
Experiences with Supporting the Distributed Responsibility for
Requirements through Decision Documentation

Tom-Michael Hesse, Christian Kücherer, and Barbara Paech

Institute of Computer Science, University of Heidelberg, Germany
{hesse,kuecherer,paech}@informatik.uni-heidelberg.de

1 Introduction
In agile development projects typically all developers
are responsible for requirements engineering [2]. They
both elicit and shape requirements continuously. De-
velopers elicit requirements from the customer. But
they also shape requirements in discussions with the
customer and within the development team. Thus,
decisions are made on how to realize the requirements
in the systems’ architecture and implementation. This
can lead to new or refined requirements.

This decision-making process requires a common
language for and understanding of the elicited and
shaped requirements. Also, developers need to com-
prehend and exploit former and current decisions. In
order to address this need, several approaches propose
structures and management processes for knowledge
on decisions and their related requirements. However,
experience reports describing such a management of
decision knowledge in agile projects are rare. There-
fore, we present a practical example for the manage-
ment of decision knowledge. Moreover, we reflect the
example to analyze our approach on decision docu-
mentation as described in [1]. In particular, we show
that decision documentation was already applied in an
agile project, but can be improved in order to support
the effective eliciting and shaping of requirements.

2 Documenting Decision Knowledge
In this section, a short overview of decision knowledge
and our documentation approach is given. Decision
knowledge comprises all knowledge related to a de-
cision problem and its solution alternatives as well
as any related context information and rationales for
justifying the decision. In particular, this includes
links to all affected artifacts of the system, such as
requirements, architecture models or code. Our doc-
umentation model structures this decision knowledge
by introducing decision statements and a set of de-
cision components as depicted in Figure 1. A Deci-
sionStatement expresses the decision itself. It can be
enriched iteratively by adding DecisionComponents,
such as an Issue to describe a decision problem or Al-
ternatives for documenting possible solutions to that
issue. Moreover, context knowledge like Assumptions

can be made explicit and rationales can be added to
any element by Arguments.

A major advantage of our model is that there is no
static template for decision description. Instead, all
DecisionComponents can be aggregated without re-
strictions. As a consequence, only those components
are documented which are relevant for the actual deci-
sion progress. This helps reducing the documentation
effort for decision knowledge. Therefore, the model
offers a valuable benefit for agile projects with less
readiness to document decisions.

Moreover, the model uses general knowledge ele-
ments, which are not limited to a particular devel-
opment activity like requirements engineering or ar-
chitectural design. So, team members with different
roles can collaborate by using the same documenta-
tion. This strengthens their mutual comprehension.

3 Practical Example
In this section, we investigate the demand for decision
documentation and the advantages of our decision
documentation model in practice. Therefore, the deci-
sion documentation of a 3 years agile project based on
Scrum in the domain of electronic publishing is eval-
uated. In the project an interactive web-front-end for
a content management system (CMS) was built with
many specific requirements. Some of the main fea-

Requirement/Artifact

(e.g. Use Case, User Story)

DecisionStatement

Problem Solution Context Rationale

Contains

Contains

Issue

…

Alternative

…

Assumption

…

Argument

…

Identified byDecisionComponent

Attached to

Person

Role

Has

Taken by

Concerns

Figure 1: Knowledge Elements of the Decision Docu-
mentation Model



Role Tasks
Product
Owner (PO)

Represent the customer, state and prioritize
requirements, answer requirements-related
questions from team

Developer
(D)

Elicit requirements from product owner,
elicit and shape requirements in discussions,
decide on implementation of requirements

Architect
(A)

Shape requirements in discussions, decide on
the overall system structure and compliance
to company policies

Table 1: Roles and Tasks in the Example Project

tures were a powerful search among a large collection
of structured documents. The team consisted of one
product owner, one architect and multiple developers
with a joint responsibility for requirements engineer-
ing. Details on their tasks are shown in Table 1.

Need for Decision Documentation Design is-
sues to be decided throughout the development pro-
cess were driven by requirements of multiple sources:
They were stated by the product owner or resulted
from the current architecture of the system and the
company policies. This complexity hindered the com-
munication and distribution of the resulting decisions.
Moreover, they were hard to justify over time due
to continuous change. So, the project team needed
to document the decisions made. It established a
lightweight documentation, the architectural logbook.

Logbook Structure and Example The logbook
contained 40 entries with different sections: A header
with the decisions name and date, the involved per-
sons, and links to the related requirements. Also, the
current situation which required a decision was de-
scribed and the decision itself was explained. Figure 2
shows an example entry of the logbook.

Removal of Duplicates in Hit-list
Date: 22. Nov. 2013
Involved Persons: Alice (PO), John (D), Zoe (A)
Requirements: #a-182 (hit-list), #a-004 (performance).
Current Situtation: Due to multiple data sources, there
can be the same referee displayed in the client hit list (S1).
This will not match requirements of Alice (S2). Performance
issues make the unification in the client difficult (S3). Scal-
ability issues will not allow unification on the server due to
chunk loading (S4).
Decision: Realize the merge of items within the client. Take
care of performance. Implement the methods add, remove
and contains in the hit-list classes of the datastructure. Al-
ice is in charge of potential performance degradation but
won’t accept duplicate items (S5). Multiple data sources
will be necessary in future, what is relevant for design (S6).

Figure 2: Anonymized and Shortened Logbook Entry

Knowledge Structures in Use and in Demand
An analysis of the logbook showed that the aforemen-
tioned knowledge elements already can be found in
the logbook entries implicitly. The given example en-
try contains an issue (in sentence S1), a constraint
(S2), and arguments against possible solution alter-
natives (S3/S4). Moreover, the decision statement is
explicitly given and implications of the chosen solu-
tion are documented (S5). By describing the decision
a new requirement was elicited (S6). This requirement
has to be considered in future decisions and their con-
secutive implementations.

However, a more explicit, fine-grained structure of
these knowledge elements was demanded by the devel-
opers. In 19 out of 40 entries, decision and solution
were described in the same sentence without consid-
ering alternatives. Moreover, 6 entries did not even
contain an issue. So, developers challenged decisions
made due to ambiguous or missing decision knowl-
edge. However, the main reasons for taking the ac-
tual decision should be named explicitly to avoid that
decisions made are challenged unnecessarily. In the
given example, arguments against other alternatives
(S3/S4) soften and thereby shape the performance re-
quirement a-004 (S5). This relation becomes obvious
when fine-grained knowledge elements are used.

4 Conclusion
In this paper, we have described that within agile
projects product owner, developers and architects to-
gether elicit and shape requirements. Implement-
ing these requirements leads to decisions and in con-
sequence to new requirements or the refinement of
existing ones. Documenting such decisions makes this
process of eliciting and shaping requirements explicit
and visible. This supports precise communication
within the team and helps to justify the development
progress.

Beyond the mentioned benefits of decision docu-
mentation, the continuous use and enforcement of ex-
tended structural elements allows fine-grained trace-
ability between decision knowledge and requirements.
This enhances a comprehensive and reliable use of de-
cision knowledge in projects. So, we propose to use
a structured decision documentation model. Further
research should investigate a low effort integration of
decision documentation structures into agile projects
through an appropriate tool support.

References
[1] T.-M. Hesse and B. Paech. Supporting the Collaborative

Development of Requirements and Architecture Documen-
tation. In Proceedings of the 3rd International Workshop on
the Twin Peaks of Requirements and Architecture (Twin-
Peaks’13), pages 22–26. IEEE, 2013.

[2] A. Sillitti and S. Giancorla. Requirements Engineering for
Agile Methods. In A. Aurum and C. Wohlin, editors, Engi-
neering and Managing Software Requirements, pages 309–
326. Springer, 2005.

https://myIssueTracker/a-182
https://myIssueTracker/a-004

	Introduction
	Documenting Decision Knowledge
	Practical Example
	Conclusion

