuable insights into the tracing of requirements and code during
software development.

Keywords—traceability; requirements; work items; code; soft-
ware development; evaluation.

I. INTRODUCTION

Requirements-to-code traceability reflects the knowledge
where requirements are implemented in the code. This knowl-
edge is very important for participants within a software
development project [1]. However, these traceability links are
often not created as this would lead to higher development
effort. Therefore, these traceability links cannot be used during
software development. However, researchers have shown that
such links would be useful during development. For example,
developers could use these links for comprehension support
while working on an implementation task, e.g., navigating from
a code file to its corresponding requirement [2].

In previous work, we presented an approach that semi-
automatically captures traceability links between requirements
and code during software development by using work items
from project management. Our approach consists of three
parts. The first part [3] comprises a Traceability Information
Model (TIM) consisting of artifacts from three different areas,
namely requirements engineering, project management, and
code. The TIM also includes the traceability links between
them. We also presented an algorithm for automatically infer-
ring direct traceability links between requirements and code

based on the interlinked work items. The second part [4] com-
prises three processes for capturing traceability links between
requirements, work items, and code. The third part [5] is an
implementation of our approach as an extension to the model-
based CASE tool UNICASE [6], which is called UNICASE
Trace Client (UTC) [7]. UNICASE is a plug-in for the Eclipse
integrated development environment (IDE) and is developed
in an open source project [8]. UTC integrates itself seamlessly
into Eclipse and its supporting plug-ins, e.g., Subversion (a
commonly used version control system). UTC implements the
TIM and all its artifacts and traceability links as well as all
three traceability link creation processes.

The capture of traceability links during development is the
focus of recent research [9]. Asuncion & Taylor [10] presented
an approach for capturing links between heterogeneous arti-
facts, including requirements and code, by analyzing interac-
tions of users while they create/generate or modify artifacts.
Omoronyia et al. [11] capture links between requirements and
code based on the operations carried out by developers creating
code artifacts to realize requirements. Requirements, work
items and code can already be stored together in various tools,
e.g., in IBM Rational Team Concert or Polarion Requirements.
Practitioners and researchers have discussed the practice of
using work items to capture links between requirements and
code, but there has been no systematic study of this practice so
far [12]. Such an empirical study should analyze the feasibility
and practicability of an approach. Feasibility evaluates the
accuracy of an approach, while practicability evaluates the ease
of use of applying an approach in practice and whether the
subjects have an intention to use the approach. Asuncion &
Taylor and Omoronyia et al. did not provide empirical work
to show the feasibility and practicability of their approaches.

In this paper, we present such an empirical study based on
the application of our own approach in three different software
development projects conducted with undergraduate students.
We evaluate the feasibility and practicability of our approach
and its tool support. For feasibility, we are investigating the
precision and recall of traceability links between requirements
and work items, work items and code, and requirements and
code. For practicability, we use questionnaires to ask students
about the ease of use and their intention to use our approach.

The paper is structured as follows: Section II provides
background information on our approach. Section III describes
the case study design and research method. Section IV presents
the results and Section V the threats to validity. Section VI
discusses related work and Section VII provides a discussion.
Section VIII concludes the paper and discusses future work.

2013 ACM / IEEE International Symposium on Empirical Software Engineering and Measurement

978-0-7695-5056-5/13 $26.00 © 2013 IEEE

DOI 10.1109/ESEM.2013.16

25

2013 ACM / IEEE International Symposium on Empirical Software Engineering and Measurement

978-0-7695-5056-5/13 $26.00 © 2013 IEEE

DOI 10.1109/ESEM.2013.16

25

II. BACKGROUND

This section provides background information about our
approach to improve the general understanding.

A. Traceability Information Model

In [3], we defined a TIM (see Fig. 1) consisting of artifacts
from requirements engineering (features, functional require-
ments), project management (work items, sprints, developers),
and code (code files, revisions) as well as the traceability
links between them. An extended UML notation was used to
represent these three models with their artifacts.

Code ModelProject ModelSystem Model

name
description
feature

Functional
Requirement

name
assignments

Developer

date
author
number
repositoryUrl
pathInRepository
commitMessage
changedCodeFiles

Revision

fileName
projectName
pathInProject

Code File

name
description
priority
functionalReqs

Feature

details

name
features
workItems
dueDate
status

Sprint

identifier
name
description
assignee
dueDate
status

Work Item

assigned to

contained in

contained in

Legend

Traceable artifact type

Existing trace types

creates

realized in

realized in 1 1..*

1..*

1..*

1..*

1..*

1..*

1

1

1..*

1..*

1..*

1..*

1..*

related to

Inferred trace types

1..*

1..*

1..*

related to
1..*1..*

Fig. 1. Traceability Information Model (cf. [3])

A feature is realized in a sprint and is detailed in one or
more functional requirements. Work items describe work to
be done to realize functional requirements, are assigned to
developers, have a completion status and a due date. A work
item must have one or more linked functional requirements
and is contained in a sprint. A feature can be related to a work
item, e.g., during bug fixing. One work item can create one
or more revisions. A revision contains one or more changed
code files and is stored in a version control system (VCS).

We presume the following situation in a development
project. First, a list of features and functional requirements
exists. Second, a project manager has planned the implemen-
tation of the features in sprints and s/he has broken down the
implementation schedule of the functional requirements into
work items for the developers. Third, all work items have
already been assigned to developers. Below, the term require-
ment refers to both: features and functional requirements.

B. Traceability Link Creation Processes

Our approach uses work items to link requirements and
code during development. As we presume that the implemen-
tation of the requirements is planned in work items, we need
to capture links between the work item and the code that is
created by its assigned developer. In [4], we identified three
possibilities for developers to select a work item that is related
to their implemented code. Developers can select a work item
before they start the implementation of code (process A),

during implementation, when they have created code but have
not yet stored it in a VCS (process B), or after implementation,
when they have created code that has already been stored in
a VCS (process C). All three processes are depicted in Fig. 2
and explained in the following.

Process A) Select Work Item Before Implementation: First,
the developer selects a work item from his/her list of assigned
work items. While working on the work item and implement-
ing new code or changing existing code, all requirements the
developer looks at during implementation are automatically
captured. For example, s/he may look at requirements to find
out what to implement. When finishing the implementation of
the work item, the developer is asked to validate all captured
requirements and new/changed code, which means s/he con-
firms all related and removes all non-related requirements or
code files. The validated requirements are linked to the work
item and the validated code is stored in a new revision in the
VCS, which is also linked to the work item.

Process C: Link Work Item After Implementation to Previously Created Revision

Process B: Select Work Item During Implementation

Process A: Select Work Item Before Implementation

Select
Work Item

Capture
Requirements

Implement
Code

Validate
Captured

Req. & Code

Link Captured
Requirements to

Selected
Work Item

Create
Revision in

VCS

Link Selected
Work Item to

Revision

Select Work
Item

Implement
Code

Create
Revision in

VCS

Link Selected
Work Item to

Revision

Select
Revision from

VCS

Select Work
Item

Link Selected
Work Item to

Revision

Legend
Activity

Activity performed
in all processes

Start End Split/Join of con-
current activities

Validate
Code

Fig. 2. Traceability Link Creation Processes A, B and C (cf. [4])

Process B) Select Work Item During Implementation: In
contrast to Process A, in Process B a developer does not need
to select a work item before implementation. Instead, s/he
starts with the implementation directly. After implementing
code and before creating a new revision stored in the VCS,
the developer validates the new/changed code files and selects
a work item from his/her list of assigned work items. A new
revision with the validated code files is stored in the VCS
and is automatically linked to the selected work item. In this
process, no requirements are captured and need to be validated.

It is important to note that processes A and B do not
force developers to select a work item related to the current
implementation. In case the developer implemented code that
s/he does not want to be linked to a work item, s/he can omit
the linking of a work item, which ends processes A and B.

Process C) Link Work Item After Implementation to Pre-
viously Created Revision: In contrast to processes A and B,
process C occurs after implementation and it represents an
alternative way for the developer to link code to a work item.
A VCS stores the history of all previously created revisions
with the information by whom and when each revision was
created, as well as all changed code files. In case a developer
has implemented code without selecting a work item before
implementation (see process A) or without selecting a work
item during implementation (see process B), s/he can manually
select to link a previously created revision to a work item
from his/her assigned work items list. Similar to process B,
no requirements are captured and validated.

2626

A developer can perform a mixture of all three processes
during the course of the project. However, each process can
only be applied once per revision. This means each revision in
the VCS is either created (process A, B) or linked (process C)
by only one of the three processes.

III. CASE STUDY DESIGN & RESEARCH METHOD

In the following, the study context and the research ques-
tions and hypotheses are described.

A. Study Context
We conducted three different development projects with

undergraduate students of different duration and number of
participating students. In the following, we describe the de-
velopment projects and provide information about the partici-
pants and the development process used. Table I provides an
overview of the key metrics of all three projects. For describing
features and functional requirements, we used the user task
descriptions by Lauesen [13] and use cases, respectively.

TABLE I. DEVELOPMENT PROJECTS

Metric Project 1 Project 2 Project 3
Participants 6 3 3

Sprints 6 3 3

Programming Lang. JavaScript, Java Java Java

Duration 5 months 3 weeks 3 weeks

Features 2 1 1

Functional Reqs. 6 4 5

Work Items 395 51 20

Code Files 183 25 23

Lines of Code 5528 3827 9527

Revisions 694 80 165

For project 1, we were working together with a company
from industry specialized in mobile business applications.
The company integrates existing business applications such
as ERP systems with mobile applications for smart phones
and tablet computers. For this company, a system was de-
veloped retrieving data from various Internet data sources
(e.g., Wikipedia, Google News). The system is capable of
answering recurring questions based on input data, e.g., a
company name, and the retrieved data, for example: ”Who
is the CEO?” or ”What are recent news?”. The company
had a great interest in full traceability between requirements
and code, because they wanted to maintain the developed
application later on. The company did not provide a list of
requirements before the project. Therefore, the students had
to elicit the requirements themselves. The requirements did
change during development to reflect the changed demands of
the company. The functionality could be described in only a
small number of requirements, but these requirements were
very complex. JavaScript was used as the main programming
language, with only a small subset of code programmed in
Java. Because JavaScript was used, the functionality could
be realized with a small amount of lines of code. The same
functionality would have required notably more lines of code
if programmed in another programming language. Therefore,
the lines of code are not comparable across the projects. The
project lasted five months from Oct. 2012 until Feb. 2013 and
was divided into six sprints.

The project descriptions for projects 2 and 3 were identical.
In both projects, an extension to UNICASE was developed that
identifies missing links between all elements of a project. For

example, a work item is missing an assigned developer. We
acted as the ”customer” for both projects, because we wanted
to use this extension in our future development projects and
we provided the subjects with a list of requirements before the
project. The requirements did not change considerably during
development. Compared to project 1, the requirements were
less complex. Java was used as the programming language.
The team of project 2 implemented more efficient code than
the team of project 3, thus requiring less lines of code. Both
projects lasted three weeks from mid Feb. 2013 until the
beginning of Mar. 2013 and were divided into three sprints.

We recruited a total of 12 undergraduate students for our
development teams, all having basic knowledge in software
engineering. However, the team from project 1 was more
advanced in their studies and had a more extensive knowledge
in software engineering. To decrease variability in knowledge
across students regarding UTC, we provided an introductory
tutorial of UTC [7]. All teams were required to use UTC
to store and link all artifacts. All teams applied agile soft-
ware development techniques, e.g., they held regular stand-up
meetings discussing completed work, planned work and any
problems preventing them to continue work. The development
process was as follows: in the beginning, the team elicited
and/or specified a first draft of the requirements. In each sprint,
the team detailed the requirements (if necessary) and broke
them down into work items describing their realization. They
assigned each work item to a developer and included it in a
sprint. The team realized the requirements as described in the
work items, which means they implemented the code. Thus,
the situation we presume was ensured (see Section II-A).

B. Research Questions & Hypotheses
The goal of this case study is to get an understanding of

the feasibility and practicability of our approach in practice.
According to the Goal Question Metric (GQM) template by
Basili et al. [14], these goals can be reformulated as:

• Goal 1: Analyze the approach for the purpose of
understanding with respect to feasibility from the
viewpoint of approach developers.

• Goal 2: Analyze the approach for the purpose of
understanding with respect to practicability from the
viewpoint of approach users.

1) Feasibility: Feasibility studies evaluate the accuracy of
the results achieved by the approach [15]. In our study, this
means the precision and recall of the created traceability
links between requirements and work items, work items and
code, and requirements and code. Precision and recall are two
standard metrics used in information retrieval [16]. Precision
is the fraction of retrieved instances that are relevant, while
recall is the fraction of relevant instances that are retrieved.
In our case, ’relevant’ refers to a correct traceability link. We
distinguish three types of correct traceability links:

1) Requirement and Work Item: a link between a require-
ment and a work item where the work item describes
(in part or whole) the realization of the requirement.

2) Work Item and Code: a link between a work item
and a revision where the revision contains code that
realizes the work described in the work item.

3) Requirement and Code: ”a link between a require-
ment and its code where the code is necessary to
realize the requirement” [4].

2727

For comparing precision and recall across experiments,
another metric known as F -Measure is used. F2-Measure is a
variant of F -Measure, which weights recall values more highly
than precision [17]. All metrics are computed as follows:

Precision =
|RelevantLinks ∩RetrievedLinks|

|RetrievedLinks| (1)

Recall =
|RelevantLinks ∩RetrievedLinks|

|RelevantLinks| (2)

F2Measure =
3 ∗ Precision ∗Recall

(2 ∗ Precision) +Recall
(3)

While the links between requirements and work items and
work items and code are created by the developers themselves,
the links between requirements and code are automatically
created by an inference algorithm presented in [3]. UTC does
not provide the functionality to manually create links between
requirements and code. As our approach creates links during
development at the end of each sprint, we are interested in the
precision and recall per sprint (links only created during the
sprint), aggregated from sprint to sprint (all links created until
a particular sprint) and at the end of the project. UNICASE
uses the EMFStore [18] framework for storing and versioning
all artifacts and their changes. We use EMFStore to access all
artifacts per sprint and at the end of the project to calculate
precision and recall. We manually identified all correct links
and calculated precision and recall with the given equations.
During calculation, we also considered special cases. For
example, a correct link between requirement A and code file A
is created in sprint 1. If requirement A changes during sprint 2,
code file A could be no longer related to the requirement, but
a new code file B was created and linked to requirement A.
Thus, the link between requirement A and code file A would
be incorrect in sprint 2, but remains correct in sprint 1.

TABLE II. FEASIBILITY RESEARCH QUESTIONS & HYPOTHESES

Research Question Hypothesis
F-RQ1: What is the precision and recall
of the created links between require-
ments and work items ”per sprint” and
at the ”end of the project”?

The hypothesis F-H1 is that high values
for precision and recall will be achieved,
which means 80% or more.

F-RQ2: How does the precision and
recall of the links between requirements
and work items develop from sprint to
sprint in the project?

The hypothesis F-H2 is that precision
and recall will not fluctuate considerably
from sprint to sprint in the project.

F-RQ3: What is the precision and recall
of the created links between work items
and code ”per sprint” and at the ”end
of the project”?

The hypothesis F-H3 is that high values
for precision and recall will be achieved,
which means 80% or more.

F-RQ4: How does the precision and
recall of the links between work items
and code develop from sprint to sprint
in the project?

The hypothesis F-H4 is that precision
and recall will not fluctuate considerably
from sprint to sprint in the project.

F-RQ5: What is the precision and recall
of the created links between require-
ments and code ”per sprint” and at the
”end of the project”?

The hypothesis F-H5 is that high values
for precision and recall will be achieved,
which means 80% or more.

F-RQ6: How does the precision and
recall of the links between requirements
and code develop from sprint to sprint
in the project?

The hypothesis F-H6 is that precision
and recall will not fluctuate considerably
from sprint to sprint in the project.

F-RQ7: How often is each traceability
link creation process executed?

The hypothesis F-H7 is that all pro-
cesses are executed equally frequently.

F-RQ8: What is the precision and re-
call for all links per sprint created by
process A?

The hypothesis F-H8 is that high values
for precision and recall will be achieved,
meaning 80% or more.

Table II shows the resulting research questions (F-RQ1
to F-RQ6) and hypotheses (F-H1 to F-H6), which are quite

similar to each other as they each cover one of the three types
of correct traceability links. We used the scale of 80% or higher
for precision and recall in our hypotheses, because results on
this scale indicate that an approach delivers high quality links,
which is comparable to manually performed linkage [19]. As
all traceability links are created by either one of the processes,
we measure how often each traceability link creation process
is executed (see F-RQ7 and F-H7). Processes B and C only
create links between work items and code. Since process A
creates traceability links between requirements and work items
as well as between work items and code, and traceability links
are inferred between requirements and code, we analyzed this
process in more detail (see F-RQ8 and F-H8).

2) Practicability: Practicability studies evaluate the prac-
ticability of a method when it is applied by the approach
users instead of the approach developers [15]. In our case,
the approach users are the undergraduate students in the three
software development projects. To evaluate the practicability
of our approach, we build upon the Technology Acceptance
Model (TAM) [20]. TAM is modeling the user acceptance of
information technology. In TAM, the actual use of a technology
is determined by the subjects’ intension to use it. The intention
to use a technology is determined by its perceived usefulness
and its perceived ease of use. The variables of TAM are:

• Ease of use refers to the degree to which a person
expects the target system to be effortless.

• A person’s intention to use determines whether s/he
can imagine using the technology in the future or not.

• Usefulness is defined as a person’s subjective proba-
bility that using a specific system will increase her/his
job performance within an organizational context.

We use questionnaires to ask the subjects about the practi-
cability of UTC. In the questionnaire, we focus on the variables
”ease of use” and ”intention to use”. The variable ”usefulness”
cannot be considered because perceived usefulness can only be
investigated when subjects work in an organizational context
[20], which is not the case with the subjects of our case study.

TABLE III. PRACTICABILITY RESEARCH QUESTIONS & HYPOTHESES

Research Question Hypothesis
1. Questions in the Questionnaire regarding Ease of Use

P-RQ1: Is it easy to create traceability
links between requirements. and work
items?

The hypothesis P-H1 is that UTC makes
it easy to create traceability links be-
tween requirements and work items.

P-RQ2: Is it easy to create traceability
links between work items and code?

The hypothesis P-H2 is that UTC makes
it easy to create traceability links be-
tween work items and code.

P-RQ3: Is it easy to infer traceability
links between requirements and code?

The hypothesis P-H3 is that UTC makes
it easy to infer traceability links between
requirements and code.

2. Questions in the Questionnaire regarding Intention to Use
P-RQ4: Is it easy to use the inferred
traceability links between requirements
and code?

The hypothesis P-H4 is that UTC makes
it easy to use the inferred traceability
links between requirements and code.

P-RQ5: Do the subjects have a concrete
intension to use UTC?

The hypothesis P-H5 is that the subjects
have a concrete intension to use UTC.

3. Analyses of the Project Data
P-RQ6: How often do developers use
the inferred links between requirements
and code for direct navigation?

The hypothesis P-H6 is that developers
use at least 20% if the inferred trace-
ability links for direct navigation.

Table III shows the resulting research questions P-RQ1 to
P-RQ5 and corresponding hypotheses P-H1 to P-H5. The sub-

2828

����

�����

�����

�����

�����

��	�

��	��

��	��

��	��

�������
�������
�������
�������
�������
�������

���������	
���������
����

����

�����

�����

�����

�����

��	�

��	��

��	��

��	��

�������
�������
�������
�������
�������
�������

������
����������

����

�����

�����

�����

�����

��	�

��	��

��	��

��	��

�������
�������
�������
�������
�������
�������

���������	
��������

��������������
��������
������ �������������
��������
������ �� !���"���������
��������
������ �������������
������ ������������
������ �� !���"��������
������

Fig. 3. Project 1: Precision, Recall, and F2-Measure for Links Between Requirements and Work Items, Work Items and Code, Requirements and Code

����
�����
�����
�����
�����
����

�����
�����
�����

�������
�������
�������

������
����������

����
�����
�����
�����
�����
����

�����
�����
�����

�������
�������
�������

���������	
���������
����

����
�����
�����
�����
�����
����

�����
�����
�����

�������
�������
�������

���������	
��������

��������������
��������
������ �������������
��������
������ �� !���"���������
��������
������

�������������
������ ������������
������ �� !���"��������
������

Fig. 4. Project 2: Precision, Recall, and F2-Measure for Links Between
Requirements and Work Items, Work Items and Code, Requirements and Code

����
�����
�����
�����
�����
����

�����
�����
�����

�������
�������
�������

���������	
���������
����

����
�����
�����
�����
�����
����

�����
�����
�����

�������
�������
�������

������
����������

����
�����
�����
�����
�����
����

�����
�����
�����

�������
�������
�������

���������	
��������

��������������
��������
������ �������������
��������
������ �� !���"���������
��������
������

�������������
������ ������������
������ �� !���"��������
������

Fig. 5. Project 3: Precision, Recall, and F2-Measure for Links Between
Requirements and Work Items, Work Items and Code, Requirements and Code

jects have to assess predefined statements in the questionnaire.
We use predefined statements to ensure the comparability of
the subjects’ responses. Furthermore, we ask the subjects to
provide responses in free text form to get individual feedback.
As the number of available subjects is too small to achieve
statistical evidence, we wanted to collect as much individual
feedback as possible. Therefore, we ask the subjects to provide
a rationale for each assessment. The subjects score each
statement on a six point Likert scale [21]. The Likert scale
is an established approach in survey research for scaling the
subjects’ responses. If the majority of subjects tick 4 or higher
on the Likert scale, we consider the statement as confirmed.
If less than the majority of subjects tick 4 or higher on the
Likert scale, we consider the statement as rejected.

In addition to the results from the questionnaire, we an-
alyzed the gathered project data regarding one further aspect
that is related to practicability. In P-RQ4, we asked the subjects
how easy it is to use the links between requirements and code.
Furthermore, UTC measures how often each link between
requirements and code is used for direct navigation. For each
link we logged how often it is used. Each link has a ”click
counter” that increases each time a developer uses it for direct
navigation (see P-RQ6 and P-H6 in Table III).

IV. RESULTS

In the following, we report on the results from the analyses
of the feasibility and practicability of our approach. As stated
in Section III-B, we manually identified all correct traceability
links between all artifacts. Wrong traceability links are created,
e.g., when developers change code files that are not particularly
related to a work item. Missing correct links are created when
work items are linked to the wrong requirement, e.g., when
several requirements have similar names like the use cases
”Manage Request” and ”Manage Result” in projects 2 and 3,

or when these links are not created at all. Both situations are
potential causes of errors decreasing precision and recall in our
approach. However, it has been shown that such ”linkage bias
is more likely due to the development process rather than being
a side effect of the linking heuristics” [22], which means it is
not uncommon to have linkage bias in development projects.

A. Feasibility

Figs. 3-5 show the precision, recall, and F2-Measure for
the traceability links between requirements and work items
(left), work items and code (middle), and requirements and
code (right) for the three development projects 1, 2, and 3.
Straight lines represent aggregated values from sprint to sprint,
while dashed lines represent values per sprint. In the following,
the research questions and hypotheses are discussed together
for all three relationships. Each project is discussed one after
another. Finally, a conclusion is drawn for each specific type
of relation and the hypotheses are confirmed or rejected.

Requirements and Work Items (F-RQ1, F-RQ2): In the
graphs, the trend for aggregated precision and recall from
sprint to sprint between requirements and work items is
increasing in all three projects. All graphs for F2-Measures
from sprint to sprint have an upward trend. At the beginning
of all projects, the precision and recall for links between
requirements and work items were low. All teams improved
from sprint to sprint and achieved good results at the end of the
project. Especially for project 1, the values for precision and
recall were particularly high for sprint 3, because the project
manager of this sprint did a good job and looked after the work
items and the requirements very thoroughly. After sprint 3,
precision and recall declined slightly per sprint as new work
items were created, but not all of them were linked correctly to
requirements. The aggregated values for precision and recall
recovered and reached a peak in sprint 6 with a precision of

2929

0.871 and a recall of 0.916. Since the values for precision and
recall are higher than 80% in all projects per sprint and at
the end of the project, our hypothesis F-H1 is confirmed. As
precision and recall do not fluctuate considerably from sprint
to sprint, hypothesis F-H2 is also confirmed.

Work Items and Code (F-RQ3, F-RQ4): For project 1,
precision and recall per sprint and from sprint to sprint de-
creased over time up to sprint 5 to a minimum of an aggregated
precision of 0.825 and a recall of 0.84. The reason was that one
project member constantly kept implementing code that was
not particularly related to the work described in the work items.
As the project was about to finish in sprint 6, the remaining
five team members tried to improve their implementation of
the remaining work items. The said project member stopped
the unhelpful behavior of implementing unnecessary code,
which resulted in a considerable increase in precision and
recall per sprint between the work described in the work items
and the actual implementation in the code, resulting in an
aggregated precision of 0.83 and a recall of 0.85. In contrast to
project 1, precision, recall and F2-Measures kept fairly stable
during projects 2 and 3 with a slight increase at the end.
Since the values for precision and recall are higher than 80%
in all projects per sprint and at the end of the project, our
hypothesis F-H3 is confirmed. As precision and recall do not
fluctuate considerably from sprint to sprint, hypothesis F-H4
is confirmed as well.

Requirements and Code (F-RQ5, F-RQ6): As in project 1
one project member kept implementing non-relevant code, the
precision and recall for traceability links between requirements
and code decreased per sprint as well as aggregated from
sprint to sprint. In sprint 6, the team refactored the entire
code base and removed unnecessary code introduced by one
project member. The code was so unnecessary that the de-
veloped software was still compilable and runnable without
any noteworthy missing features or necessary adjustments to
the code base after the code was removed. This refactoring
was very successful and greatly increased precision and recall
between requirements and code at the end of the project,
reaching an aggregated precision of 0.835 and a recall of
0.89. However, both values never reached the peak of the
beginning of the project, because at the beginning only few
requirements and code were available and precision and recall
were particularly high. For projects 2 and 3, precision, recall
and F2-Measures kept increasing steadily from sprint to sprint.
As both teams had only little experience in using the frame-
works and technologies for implementing an extension for
UNICASE (although they were introduced to these frameworks
and technologies in practical courses at our university before),
they tried different implementations that were not particularly
relevant for the realization of the requirements. Therefore, the
values for precision and recall were low in the beginning of
the projects, but steadily increased as unnecessary code was
removed from sprint to sprint and the team learned better
how to implement the required functionality. At the end, this
resulted in an aggregated precision of 0.88 and a recall of 0.92
for project 2 and an aggregated precision of 0.87 and a recall
of 0.90 for project 3. Therefore, we can confirm our hypothesis
F-H5, as all values for precision and recall are higher than 80%
in all projects per sprint and at the end of each project. As
precision and recall do not fluctuate considerably from sprint
to sprint, hypothesis F-H6 is confirmed as well.

How often is each of the three traceability link creation
processes executed? (F-RQ7) As described in Section II-B,
each revision is created or linked by one of the three trace-
ability link creation processes. This means that the number
of revisions equals the number of executed processes. UTC
logged the used process for each revision. Fig. 6 shows how
often each process was executed for each project. The majority
of executed processes were process B and C with 66%-72%.
Process A was only used between 5%-10% in all three projects.
This rejects our hypothesis F-H7 that all processes are executed
equally frequently.

�����
�	�

�
����
��	�

�����
��	�

��������	�
����

�	�

�����
��	�

�
���
�	�

��������
�
�
���
�	�

�

���
��	�

�����
��	�

����������

���������� ���������� ����������

Fig. 6. Execution of Traceability Link Creation Processes by Project

Process A would require the subjects to select a work
item before development. As the selection of a work item also
occurs during process B, the subjects did not execute process A
often, because they knew the other selection possibility would
come in process B. In process B the developer is reminded to
select a work item before committing the changes in the code
to the VCS to create a new revision. Furthermore, we think that
because the requirements did not change considerably during
development in projects 2 and 3, the subjects could better
link work items during development (process B) as the work
described in the work item was more precise. In project 1, the
subjects first implemented code and committed a new revision
to the VCS and then linked a matching work item to the
revision (process C).

As all three processes are executed before, during, or after
implementation, we analyzed more deeply how the subjects
used the processes. To accomplish this, UTC logged in detail
how the subjects used the processes. As process A includes
a validation step for the captured requirements, UTC logged
whether the subjects confirmed or rejected the captured re-
quirements. In all the cases it was used, the subjects confirmed
the captured requirements and did not reject any of them.
The confirmed requirements were the ones that were linked
to the previously selected work item. Here, the subjects read
the work described in the work item and looked at the linked
requirement(s) to get an even better understanding. Therefore,
this link was valid and did not have to be rejected. We analyzed
whether the subjects linked new requirements to the selected
work item after the execution of process A, but no subject
linked new requirements afterwards. Both processes A and B
include a validation step for the changed code files. Again, in
all cases the subjects confirmed all changed code files and did
not reject any code files. During the execution of process C, the
subjects had to select a work item to be linked to a previously
created revision. We analyzed whether the subjects linked new
requirements to the selected work item after the execution of
process C, but no subject linked new requirements afterwards.

Process A (F-RQ8): Figs. 7-9 (see next page) show the
precision, recall, and F2-Measure for the traceability links
created by process A in each particular sprint in all projects.
Although process A was only executed between 5%-10% in

3030

all projects, it can be seen that if it was executed, it achieved
high results. In project 1, precision, recall, and F2-Measure
kept fairly stable with a slight upward trend for all traceability
links between requirements and work items, work items and
code, and requirements and code, reaching a precision between
0.90 and 0.92 and a recall between 0.92 and 0.94.

�����

�����

�����

����

���#�

�����

�����

�
	

��

�
�

�
	

��

�#
�

�
	

��

�$
�

�
	

��

��
�

�
	

��

��
�

�
	

��

��
�

���������	
���������
����

�����

�����

�����

����

���#�

�����

�����

�
	

��

�
�

�
	

��

�#
�

�
	

��

�$
�

�
	

��

��
�

�
	

��

��
�

�
	

��

��
�

������
����������

�	��
�
��� ������� �#�!����	��

�����

�����

�����

����

���#�

�����

�����

�
	

��

�
�

�
	

��

�#
�

�
	

��

�$
�

�
	

��

��
�

�
	

��

��
�

�
	

��

��
�

���������	
��������

Fig. 7. Process A in Project 1: Precision, Recall, and F2-Measure for
Links between Requirements and Work Items, Work Items and Code, and
Requirements and Code

�����

�����

�����

����

���#�

�����

�����

�	
����
�	
���#�
�	
���$�

���������	
���������
����

�����

�����

�����

����

���#�

�����

�����

�	
����
�	
���#�
�	
���$�

������
����������

�	��
�
��� ������� �#�!����	��

�����

�����

�����

����

���#�

�����

�����

�	
����
�	
���#�
�	
���$�

���������	
��������

Fig. 8. Process A in Project 2: Precision, Recall, and F2-Measure for
Links between Requirements and Work Items, Work Items and Code, and
Requirements and Code

�����

�����

�����

����

���#�

�����

�����

�	
����
�	
���#�
�	
���$�

���������	
���������
����

�����

�����

�����

����

���#�

�����

�����

�	
����
�	
���#�
�	
���$�

������
����������

�	��
�
��� ������� �#�!����	��

�����

�����

�����

����

���#�

�����

�����

�	
����
�	
���#�
�	
���$�

���������	
��������

Fig. 9. Process A in Project 3: Precision, Recall, and F2-Measure for
Links between Requirements and Work Items, Work Items and Code, and
Requirements and Code

In projects 2 and 3, the same trend can be recognized with
slightly better values for precision, recall, and F2-Measure.
This means, if subjects used process A and implemented code,
they looked at the requirements and knew exactly what to
implement and only implemented/changed relevant code files.
However, sometimes the subjects changed a small amount of
lines of code, e.g., Java documentation, in another code file
that was not related to the work described in the work item.
Thus, 100% of precision and recall were not achieved.

B. Practicability
To assess the practicability of our approach, we used a

questionnaire to ask the subjects whether it was easy to create
links (see Table IV), easy to use links for direct navigation in
UTC (see Table V on next page), and whether they have an
intention to use UTC (see Table VI on next page).

P-RQ1: Is it easy to create traceability links between
requirements and work items? These traceability links can
either be created manually in UTC (1) or during the execution
of process A (2) (see Table IV). The majority of subjects

TABLE IV. EASE OF USE - CREATION

It was easy to ... S
tr

o
n
g
ly

D
is

ag
re

e

D
is

ag
re

e

R
at

h
er

D
is

ag
re

e

R
at

h
er

A
g
re

e

A
g
re

e

S
tr

o
n
g
ly

A
g
re

e

(1) create links between requirements and work items 5 7

(2) confirm requirements captured during the work
on a work item (Process A)

8 4

(3) link a work item to a revision before or during
development (Process A, B)

2 7 3

(4) link a work item to a previously created revision
after development (Process C)

2 3 5 2

(5) infer links between requirements and code 2 6 4

ticked 5 on the Likert scale, which confirms hypothesis P-H1.
For question (1), the subjects provided the feedback that while
it was easy to link a requirement to a work item, it was harder
to link a work item to a requirement, because there was a
large amount of work items in the project and finding the right
one required knowing the name of the work item. Therefore,
they did not ”strongly agree” to question (1). For question (2),
the subjects assessed that it was easy to confirm the captured
requirements, because they were pre-selected in the confirm
dialog. This required only one click to proceed to the next
dialog for validating the code files.

P-RQ2: Is it easy to create traceability links between
work items and code? These traceability links can either be
created before or during implementation by executing process
A or B (3) as well as after implementation by executing
process C (4) (see Table IV). Subjects ticked between 4 and
6 on the Likert scale, which confirms hypothesis P-H2. For
question (3), subjects provided the feedback that they liked that
UTC reminded them to link a work item. However, again they
had to search for the right work item which required knowing
the name. The subjects liked the ability to filter the dialog for
selecting a work item that was only assigned to themselves.
For question (4), subjects ”rather agreed” by responding that
they would like to be able to select more than one revision
at a time to be linked to a work item. Two subjects ”rather
disagreed”, because currently it is not possible to see which
revision is already linked to a work item in the history of the
VCS. We will consider this feedback for improving UTC.

P-RQ3: Is it easy to infer traceability links between re-
quirements and code? Question (5) in Table IV was concerned
with the ease of inferring traceability links between require-
ments and code. All the subjects ticked 4 or higher on the
Likert scale. The subjects confirmed the ease of use for infer-
ring traceability links. Thus, hypothesis P-H3 is confirmed.
The subjects especially liked that the inference process is
initiated with a single push of a button in UTC and all links are
created automatically by the inference algorithm. The subjects
particularly liked the performance of the inference process.
We measured the performance and achieved on average about
80 milliseconds for 600 revisions with linked work items and
requirements for project 1. Thus, the subjects were able to
instantly create the traceability links and use them for direct
navigation. However, we did not conduct a comprehensive
investigation of the performance of the inference algorithm.
Results can differ depending on the project data and the
computer hardware used.

3131

P-RQ4: Is it easy to use the inferred traceability links be-
tween requirements and code? We asked the subjects whether
it was easy to use the inferred traceability links between
requirements and code for direct navigation (see Table V).

TABLE V. EASE OF USE - USAGE

It was easy to ... S
tr

o
n
g
ly

D
is

ag
re

e

D
is

ag
re

e

R
at

h
er

D
is

ag
re

e

R
at

h
er

A
g
re

e

A
g
re

e

S
tr

o
n
g
ly

A
g
re

e

navigate between requirements and code using the
inferred traceability links

2 6 4

As the majority of subjects ticked 4 or higher on the
Likert scale, P-H4 is confirmed. The subjects liked that by
opening a requirement in UTC, a list of linked code files was
automatically presented. With a single click on such a code file,
the subjects could navigate directly from the requirement to the
code file. The subjects also liked that when they opened a code
file in Eclipse, UTC showed all linked requirements of this
code file in a separate list. However, two subjects responded
that this list is not shown automatically by UTC and had to
be enabled manually, thus they ticked only ”rather agree”.

P-RQ5: Do the subjects have a concrete intension to use
UTC? In order to determine the subjects’ intension to use our
approach, we asked them whether they are motivated to use
UTC in the future. Table VI shows their assessments.

TABLE VI. INTENSION TO USE

I’m motivated to use UTC ... S
tr

o
n
g
ly

D
is

ag
re

e

D
is

ag
re

e

R
at

h
er

D
is

ag
re

e

R
at

h
er

A
g
re

e

A
g
re

e

S
tr

o
n
g
ly

A
g
re

e

in the future for storing all artifacts (requirements,
work items, and code) in a development project

2 1 7 2

in the future for creating traceability links between
all artifacts (requirements, work items, and code) in
a development project

2 8 2

as it is currently integrated in UNICASE 1 9 2

The subjects mostly ticked 5 on the Likert scale. Thus,
hypothesis P-H5 is confirmed. The subjects justified their
statements by stating that the direct assignment of the code
changes in form of a revision to work items is facilitating
teamwork and clarity in the long run. Two subjects ”rather
disagreed” with storing all artifacts in one single environment,
as they would have preferred to have quick web-based access
to the artifacts. Currently, the change of a single piece of
information always requires to open Eclipse with integrated
UTC. The majority of subjects stated that they especially liked
the seamless integration of UTC in UNICASE and Eclipse.

P-RQ6: How often do developers use the inferred traceabil-
ity links between requirements and code for direct navigation?
The subjects used a total of 25 of 387 links (6.5%) for
project 1, 7 of 32 (21.9%) links for project 2, and 8 of 37
(21.6%) links for project 3. Thus, our hypothesis P-H6 holds
for projects 2 and 3, but needs to be rejected for project 1.
However, we noticed that particular types of links to code
were used more often than others, especially the important
code parts that comprise the core functionality. In project 1,

code files containing the retrieval mechanisms for accessing
the various Internet data sources were used often. In project 2
and 3, code files containing the search procedures for finding
missing links as well as the main code files for creating the
user interface were used often.

V. THREATS TO VALIDITY

Runeson et al. [23] distinguish four different threats to
validity in case study research, which are discussed below.

Internal Validity is concerned with the correlation between
the investigated factors and other factors [23]. The students
knew that we had developed UTC and thus might have been
biased towards UTC. Therefore, we explicitly advised the
students to assess UTC objectively and that both, positive and
negative feedback, are desired. To decrease the variability of
knowledge across students regarding the tracing of require-
ments and code in UTC, we provided an introductory tutorial
of UTC [7]. We had no influence on how the students created
these links, we only ensured that they created links. Therefore,
we had no direct influence on the results. The assessment of
each created link is a manual task and cannot be automated. A
potential bias is that the assessment was performed by the first
author. However, due to the manageable scale of the projects,
it was obvious whether a link was right or wrong.

External Validity is concerned with the extent to which the
findings of a specific study can be generalized [23]. Due to
temporal restrictions, the sizes of the development projects
were limited, e.g., number of requirements and developed
code. This does not allow us to draw conclusions on larger
projects. In the development projects, all undergraduate stu-
dents had basic knowledge in software engineering. However,
no undergraduate student had industrial experience. This does
not allow us to draw conclusions on more experienced de-
velopers from industry. However, case studies in an academic
environment are common practice in empirical software en-
gineering [23]. Studying approaches in practice is also rather
difficult, as the industry is rarely willing to use research proto-
types. Nevertheless, our projects contained situations common
to industrial projects, e.g., the elicitation of requirements by the
participants (project 1) vs. a provided list with requirements
(projects 2-3), changing requirements due to changed customer
demands, as well as communication problems with certain
developers regarding their task responsibility. In addition, Java
and JavaScript were used as programming languages. Even
though we do not expect this, effects might be different for
other programming languages. During the projects we gave
advice to the students and made sure that they used UTC. They
may have behaved differently if they had not to use UTC.

Construct Validity is concerned with the intended obser-
vations of the researchers and their actual observations [23].
A possible threat to validity is the inadequate usage of the
variables of TAM in our questionnaire. The questionnaire could
have measured something different than TAM, because it was
not evaluated under realistic conditions prior to the study.

Reliability Validity is concerned with the extent to which
the data and the analyses are dependent on the specific
researchers [23]. As we wanted to evaluate the feasibility of
our approach, we had a great interest in the traceability links
between requirements, work items, and code. The students
knew that we would look at those links at the end of the project
and our behavior could have influenced the students.

3232

VI. RELATED WORK

Empirical studies related to our work can be divided
into two groups: studies evaluating the creation and studies
evaluating the usage of links between requirements and code.

A. Empirical Studies on the Creation of Traceability Links

In [24] and the book of Cleland-Huang et al. [25], a
general overview of requirements traceability is provided. As
the manual creation of traceability links between requirements
and code is error-prone, time consuming, and complex [26],
research focuses on (semi-) automatic approaches. Existing
approaches with empirical evaluations use various techniques,
e.g., information retrieval [17] [27] [28] [29] [30] [31],
execution-trace analysis [32] [33], static/dynamic analysis [34],
subscription-based or rule-based link maintenance [35], or
combinations of them [36]. However, in their evaluations all
these approaches only focussed on the feasibility and not on
the practicability, as we did with our approach in this work.

Egyed et al. [37] investigated the effort of recovering trace-
ability links between requirements and code after development.
In general, these traceability links were recovered by project
members who were not directly involved in the realization
of a particular requirement, but knew the code base. Our
approach distributes the effort of creating traceability links to
all developers actively participating in the project.

B. Empirical Studies on the Usage of Traceability Links

Maeder & Egyed [2] conducted a controlled experiment
with 52 subjects (students of computer science) perform-
ing 315 maintenance tasks on two third-party development
projects: half of the tasks with and the other half without
traceability navigation. Their findings show that subjects with
traceability performed on average 21% faster and created on
average 60% more correct solutions, suggesting that traceabil-
ity not only saves time but can profoundly improve software
maintenance quality. As our approach creates traceability links
between requirements and code during development, the trace-
ability links are readily available for software maintenance.
However, in all projects software maintenance tasks did not
have to be performed as development ended when all require-
ments were realized and the project durations were fixed.

VII. DISCUSSION

As shown above, the hypotheses F-H1 to F-H6 for feasi-
bility were confirmed. This means that our approach creates
correct traceability links between requirements and work items,
work items and code, and requirements and code with high pre-
cision and recall during development. The processes were not
equally frequently executed, which rejected hypothesis F-H7.
Process A was only used in 5%-10% of all three projects.
However, if process A was executed, it achieved high values
for precision and recall, which confirmed hypothesis F-H8.
The results for practicability from the questionnaires confirmed
our hypotheses that our approach is easy to use (P-H1 to
P-H4) and the subjects have a concrete intention to use our
approach (P-H5). We had to partially reject our hypothesis
P-H6, as in project 1 only 6.5% of the links were used for
direct navigation between requirements and code. We believe
that the direct navigation will be used more often in projects
where new developers join the team who need to understand

how the existing code files relate to the requirements. We did
not have this situation in our projects. We think that process A
will be used more often in larger projects, as there was only
a small amount of requirements in our projects. Here, the
subjects were very familiar with the requirements and did not
need to look at them often during development. We think that
in larger projects with more requirements it is more likely that
the subjects will use process A, because the subjects cannot
keep every requirement in mind. Furthermore, we think that
for larger projects, the subjects need training courses to get
familiar with the three traceability link creation processes.

We argue that the additional manual work required of the
subjects for applying the traceability link creation processes
is justified by the benefits of early availability of high-quality
traceability links. We showed that our approach achieves good
results with respect to the quality of the links and the subjects
rated our approach as easy to use in practice. We consider the
additional work required for our approach as minimal, as our
approach seamlessly integrates into the regular development
workflow that the subjects had to perform anyway, which is
the implementation and check-in of code into the VCS.

In the current approach, developers might make mistakes
when adding non-related requirements to a work item or imple-
menting/changing code that is not described in the work item.
This would create incorrect traceability between these artifacts.
However, this risk is reduced since we let the developers
validate all traceability links before they are created. It has
been shown that humans were better at validating links as
opposed to searching for missing links [38]. This strengthens
our approach of letting the developers validate the links to be
created instead of recovering links or searching for missing
links. During development, links between requirements and
code can become irrelevant when a requirement has changed
considerably so that the linked code is no longer relevant for
the realization of the particular requirement. It is an open
research issue for us whether we can improve our inference
algorithm so that it can detect these non-relevant links auto-
matically and discard them. This would make our inference
algorithm more ”robust” against this cause of error.

Before we conducted the three development projects, we
investigated whether instead we could use data from open
source projects or mining challenges from the Mining Software
Repositories [39] community for evaluation. However, we
found out that these datasets usually only consist of work items
and code managed in issue trackers and VCSs respectively.
Therefore, we could not use these datasets, because no explicit
requirements were available and connected to the work items.
Thus, we had to carry out our own development projects
comprising requirements, work items, and code.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented an empirical study based
on our approach for tracing requirements and code during
development using work items from project management. We
applied our approach in three development projects conducted
with undergraduate students. Based on the data gathered in the
projects, we have shown the feasibility and practicability of
our approach in practice. The major finding of our evaluation
is that our approach creates correct traceability links of high
quality during development. Another finding is that developers

3333

mainly used process B and C during development. The subjects
rated our approach and its tool support as easy to use and used
the links between requirements and code for direct navigation.

In future work, we want to apply existing automated
approaches for creating traceability links between requirements
and code on the data we gathered in our three projects and
compare these results to the results achieved by our approach.
Furthermore, we want to improve our inference algorithm to
discard non-relevant links between requirements and code to
improve precision and recall of our approach. Finally, we hope
that our study can be seen as a first step in researching the
tracing of requirements and code during development and that
it will be replicated in an industrial setting in the future.

ACKNOWLEDGMENT

The authors would like to thank the company for providing
the opportunity to realize one of the projects, all students for
their participation, as well as Ulrike Abelein, Florian Flatow
and Robert Heinrich for their help in organizing the projects.

REFERENCES

[1] Gotel, O. et al. Traceability Fundamentals. In Software and Sys-
tems Traceability, J. Cleland-Huang, O. Gotel, and A. Zisman (Eds.),
Springer, pp. 3-22 (2012)

[2] Maeder, P. and Egyed, A. Do software engineers benefit from source
code navigation with traceability? - An experiment in software change
management. In Proc. of the 26th Int. Conf. on Automated Software
Engineering, pp. 444-447 (2011)

[3] Delater, A., Narayan, N., and Paech, B. Tracing Requirements and
Source Code during Software Development. In Proc. of the 7th Int.
Conf. on Software Engineering Advances, pp. 274-282 (2012)

[4] Delater, A. and Paech, B. Analyzing the Tracing of Requirements and
Source Code during Software Development: A Research Preview. In
Proc. of the 19th Int. Working Conf. on Requirements Engineering:
Foundation for Software Quality, pp. 308-314 (2013)

[5] Delater, A. and Paech, B. UNICASE Trace Client: A CASE Tool
Integrating Requirements Engineering, Project Management and Code
Implementation. Workshop Nutzung und Nutzen von Traceability, In:
Wagner S, Lichter H (Eds.): Software Engineering 2013 Workshopband,
Lecture Notes in Informatics, vol. 215, pp. 459-463 (2013)

[6] Bruegge, B., Creighton, O., Helming, J., and Koegel, M. Unicase -
an Ecosystem for Unified Software, In ICGSE’08: Distributed software
development: methods and tools for risk management, pp. 12-17 (2008)

[7] UNICASE Trace Client, http://code.google.com/p/unicase/wiki/Trace-
Client [retrieved: June, 2013]

[8] UNICASE, http://www.unicase.org/ [retrieved: June, 2013]

[9] Maeder, P. and Egyed, A. Assessing the effect of requirements trace-
ability for software maintenance. In Proc. of the 28th Int. Conf. on
Software Maintenance, pp. 171-180 (2012)

[10] Asuncion, H. and Taylor, R. Automated techniques for capturing
custom traceability links across heterogeneous artifacts. In Software
and Systems Traceability, J. Cleland-Huang, O. Gotel, and A. Zisman
(Eds.), Springer, pp. 129-146 (2012)

[11] Omoronyia, I., Sindre, G., Roper, M., Ferguson, J., and Wood, M. Use
case to source code traceability: The developer navigation viewpoint.
In Proc. of the 17th Int. Requirements Engineering Conf., pp. 237-242
(2009)

[12] Cleland-Huang, J. Traceability in agile projects. In: Cleland-Huang, J.,
Gotel, O., Zisman, A. (eds.) Software and Systems Traceability, pp.
265-275. Springer (2012)

[13] Lauesen, S. Task Descriptions as Functional Requirements. IEEE Soft-
ware, vol. 20, no. 2, pp. 58-65 (2003)

[14] Basili, V.R., Caldiera, G., and Rombach, H.D. The Goal Question
Metric Approach, Encyclopedia of Software Engineering, pp 528-532,
Wiley and Son (1994)

[15] Eusgeld, I., Freiling, F.C., and Reussner, R. Dependability Metrics.
Springer (2008)

[16] Frakes, W.B. and Baeze-Yates, R. (Eds.) Information Retrieval: Data
Structures and Algorithms. Prentice-Hall (1992)

[17] Cleland-Huang, J., Czauderna, A., Gibiec, M., and Emenecker, J. A
machine learning approach for tracing regulatory codes to product
specific requirements. In Proc. of the 32nd ACM/IEEE Int. Conf. on
Software Engineering, pp. 155-164 (2010)

[18] EMFStore, A model repository for EMF-based models,
http://eclipse.org/emfstore/ [retrieved: June, 2013]

[19] Maeder, P. and Gotel, O. Ready-to-use Traceability on Evolving
Projects. In Software and Systems Traceability, J. Cleland-Huang, O.
Gotel, and A. Zisman (Eds.), Springer, pp. 173-194 (2012)

[20] Davis, F.D., Bagozzi, R.P., and Warshaw, P.R. User Acceptance of
Computer Technology: A Comparison of two Theoretical Models,
Manage. Sci. 35, pp. 982-1003 (1989)

[21] Likert, R. A Technique for the Measurement of Attitudes. Archives of
Psychology, 140, pp. 1-55 (1932)

[22] Nguyen THD., Adams, B., and Hassan, AE. A Case Study of Bias in
Bug-Fix Datasets. 7th Working Conf. on Reverse Engineering (WCRE),
pp. 259-268 (2010)

[23] Runeson, P., Host, M., Rainer, A., and Regnell, B. Case Study Research
in Software Engineering: Guidelines and Examples, Wiley&Sons (2012)

[24] Dahlstedt, A. and Persson, A. Requirements interdependencies: State of
the art and future challenges. In Engineering and Managing Software
Requirements, Aurum and Wohlin (eds.) Springer, pp. 95-116 (2005)

[25] Cleland-Huang, J., Gotel, O. and Zisman, A. (Eds.) Software and
Systems Traceability, Springer (2012)

[26] Spanoudakis, G. and Zisman, A. Software traceability: A roadmap.
Handbook of Software Engineering and Knowledge Engineering, World
Scientific Publishing, pp. 395-428 (2004)

[27] Hayes, J.H., Dekhtyar, A., and Osborne, J. Improving requirements
tracing via information retrieval. In Proc. of the 11th Int. Requirements
Engineering Conf., pp. 138-147 (2003)

[28] De Lucia, A., Fasano, F., Oliveto, R., and Tortora, G. Recovering trace-
ability links in software artifact management systems using information
retrieval methods. Transactions on Software Engineering Methodology,
vol. 16, no. 4, art. 13, ACM (2007)

[29] Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., and Merlo,
E. Recovering traceability links between code and documentation.
Transactions on Software Engineering, pp. 970-983, IEEE (2002)

[30] Marcus, A. and Maletic, J.I. Recovering documentation-to-source-code
traceability links using latent semantic indexing. In Proc. of the 25th
Int. Conf. on Software Engineering, pp. 125-135 (2003)

[31] Marcus, A., Maletic, J.I., and Sergeyev, A. Recovery of traceability
links between software documentation and source code. Int. Journal
of Software Engineering and Knowledge Engineering, vol. 15, no. 5,
pp. 811-836 (2005)

[32] Egyed, A. A Scenario-Driven Approach to Trace Dependency Analysis.
Transactions on Software Engineering, vol.29, no.2, pp. 116-132 (2003)

[33] Eisenberg, A.D. and De Volder, K. Dynamic feature traces: Finding
features in unfamiliar code. In Proc. of the 21st IEEE Int. Conf. on
Software Maintenance, pp. 337-346 (2005)

[34] Antoniol, G. and Gueheneuc, Y.G. Feature identification: A novel
approach and a case study. In Proc. of the 21st IEEE Int. Conf. on
Software Maintenance, pp. 357-366 (2005)

[35] Maeder, P. and Gotel, O. Towards Automated Traceability Maintenance.
Journal of Systems and Software, vol. 85, no. 10, pp. 2205-2227 (2011)

[36] Eaddy, M., Aho, A.V., Antoniol G., et al. CERBERUS: Tracing require-
ments to source code using information retrieval, dynamic analysis, and
program analysis. In Proc. of the 16th IEEE Int. Conf. on Program
Comprehension, pp. 53-62 (2008)

[37] Egyed, A., Graf, F., and Gruenbacher, P. Effort and quality of recovering
requirements-to-code traces: Two exploratory experiments. In Proc. of
the 18th Int. Requirements Engineering Conf., pp. 221-230 (2010)

[38] Kong, W.-K., Huffman Hayes, J., Dekhtyar, A., and Holden, J. How
do we trace requirements: an initial study of analyst behavior in trace
validation tasks. In Proc. of the 4th Int. Workshop on Cooperative and
Human Aspects of Software Engineering, pp. 32-39 (2011)

[39] MSR Conference, http://www.msrconf.org [retrieved: June, 2013]

3434

	IEEE_2013_Copyright
	06681335

