
Do Information Retrieval Algorithms for Automated
Traceability Perform Effectively on Issue Tracking

System Data?

Thorsten Merten1, Daniel Krämer1, Bastian Mager1, Paul Schell1, Simone Bürsner1,
and Barbara Paech2

1 Bonn-Rhein-Sieg University of Applied Sciences, Dept. of Computer Science,
Sankt Augustin, Germany

{thorsten.merten,simone.buersner}@h-brs.de,
{daniel.kraemer.2009w,bastian.mager.2010w,
paul.schell.2009w@informatik.h-brs.de}

2 University of Heidelberg, Institute of Computer Science, Heidelberg, Germany
paech@informatik.uni-heidelberg.de

Abstract. [Context and motivation] Traces between issues in issue tracking
systems connect bug reports to software features, they connect competing imple-
mentation ideas for a software feature or they identify duplicate issues. However,
the trace quality is usually very low. To improve the trace quality between re-
quirements, features, and bugs, information retrieval algorithms for automated
trace retrieval can be employed. Prevailing research focusses on structured and
well-formed documents, such as natural language requirement descriptions. In
contrast, the information in issue tracking systems is often poorly structured and
contains digressing discussions or noise, such as code snippets, stack traces, and
links. Since noise has a negative impact on algorithms for automated trace re-
trieval, this paper asks: [Question/Problem] Do information retrieval algorithms
for automated traceability perform effectively on issue tracking system data? [Re-
sults] This paper presents an extensive evaluation of the performance of five in-
formation retrieval algorithms. Furthermore, it investigates different preprocess-
ing stages (e.g. stemming or differentiating code snippets from natural language)
and evaluates how to take advantage of an issue’s structure (e.g. title, description,
and comments) to improve the results. The results show that algorithms perform
poorly without considering the nature of issue tracking data, but can be improved
by project-specific preprocessing and term weighting. [Contribution] Our re-
sults show how automated trace retrieval on issue tracking system data can be
improved. Our manually created gold standard and an open-source implementa-
tion based on the OpenTrace platform can be used by other researchers to further
pursue this topic.

Keywords: Issue Tracking Systems, Empirical Study, Traceability, Open-Source

1 Introduction

A considerable amount of requirements engineering (RE) research focusses on the au-
tomation of requirements traceability [10] by analyzing natural language (NL) of re-

quirements artifacts (RA), e.g. [5,4,8]. These approaches report promising recall and
accuracy. At the same time, RE research and best practices emphasize that high quality
RAs should be written correctly, consistently, unambiguously, and organized3. In the
context of automated trace retrieval, the performance of information retrieval (IR) algo-
rithms benefits from documents that satisfy these criteria. However, the criteria are not
satisfied by the data in issue tracking systems (ITS) [19]. Hence, the investigation and
experiments in this paper are guided by the following main question:

Do information retrieval algorithms for automated traceability
perform effectively on issue tracking system data?

To answer this question, a study with the data of the ITSs of four open-source
projects is conducted. For each project a gold standard traceability matrix is created
and the optimal results out of five IR algorithms with and without text preprocessing
efforts, such as stemming and stop word removal, as well as the impact of term weights
on different issue parts, are calculated and reported. The results show that algorithms
perform poorly without considering the nature of ITS data, but can be improved by
ITS-specific preprocessing and especially by term weighting. Furthermore, they show
that VSM and LSI algorithms perform better than different versions of BM25 with ITS
data.

The next section gives background information on ITSs and IR algorithms in the
context of automated trace retrieval. It explains how traces are used and represented in
ITSs exemplified by excerpts of our data and it gives a brief overview of related work
in the field. Afterwards, Section 3 gives a brief overview of related work in the field.
Section 4 states our research questions which are derived from the main question above.
Section 5 explains the experiment setup including data acquisition, the employed tools,
and algorithm evaluation. The, often counterintuitive, results are discussed in Section 6
for every RQ and it includes an overall discussion. Section 7 discusses how we mitigated
threats to validity and finally, Section 8 concludes the paper and reflects on how future
work can tackle the problem of ITS traceability.

2 Background

This Section briefly explains the employed IR algorithms (2.1) and how IR results are
measured (2.2). Then, it introduces ITSs (2.3) and how data is handled in ITS. Finally,
it bridges the gap between the nature of IR methods and the nature of ITS data (2.4).

2.1 Information Retrieval Background

IR algorithms are designed “to retrieve all the documents that are relevant to a user
query while retrieving as few non-relevant documents as possible [2, p.4]”. This defini-
tion can be applied to the problem of traceability: If I is the set of all issues, a relevance
ranking of two issues i and i′ ∈ I can be computed by a function similarity: I×I → R,

3 Among other criteria as defined in ISO/IEC/IEEE 29148:2011 [14].

with R =
{
r ∈ R|0 ≤ r ≤ 1

}
. Because a trace has only two states (it is either present

or not), a threshold t is applied so that tracet : I × I →
{
true, false

}
with

tracet(i, i′) =

{
true : similarity(i, i′) ≥ t
false : similarity(i, i′) < t

(1)

computes whether a trace between issue i and i′ exists. A trace matrix of size |I| × |I|
with elements ai,j = tracet(i, j) can now be created.

The following IR algorithms were used to calculate the similarity function in our
experiments: The vector space model (VSM) [27] using term frequency, inverse docu-
ment frequency (TF-IDF), latent semantic indexing (LSI) [7] using the cosine measure,
the Okapi best match 25 (BM25) [25] as well as its variants BM25L [16], and BM25+
[15]. The following paragraph gives a brief overview of the basics and differences of
these algorithms. We refer the reader to IR literature for further information and details,
e.g. [17,2].

VSM maps the terms of an issue to vectors. By using a distance metric such as TF-
IDF, the similarity (S) of two issues can be computed. One of the main problems in
VSM is exactly this dependency on each term and each term’s spelling. Furthermore,
the terms may have multiple meanings. Therefore, the VSM approach may compute a
high similarity between issues with equal terms which may have different meanings due
to context. LSI copes with this problem. Instead of computing S between terms, LSI
computes S between concepts of the issues. Concepts are an abstraction of multiple
terms and represent the “topics” of an issue. LSI creates those concepts using singular
value decomposition [2, p. 101] which also reduces the search space. In contrast to the
above, BM25 is a probabilistic approach to calculate S. It relies on the assumption that
there is an ideal set of issues that are related to i and computes the probability of each
issue to be in this set. BM25L and BM25+ both try to compensate problematic behavior
of BM25 on long issues [16].
It is important to note that all of the approaches depend on the following properties of
an issue i in the issue set I: a) the actual terms of i compared to another issue i′, b) the
number of terms (term frequency) in i, and c) the number of terms in i that are also in
I (inverse document frequency). These properties can be influenced by text preprocess-
ing. The most widely used preprocessing techniques are removing stop words (e.g. arti-
cles, prepositions, and conjunctions) and stemming (e.g. removing affixes; for example
connect is the stem for connected, connecting, connection, . . .)4. Due to these influ-
ences, it cannot be said which algorithm performs best with a certain data set without
experimenting, although BM25 is often used as a baseline to evaluate the performance
of new algorithms for classic IR applications such as search engines ([2, p. 107]).

2.2 Measuring IR Algorithm Performance for Trace Retrieval

IR algorithms for trace retrieval are typically evaluated using the recall (R) and pre-
cision (P) metrics with respect to a reference trace matrix. R measures the retrieved
relevant links and P the correctly retrieved links:

4 More preprocessing techniques are available. As an example [9] consider only nouns, adjec-
tives, adverbs, and verbs for further processing.

R =
CorrectLinks ∩ RetrievedLinks

CorrectLinks
, P =

CorrectLinks ∩ RetrievedLinks
RetrievedLinks

(2)

Since P and R are contradicting metrics (R can be maximized by retrieving all links,
which results in low precision; P can be maximised by retrieving only one correct link,
which results in low recall) the Fβ-Measure as their harmonic mean is often employed
in the area of traceability. In our experiments, we computed results for the F1 measure,
which balances P and R, as well as F2, which emphasizes recall:

Fβ =
(1 + β2)× Precision× Recall
(β2 × Precision) + Recall

(3)

Huffman Hayes et al. [13] define acceptable, good and excellent P and R ranges. Ta-
ble 3 extends their definition with according F1 and F2 ranges. The results section refers
to these ranges.

2.3 Issue Tracking System Data Background

At some point in the software engineering (SE) life cycle, requirements are communi-
cated to multiple roles, like project managers, software developers and, testers. Many
software projects utilize an ITS to support this communication and to keep track of the
corresponding tasks and changes [28]. Hence, requirement descriptions, development
tasks, bug fixing, or refactoring tasks are collected in ITSs. This implies that the data in
such systems is often uncategorized and comprises manifold topics [19].

The NL data in a single issue is usually divided in at least two fields: A title (or
summary) and a description. Additionally, almost every ITS supports commenting on
an issue. Title, description, and comments will be referred to as ITS data fields in the
remainder of this paper. Issues usually describe new software requirements, bugs, or
other development or test related tasks. Figure 15 shows an excerpt of the title and
description data fields of two issues, that both request a new software feature for the
Redmine project. It can be inferred from the text, that both issues refer to the same
feature and give different solution proposals.

Links between issues are usually established by a simple domain-specific language.
E.g. #42 creates a trace to an issue with id 42. In some ITS the semantics of such traces
can be specified (e.g. to distinguish duplicated from related issues). These semantically
enriched links will be referred to as trace types. The issues in Figure 1 are marked as
related issues by the Redmine developers. However, issues are also traced because of
other reasons, including but not limited to:

– To express that a bug is related to a certain feature issue.
– To divide a (larger) issue in child-issues (e.g. for organizational purposes).

5 Figure 1 intentionally omits other meta-data such as authoring information, date- and time-
stamps, or the issue status, since it is not relevant for the remainder of this paper.

#42

Fig. 1. Excerpts of two example issues from the Redmine Project
ITS data field Issue #1910 Issue #12700

Title Delete/close created forum entry Let messages have a ”solved” flag
Description I suggest a feature under the forums

where the user can close or delete the
topic he/she started. This way, other
users will not get confused if the prob-
lem is already resolved.

It would be easier to go through the
messages in the forums if there was
a ”solved” flag users could set to
show that their questions have been an-
swered.
* A filter could then be used to only
show ”open” messages. [. . .]

Comments [none] [none]

In this paper, we report on the trace types duplicate and generic. A duplicate relation
exists between two issues, if both issues describe exactly the same software feature
and a generic relation exists, if two issues refer to the same software feature. This
includes all the examples given above. Such a generic relation can for example be used
to determine the total amount of time and money that was spent for a software feature, or
to determine who was involved in developing, fixing, refactoring, and testing a feature.

Different semantics of an issue are subsequently referred to as issue types. ITS his-
torically support the definition of one issue type per issue. Another approach is to tag
issues with multiple descriptors6. In this paper we report on the issue types bug and
feature, as well as the set of all issues that also includes uncategorized or untagged
issues.

2.4 Impact of ITS data on IR algorithms

In previous research [19], we analyzed the content of NL in ITS data. We found that
NL is often used imprecisely and contains flaws. Furthermore, NL is mixed with noise
comprised of source code, stack traces, links, or repetitive information, like citations.
Finally, the comments of an issue often drift from the original topic mentioned in the
title and description towards something completely different (usually without being re-
organized). Issues are seldom corrected and some issues or comments represent only
hasty notes meant for a developer – often without forming a whole sentence. In contrast,
RAs typically do not contain noise and NL is expected to be correct, consistent, and
precise. Furthermore, structured RAs are subject to a specific quality assurance7 and
thus their structure and NL is much better than ITS data.

Since IR algorithms compute the text similarity between two documents, spelling
errors and hastily written notes that leave out information, have a negative impact on
the performance. In addition, the performance is influenced by source code which often
contains the same terms repeatedly. Finally, stack traces often contain a considerable
amount of the same terms (e.g. Java package names). Therefore, an algorithm might

6 The researched projects use the ITSs Redmine and GitHub. In Redmine the issue type needs
to be specified, GitHub allows tagging.

7 Dag and Gervasi [20] surveyed automated approaches to improve the NL quality.

compute a high similarity between two issues that refer to different topics if they both
contain a stack trace.

3 Related Work

Borg et al. conducted a systematic mapping of trace retrieval approaches [3]. Their pa-
per shows that much work has been done in trace retrieval between RA, but only few
studies use ITS data. Only one of the reviewed approaches in [3] uses the BM25 algo-
rithm, but VSM and LSA are used extensively. This paper fills both gaps by comparing
VSM, LSA, and three variants of BM25 on unstructured ITS data. [3] also reports on
preprocessing methods saying that stop word removal and stemming are most often
used. Our study focusses on the influence of ITS-specific preprocessing and ITS data
field-specific term weighting beyond removing stop words and stemming. Gotel et al.
[10] summarize the results of many approaches for automated trace retrieval in their
roadmap paper. They recognize that results vary largely: “[some] methods retrieved al-
most all of the true links (in the 90% range for recall) and yet also retrieved many false
positives (with precision in the low 10-20% range, with occasional exceptions).” We
expect that the results in this paper will be worse, as we investigate in issues and not in
structured RAs.

Due to space limitations, we cannot report on related work extensively and refer
the reader to [3,10] for details. The experiments presented in this paper are restricted
to standard IR text similarity methods. In the following, extended approaches are sum-
marized that could also be applied to ITS data and/or combined with the contribution
in this paper: Nguyen et al. [21] combine multiple properties, like the connection to a
version control system to relate issues. Gervasi and Zowghi [8] use additional methods
beyond text similarity with requirements and identify another affinity measure. Guo
et al. [11] use an expert system to calculate traces automatically. The approach is very
promising, but is not fully automated. Sultanov and Hayes [29] use reinforcement learn-
ing and improve the results compared to VSM. Niu and Mahmoud [22] use clustering
to group links in high-quality and low-quality clusters respectively to improve accu-
racy. The low-quality clusters are filtered out. Comparing multiple techniques for trace
retrieval, Oliveto et al. [23] found that no technique outperformed the others. They also
combined LDA with other techniques which improved the result in many cases. Heck
and Zaidman [12] also performed experiments with ITS data for duplicate detection
with good recall rates. In addition they found that extensive stop word removal can be
counter-beneficial for ITS data.

4 Research Questions

We divided our main question into the following four research questions (RQ):
RQ1: How do IR algorithms for automated traceability perform on ITS data in compar-
ison to related work on structured RAs? We expect a) worse results to related work on
RAs, due to little structure and much noise in ITS data, and b) BM25[+/L] variants to
perform competitive for some projects.
RQ2: How do results vary, if ITS-specific preprocessing and weighting is applied? We

expect that removing noise improves results for all data sets as discussed in Section 2.
RQ3: How do results vary for different trace and issue types? E.g. [26,30,12] used IR
algorithms on bug report duplicates, only. Since duplicates usually have a high similar-
ity, we expect good results for duplicates.
RQ4: How do results vary between different projects? Experiments are run with the
data of four projects with distinct properties (see 5.1). We expect a wide range of results
due to these differences.

5 Experiment Setup

The experiment setup has three important steps: (1) The extraction and preparation
of the data, (2) the manual creation of a gold standard traceability matrix to evaluate
the experiment results, and (3) the automated trace retrieval by different algorithms,
different preprocessing techniques, and different term weighting.

5.1 Data Preparation

Generally, 100 consecutive issues per project (in total 400 issues) were extracted from
the respective ITS APIs. We focused on consecutive issues, since it is more likely that
issues in such a set are related (e.g. because they refer to the same software features)
[24]. Thus, the possibility to find meaningful traces is higher in a consecutive set of
issues than in randomly selected samples.

The selection includes features, bugs, and uncategorized issues. The projects that
rely on the Redmine ITS categorize more issues than the ones using the GitHub ITS8

(see Table 1 for details). In addition, the extraction process followed existing links to
other issues in a breadth-first search manner to make sure that the extracted dataset in-
cludes traces. Existing links were automatically parsed and collected into a traceability
matrix (referred to as Developer Trace Matrix, DTM). Beside the NL data fields and
the existing traces, meta-data such as authors, date- and time-stamps, the issue status,
or issue IDs were extracted.

Researched Projects and Project Selection The data used for the experiments in this
paper was taken from the following four projects:

– c:geo, an Android application to play a real world treasure hunting game.
– Lighttpd, a lightweight web server application.
– Radiant, a modular content management system.
– Redmine, an ITS.

The projects show different characteristics with respect to the software type, intended
audience, programming languages, and ITS. Details of these characteristics are shown
in Table 1. c:geo and Radiant use the GitHub ITS and Redmine and Lighttpd the Red-
mine ITS. Therefore, the issues of the first two projects are categorized by tagging,
whereas every issue of the other projects is marked as a feature or a bug (see Table 1).

8 This is discussed in depth in [19].

c:geo was chosen because it is an Android application and the ITS contains more con-
sumer requests than the other projects. Lighttpd was chosen because it is a lightweight
web server and the ITS contains more code snippets and noise than the other projects.
Radiant was chosen because its issues are not categorized as feature or bug at all and it
contains fewer issues than the other projects. Finally, Redmine was chosen because it is
a very mature project and ITS usage is very structured compared to the other projects.
Some of the researchers were already familiar with these projects, since we reported on
ITS NL contents earlier [19].

Table 1. Project Characteristics

c:geo Lighttpd Radiant Redmine

Software Type Android app HTTP server content mgmt. system ITS
Audience consumer technician consumer / developer hoster / developer
Main programming lang. Java C Ruby Ruby
ITS GitHub Redmine GitHub Redmine
ITS Usage ad-hoc structured ad-hoc very structured
ITS size (in # of issues) ∼ 3850 ∼ 2900 ∼ 320 ∼ 19.000
Open issues ∼ 450 ∼ 500 ∼ 50 ∼ 4500
Closed issues ∼ 3400 ∼ 2400 ∼ 270 ∼ 14.500
Sample size 100 ≈ 3% 100 ≈ 3% 100 ≈ 30% 100 < 1%
Sampled issues with link ∼ 50% ∼ 20% ∼ 12% ∼ 70%
Issues labeled explicitly as
Feature or Bug in sample

25F/26B 30F/70B 0F/0B 31F/61B

Project size (in LOC) ∼ 130, 000 ∼ 41, 000 ∼ 33, 000 ∼ 150, 000

Gold Standard Trace Matrices The first, third, and fourth author created the gold stan-
dard trace matrices (GSTM). For this task, the title, description, and comments of each
issue was manually compared to every other issue. Since 100 issues per project were
extracted, this implies 100∗100

2 −50 = 4950 manual comparisons. To have semantically
similar gold standards for each project, a code of conduct was developed that prescribed
e.g. when a generic trace should be created (as defined in Section 2.3) or when an issue
should be treated as duplicate (the description of both issues describes exactly the same
bug or requirement). Since concentration quickly declines in such monotonous tasks,
the comparisons were aided by a tool especially created for this purpose. It supports
defining related and unrelated issues by simple keyboard shortcuts as well as saving
and resuming the work. At large, a GSTM for one project was created in two and a half
business days.

In general the GSTMs contain more traces than the DTMs (see Table 2). A man-
ual analysis revealed that developers often missed (or simply did not want to create)
traces or created relations between issues that are actually not related. The following
examples indicate why GSTMs and DTMs differ: (1) Eight out of the 100 issues in the
c:geo dataset were created automatically by a bot that manages translations for inter-
nationalization. Although these issues are related, they were not automatically marked
as related. There is also a comment on how internationalization should be handled in
issue (#4950). (2) Some traces in the Redmine based projects do not follow the correct

#4950

syntax and are therefore missed by a parser. (3) Links are often vague and unconfirmed
in developer traces. E.g. c:geo #5063 says that the issue “could be related to #4978
[. . .] but I couldn’t find a clear scenario to reproduce this”. We also could not find evi-
dence to mark these issues as related in the gold standard but a link was already placed
by the developers. (4) Issue #5035 in c:geo contains a reference to #3550 to say that
a bug occurred before the other bug was reported (the trace semantics in this case is:
“occurred likely before”). There is, however, no semantics relation between the bugs,
therefore we did not mark these issues as related in the gold standard. (5) The Radiant
project simply did not employ many manual traces.

Table 2. Extracted Traces vs. Gold Standard

Projects

of relations c:geo Lighttpd Radiant Redmine

DTM generic 59 11 8 60
GSTM generic 102 18 55 94
GSTM duplicates 2 3 - 5
overlapping 30 9 5 45

Table 3. Evaluation Measures Adapted from [13]

Acceptable Good Excellent

0.6 ≤ r < 0.7 0.7 ≤ r < 0.8 r ≥ 0.8
0.2 ≤ p < 0.3 0.3 ≤ p < 0.4 p ≥ 0.4

0.2 ≤ F1 < 0.42 0.42 ≤ F1 < 0.53 F1 ≥ 0.53
0.43 ≤ F2 < 0.55 0.55 ≤ F2 < 0.66 F2 ≥ 0.66

5.2 Tools

The experiments are implemented using the OpenTrace (OT) [1] framework. OT re-
trieves traces between NL RAs and includes means to evaluate results with respect to a
reference matrix.

OT utilizes IR implementations from Apache Lucene9 and it is implemented as
an extension to the General Architecture for Text Engineering (GATE) framework [6].
GATE’s features are used for basic text processing and pre-processing functionality in
OT, e.g. to split text into tokens or for stemming. To make both frameworks deal with
ITS data, some changes and enhancements were made to OT: (1) refactoring to make
it compatible with the current GATE version (8.1), (2) enhancement to make it process
ITS data fields with different term weights, and (3) development of a framework to
configure OT automatically and to run experiments for multiple configurations. The
changed source code is publicly available for download10.

5.3 Algorithms and Settings

For the experiment, multiple term weighting schemes for the ITS data fields and dif-
ferent preprocessing methods are combined with the IR algorithms VSM, LSI, BM25,
BM25+, BM25L. Beside stop word removal and stemming, which we will refer to as
standard preprocessing, we employ ITS-specific preprocessing. For the ITS-specific
preprocessing, noise (as defined in Section 2) was removed and the regions marked as

9 https://lucene.apache.org
10 http://www2.inf.h-brs.de/˜tmerte2m – In addition to the source code, gold stan-

dards, extracted issues, and experiment results are also available for download.

#5063
https://lucene.apache.org
http://www2.inf.h-brs.de/~tmerte2m

code were extracted and separated from the NL. Therefore, term weights can be ap-
plied to each ITS data field and the code. Table 4 gives an overview of all preprocessing
methods (right) and term weights as well as rationales for the chosen weighting schemes
(left).

Table 4. Data Fields Weights (l), Algorithms and Preprocessing Settings (r)

Weight Rationale / Hypothesis

Title Description Comments Code

1 1 1 1 Unaltered algorithm
1 1 1 0 – without considering code
1 1 0 0 – also without comments
2 1 1 1 Title more important
2 1 1 0 – without considering code
1 2 1 1 Description more important
1 1 1 2 Code more important
8 4 2 1 Most important information first
4 2 1 0 – without considering code
2 1 0 0 – also without comments

Algorithm Settings

BM25 Pure, +, L
VSM TF-IDF
LSI cos measure

Preprocessing Settings

Standard
Stemming on/off
Stop Word Removal on/off

ITS-specific
Noise Removal on/off
Code Extraction on/off

6 Results

We compute tracet with different thresholds t in order to maximize precision, recall,
F1 and F2 measure. Results are presented as F2 and F1 measure in general. However,
maximising recall is often desirable in practice, because it is simpler to remove wrong
links manually than to find correct links manually. Therefore, R with corresponding
precision is also discussed in many cases.

As stated in Section 5.1, a comparison with the GSTM results in more authentic and
accurate measurements than a comparison with the DTM. It also yields better results:
F1 and F2 both increase about 9% in average computed on the unprocessed data sets. A
manual inspection revealed that this increase materializes due to the flaws in the DTM,
especially because of missing traces. Therefore, the results in this paper are reported in
comparison with the GSTM.

6.1 IR Algorithm Performance on ITS Data

Figure 2 shows an evaluation of all algorithms with respect to the GSTMs for all
projects with and without standard preprocessing. The differences per project are sig-
nificant with 30% for F1 and 27% for F2. It can be seen that standard preprocessing
does not have a clear positive impact on the results. Although, if only slightly, a neg-
ative impact on some of the project/algorithm combinations is noticeable. On a side
note, our experiment supports the claim of [12], that removing stop-words is not always
beneficial on ITS data: We experimented with different stop word lists and found that a
small list that essentially removes only pronouns works best.

In terms of algorithms, to our surprise, no variant of BM25 competed for the best
results. The best F2 measures of all BM25 variants varied from 0.09 to 0.19 over all
projects, independently of standard preprocessing. When maximizing R to 1, P does
not cross a 2% barrier for any algorithm. Even for R ≥ 0.9, P is still < 0.05. All in all,
the results are not good according to Table 3, independently of standard preprocessing,
and they cannot compete with related work on structured RAs.

Fig. 2. Best F1 (left) and F2 (right) Scores for Every Algorithm

VSM LSA BM25

0.1

0.2

0.3

0.4

0.5

VSM LSA BM25

0.1

0.2

0.3

0.4

0.5

c:geo with preprocessing without preprocessing
Lighttpd with preprocessing without preprocessing
Radiant with preprocessing without preprocessing
Redmine with preprocessing without preprocessing

Although results decrease slightly in a few cases, the negative impact is negligible.
Therefore, the remaining measurements are reported with the standard preprocessing
techniques enabled11.

6.2 Influence of ITS-specific Preprocessing and Weighting

This RQ investigates in the influence of ITS-specific preprocessing 12 and ITS data
field-specific term weighting in contrast to standard preprocessing.

Fig. 3. Best Results With and Without Removing Noise

C:Geo LighttpdRadiantRedmine

0.2

0.3

0.4

0.5

0.6

F
1

Sc
or

e

std. pre.

ITS pre. + std. pre.

BM25
BM25L
LSA
VSM

C:Geo LighttpdRadiantRedmine

0.2

0.3

0.4

0.5

0.6

F
2

Sc
or

e

11 In addition, removing stop words and stemming is considered IR best practices, e.g. [17,2].
12 Removing code snippets and other noise can be achieved automatically, e.g. [18].

Contrary to our expectations, ITS-specific preprocessing impacts only c:geo clearly
positively as shown in Figure 3. For the other projects, a positive impact is achieved in
terms of F1 measure only. Since preprocessing always removes data, it can have a neg-
ative impact on recall. This is what we notice as a slight decrease of the F2 measure for
three of the projects (4% for Lighttpd, 2% for Radiant, and 1% for Redmine). Overall
however, precision improves with ITS-specific preprocessing.

Figure 4 shows the influence of different term weights in each of the projects. For
a better comparison, the results are shown with standard and ITS-specific preprocess-
ing enabled. The left axis represents the term weight factors for: Title - Description -
Comments - Code. In contrast to ITS-specific preprocessing, Figure 4 shows that some
term weights clearly performed best. In general, the weighting schemes that stress the
title yielded better results. In addition, the figure also shows that code should not be
considered by IR algorithms for trace retrieval: Term weights of 0 for code yielded the
best results.

Fig. 4. Influence of Term Weighting

0.1 0.2 0.3 0.4 0.5 0.6

1-1-1-2
1-1-1-1
1-2-1-1
2-1-1-1
8-4-2-1
1-1-1-0
1-1-0-0
4-2-1-0
2-1-1-0
2-1-0-0

Fβ Score C:Geo

W
ei

gh
tin

g
Sc

he
m

es

0.1 0.2 0.3 0.4 0.5 0.6

Fβ Score Lighttpd

0.1 0.2 0.3 0.4 0.5 0.6

1-1-1-2
1-1-1-1
1-2-1-1
2-1-1-1
8-4-2-1
1-1-1-0
1-1-0-0
4-2-1-0
2-1-1-0
2-1-0-0

Fβ Score Radiant

W
ei

gh
tin

g
Sc

he
m

es

F1

F2

LSA
VSM

0.1 0.2 0.3 0.4 0.5 0.6

Fβ Score Redmine

6.3 Influence of Trace Types and Issue Types

Issue Types Table 5 shows the best achievable results for F1, F2 and R on fully pre-
processed datasets. The best results per issue type are printed in bold font. Since the
Radiant dataset does not provide information on issue types, it is excluded in Table 5.

Trace retrieval from feature to bug issues worked best for the Lighttpd dataset. For
Redmine retrieval between features worked best and for c:geo retrieval between bugs
worked best; here, however, retrieval for other cases is much lower. Interestingly, there
was no issue type, that worked best or worst for all projects.

Trace Types Table 6 compares the best achievable results for tracet : I × I and
traceduplicatet : I × I . We restricted the comparison to generic relations and duplicates,
since other annotated trace types in the GSTM13 left too much room for interpretation
by the annotators. E.g. it is hard to define when exactly an issue “blocks” another issue,
without detailed knowledge of the project.

Table 6 shows that duplicate issues are detected competitively for c:geo and Red-
mine and rather poorly for Lighttpd. The latter contradicts our expectations for thisRQ.
However, a manual inspection of the data showed that duplicated issues often use dif-
ferent words to express the same matter, similar to the example given in Figure 1. This
can only be resolved by domain knowledge and/or knowledge of domain-dependant
synonyms. Both of which cannot be handled by standard IR algorithms without addi-
tional effort. Note, that we cannot report on the Radiant dataset, since the GSTM does
not contain any duplicates as shown in Table 2.

6.4 Results per Project and Overall Discussion

Table 7 summarizes the best results per project for F1/2 and R with (P) as well as
the necessary settings to achieve these results. A baseline is represented by the best
performing algorithm with standard preprocessing but without ITS-specific preprocess-
ing and without ITS data field-specific term weighting. Although all results exceed this
baseline, the positive impact of the ITS-specific efforts is only significant for c:geo and
Radiant datasets (F1,2 increase between 10 and 12%) and it has only a small impact on
the Lighttpd and Redmine datasets (F1,2 increase between 5 and 8%). This correlates
with the ITSs that the projects employ. We hypothesize that data cleanup and weighting
have a higher influence on the Github based projects, since the NL data looks a bit un-
tidy in comparison to the Redmine based projects. With an improvement of 11% for F2

the best values were achieved for c:geo and Radiant. We think that this is because both
ITSs contain the least technical discussions and terms. On the contrary, the next best
results are measured for Lighttpd and the project’s ITS contains much technical data as
well as talk. All in all, combinations of weighting and ITS-specific preprocessing were
responsible for the best obtainable results. As discussed in RQ3, not considering the
code and emphasizing the title worked best for each project.

In addition, we compared the values of the fully preprocessed datasets from Table 5
to the same baseline as in Table 7 (only standard preprocessing). This comparison re-
vealed that the preprocessed dataset performs better for different trace and issue types

13 We also allowed the annotation of the following trace types: I1 precedes, is parent of, blocks,
clones I2

Table 5. Best Results for Different Issue Types

tracet : Ifeature × Ifeature tracet : Ifeature × Ibug tracet : Ibug × Ibug

Results Alg. Weights Results Alg. Weights Results Alg. Weights

c:
ge

o F1 0.4 BM25 2,1,0,0 0.46 VSM 8,4,2,1 0.64 VSM 1,1,1,0
F2 0.53 VSM 4,2,1,0 0.41 VSM 8,4,2,1 0.67 VSM 1,1,1,0

R (P) 1 (0.6) BM25 1,1,0,0 1 (0.03) BM25 1,1,0,0 1 (0.04) VSM 1,1,0,0

L
ig

ht
t. F1 0.67 VSM 1,1,0,0 0.67 VSM 1,1,1,0 0.33 LSA 8,4,2,1

F2 0.56 VSM 1,1,0,0 0.71 VSM 1,1,1,0 0.43 VSM 8,4,2,1
R (P) 1 (0.02) BM25 1,1,0,0 1 (0.8) BM25 1,1,0,0 1 (0.01) BM25 4,2,1,0

R
ed

m
. F1 0.49 VSM 2,1,0,0 0.29 VSM 4,2,1,0 0.29 VSM 4,2,1,0

F2 0.55 VSM 2,1,0,0 0.30 VSM 1,1,0,0 0.38 VSM 4,2,1,0
R (P) 1 (0.07) BM25 1,1,0,0 1 (0.03) BM25 1,1,1,0 0.04 (1) VSM 1,1,1,0

Table 6. Best Results for Different Trace Types

tracet : I × I traceduplicate
t : I × I

Results Alg. Weights Results Alg. Weights

c:
ge

o F1 0.58 VSM 2,1,0,0 0.67 LSA 1,1,0,0
F2 0.55 VSM 2,1,0,0 0.56 LSA 1,1,0,0

R (P) 0.1 (0.03) BM25+ 1,1,1,1 1 (0.11) BM25 1,1,0,0

L
ig

ht
t. F1 0.4 VSM 4,2,1,0 0.18 LSA 1,1,0,0

F2 0.46 VSM 4,2,1,0 0.36 VSM 2,1,0,0
R (P) 0.97 (0.04) BM25 1,1,1,1 0.97 (0.3) BM25 1,1,0,0

R
ed

m
. F1 0.31 VSM 1,1,0,0 0.31 LSA 1,2,1,1

F2 0.38 VSM 2,1,0,0 0.36 LSA 1,2,1,1
R (P) 0.99 (0.03) VSM 1,1,1,1 1 (0.01) LSA 1,1,0,0

Table 7. Best Results per Project (Trace and Issue Type not Distinguished)

Best Results tracet : I × I Baseline

Std. Pre. only
Results Alg. Weights Std. Pre. ITS-specific Pre. no weighting

c:
ge

o F1 0.58 VSM 2,1,0,0 true true 0.46 LSA
F2 0.55 VSM 2,1,0,0 true true 0.44 LSA

R (P) 1 (0.03) BM25+ 1,1,1,1 false true 0.99 (0.03) BM25+

L
ig

ht
t. F1 0.4 VSM 4,2,1,0 true true 0.32 VSM

F2 0.46 VSM 4,2,1,0 true true 0.41 VSM
R (P) 0.97 (0.04) BM25 1,1,1,1 false false 0.94 (0.03) VSM

R
ad

ia
nt F1 0.27 VSM 2,1,0,0 true true 0.17 LSA

F2 0.35 VSM 2,1,0,0 true true 0.24 VSM
R (P) 1 (0.02) BM25 2,1,0,0 false false 1 (0.02) BM25

R
ed

m
. F1 0.31 VSM 2,1,0,0 true true 0.25 VSM

F2 0.38 VSM 2,1,0,0 true true 0.33 VSM
R (P) 0.99 (0.3) VSM 1,1,1,1 stopword only false 0.99 (0.03) VSM

as well. We noticed improvements in every case. Most significantly, improvements in
both, F1 and F2, of over 36% are achieved for tracet : Ibug × Ibug in c:geo and over
10% for tracet : Ifeature × Ibug in c:geo. On average, F1 increased by 19.5% and F2 by
13.33% for all trace projects and trace types.

Since no BM25 variants performed best, we calculated the improvements in com-
parison to the baseline from Figure 2. BM25 still performs worse than VSM and LSI.
However, the F2 scores for BM25[+,L] improved by 23% for c:geo, 3% for Lighttpd,
3% for Radiant, and 6% for Redmine.

Overall, the results show that there is neither the best algorithm, nor the best pre-
processing for all projects. However, removing code snippets and stack traces (see the
term weights for n-n-n-0 in Table 7) can be considered a good advice. It generally
improves the results, especially precision, and has a negative impact of < 4% on the
F2 measure for Lighttpd in our experiments, only. Also, up-weighting title and down-
weighting comments has an overall positive impact. Noticeably, the best measures in
Table 7 are computed with the “simplest” algorithm: VSM. Since VSM considers ev-
ery term of the text that was not removed by preprocessing, we hypothesize that this
property is an important factor on ITS data.

7 Threats to Validity

Each GSTM was created by one person only. We tried to minimize this threat by (a) cre-
ating and discussing guidelines on how the gold standard should be made and when
issues should be seen as related, and (b) peer reviewing the created gold standards by
random samples. Although the authors knew the projects or took time to become ac-
quainted with the projects, some traces were hard to decide on. In case of doubt, no trace
was inserted in the GSTM. Even though we created rather large GSTMs of 100 × 100
traces, the GSTMs comprise only small parts of the projects ITSs. Therefore, a gen-
eralization from these results cannot be made, although we included about a third of
the issues of the Radiant project which is a rather large sample. It gives, however, an
indication of the importance of preprocessing and term weighting and shows that ITS
data cannot be handled in the same way as structured RAs. In addition to the facts dis-
cussed in 6.3, due to the low number of duplicates in our datasets (see Table 2) the low
results for duplicates might have occurred by chance. It is important to note that the
definitions of related and duplicate issues have a major influence on the results. Differ-
ent definitions would certainly lead to different results since trace matrices are always
use-case-dependent.

Finally, OpenTrace creates queries in Apache Lucene to calculate similarity : I×I .
This involves data transformations from and to the GATE and OT frameworks. We
inspected and enhanced the code very carefully to minimize implementation problems
and publish the source code and all data along with this paper.

8 Conclusion and Future Work

In this paper, we presented an evaluation of five IR algorithms for the problem of auto-
mated trace retrieval on ITS data. To properly perform this evaluation, four gold stan-

dards for 100 × 100 issues were created. The evaluation considered four open source
projects with distinct properties in terms of project size, audience, and so forth. Since
the nature of feature descriptions in ITSs is not comparable to requirement artifacts,
our results show that algorithms that perform quite well with RAs perform significantly
weaker with ITS data. A combination of ITS-specific preprocessing as well as ITS data
field-specific term weighting can positively influence the results.

To further improve trace retrieval in ITS, specific NL content needs to be better un-
derstood. Our experiment shows that standard IR preprocessing as well as ITS-specific
efforts do generally have a positive impact on the results. However, results vary due to
the entirely different nature of NL data in different projects. Our extended version of the
OpenTrace framework can be used to find good preprocessing and weighting schemes
automatically, if a gold standard is available, and it can be extended with other efforts
from related work.

References

1. Angius, E., Witte, R.: OpenTrace: An Open Source Workbench for Automatic Software
Traceability Link Recovery. 2012 19th Working Conference on Reverse Engineering pp.
507–508 (2012)

2. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval: The Concepts and Tech-
nology behind Search. Addison-Wesley Professional, 2 edn. (2011)

3. Borg, M., Runeson, P., Ardö, A.: Recovering from a decade: a systematic mapping of infor-
mation retrieval approaches to software traceability. Empirical Software Engineering 19(6),
1565–1616 (2014)

4. Chen, X., Hosking, J., Grundy, J.: A Combination Approach for Enhancing Automated
Traceability. In: Proceedings of the 33rd Intl. Conference on Software Engineering. pp. 912–
915. ACM, Waikiki, Honolulu, HI, USA (2011)

5. Cleland-Huang, J., Settimi, R., Romanova, E., Berenbach, B., Clark, S.: Best Practices for
Automated Traceability. Computer 40(6), 27–35 (2007)

6. Cunningham, H., Maynard, D., Bontcheva, K.: Text Processing with GATE (Version 6). Uni-
versity of Sheffield Department of Computer Science (2011)

7. Furnas, G.W., Deerwester, S., Dumais, S.T., Landauer, T.K., Harshman, R.a., Streeter, L.a.,
Lochbaum, K.E.: Information retrieval using a singular value decomposition model of latent
semantic structure. In: Proceedings of the 11th Intl. ACM SIGIR Conference on R&D in
Information Retrieval - SIGIR ’88. pp. 465–480. ACM Press, New York (1988)

8. Gervasi, V., Zowghi, D.: Mining Requirements Links. In: Proceedings of the 17th Intl. Work-
ing Conference on Requirements Engineering: Foundation for Software Quality. vol. 6606
LNCS, pp. 196–201. Springer Berlin / Heidelberg (2011)

9. Gervasi, V., Zowghi, D.: Supporting Traceability Through Affinity Mining. In: IEEE 22nd
Intl. Requirements Engineering Conference. pp. 143–152. IEEE (2014)

10. Gotel, O., Cleland-Huang, J., Hayes, J.H., Zisman, A., Egyed, A., Grunbacher, P., Antoniol,
G.: The quest for Ubiquity: A roadmap for software and systems traceability research. In:
20th IEEE Intl. Requirements Engineering Conference. pp. 71–80. IEEE (2012)

11. Guo, J., Cleland-Huang, J., Berenbach, B.: Foundations for an expert system in domain-
specific traceability. In: 21st IEEE Intl. Requirements Engineering Conference (RE). pp.
42–51. No. 978, IEEE (2013)

12. Heck, P., Zaidman, A.: Horizontal Traceability for Just-In-Time Requirements: The Case for
Open Source Feature Requests. Journal of Software: Evolution and Process 26(12), 1280–
1296 (2014)

13. Huffman Hayes, J., Dekhtyar, A., Sundaram, S.K.: Advancing Candidate Link Generation
for Requirements Tracing: The Study of Methods. IEEE Trans. on SE 32(1) (2006)

14. ISO/IEC/IEEE: Intl. STANDARD ISO/IEC/IEEE 29148:2011 (2011)
15. Lv, Y.: Lower-Bounding Term Frequency Normalization. ACM Conference on Information

and Knowledge Management pp. 7–16 (2011)
16. Lv, Y., Zhai, C.: When documents are very long, BM25 fails! In: Proceedings of the 34th

Intl. ACM SIGIR Conference on R&D in Information Retrieval - SIGIR ’11. p. 1103. No. I,
ACM Press, New York (2011)

17. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge
University Press, 1 edn. (2008)

18. Merten, T., Mager, B., Bürsner, S., Paech, B.: Classifying unstructured data into natural
language text and technical information. In: Proceedings of the 11th Working Conference on
Mining Software Repositories - MSR 2014. pp. 300–303. ACM Press, New York (2014)

19. Merten, T., Mager, B., Hübner, P., Quirchmayr, T., Bürsner, S., Paech, B.: Requirements
Communication in Issue Tracking Systems in Four Open-Source Projects. In: 6th Intl. Work-
shop on Requirements Prioritization and Communication (RePriCo). pp. 114–125. CEUR
Workshop Proceedings (2015)

20. Natt och Dag, J., Gervasi, V.: Managing Large Repositories of Natural Language Re-
quirements. In: Engineering and Managing Software Requirements, pp. 219–244. Springer-
Verlag, Berlin/Heidelberg (2005)

21. Nguyen, A.T., Nguyen, T.T., Nguyen, H.A., Nguyen, T.N.: Multi-layered approach for re-
covering links between bug reports and fixes. Proceedings of the ACM SIGSOFT 20th Intl.
Symposium on the Foundations of Software Engineering - FSE ’12 p. 1 (2012)

22. Niu, N., Mahmoud, A.: Enhancing candidate link generation for requirements tracing: The
cluster hypothesis revisited. In: 20th IEEE Intl. Requirements Engineering Conference. pp.
81–90. IEEE (2012)

23. Oliveto, R., Gethers, M., Poshyvanyk, D., De Lucia, A.: On the Equivalence of Information
Retrieval Methods for Automated Traceability Link Recovery. In: 2010 IEEE 18th Interna-
tional Conference on Program Comprehension. pp. 68–71. IEEE (jun 2010)

24. Paech, B., Hubner, P., Merten, T.: What are the Features of this Software? In: ICSEA 2014,
The Ninth International Conference on Software Engineering Advances. pp. 97–106. IARIA
XPS Press (2014)

25. Robertson, S.E., Walker, S., Hancock-Beaulieu, M., Gull, A., Lau, M.: Okapi at TREC. In:
Proceedings of The First Text REtrieval Conference, TREC 1992. vol. Special Pu, pp. 21–30.
National Institute of Standards and Technology (NIST) (1992)

26. Runeson, P., Alexandersson, M., Nyholm, O.: Detection of duplicate defect reports using
natural language processing. In: Intl. Conference on SE. pp. 499–508 (2007)

27. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Communi-
cations of the ACM 18(11), 613–620 (1975)

28. Skerrett, I., The Eclipse Foundation: The Eclipse Community Survey 2011 (2011)
29. Sultanov, H., Hayes, J.H.: Application of reinforcement learning to requirements engineer-

ing: requirements tracing. In: 21st IEEE Intl. Requirements Engineering Conference. pp.
52–61. IEEE (2013)

30. Wang, X.W.X., Zhang, L.Z.L., Xie, T.X.T., Anvik, J., Sun, J.S.J.: An approach to detecting
duplicate bug reports using natural language and execution information. 2008 ACM/IEEE
30th Intl. Conference on Software Engineering pp. 461–470 (2008)

	Do Information Retrieval Algorithms for Automated Traceability Perform Effectively on Issue Tracking System Data?

