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Abstract—Communication about requirements is often han-
dled in issue tracking systems, especially in a distributed setting.
As issue tracking systems also contain bug reports or program-
ming tasks, the software feature requests of the users are often
difficult to identify. This paper investigates natural language
processing and machine learning features to detect software
feature requests in natural language data of issue tracking
systems. It compares traditional linguistic machine learning
features, such as “bag of words”, with more advanced features,
such as subject-action-object, and evaluates combinations of
machine learning features derived from the natural language and
features taken from the issue tracking system meta-data. Our
investigation shows that some combinations of machine learning
features derived from natural language and the issue tracking
system meta-data outperform traditional approaches. We show
that issues or data fields (e.g. descriptions or comments), which
contain software feature requests, can be identified reasonably
well, but hardly the exact sentence. Finally, we show that the
choice of machine learning algorithms should depend on the
goal, e.g. maximization of the detection rate or balance between
detection rate and precision. In addition, the paper contributes a
double coded gold standard and an open-source implementation
to further pursue this topic.

I. INTRODUCTION

Software feature requests (SFR) play an important role in

requirements engineering and the whole software engineering

process. SFRs are usually communicated via an issue tracking

system (ITS) by customers or users of the software and are

further processed by project members. Therefore, the ITS

brings multiple stakeholder groups together [1] and holds

multiple SFRs [2], [3]. Knowing all SFRs is helpful for com-

mon software engineering tasks, such as checking whether all

feature requests are implemented, updating the documentation

for implemented feature requests, or even billing (did we

add new features to the software while this bug was being

resolved?).
Ideally, an SFR is formulated clearly and precisely and its

respective issue is flagged as feature. In this way the SFR can

be distinguished from other information in the ITS, such as

bug reports or development tasks. In practice, however, finding

SFRs may not be straightforward, as in the following two

situations: (1) The issue that includes the SFR is categorized

wrongly [4] (e.g. as a bug instead of a feature) or not at

all [3]. As a consequence, the SFR may not be explicitly

visible in the ITS and is thus hard to find. (2) The SFR is

hidden in a comment to the issue, e.g. because the feature

idea emerged during bug resolution [3]. The SFRs in both

examples are hard to detect, especially if numerous issues are

analyzed retrospectively.

The main goal of this paper is to study whether SFRs can

be detected automatically to cope with such problems. We

evaluate multiple machine learning (ML) algorithms, different

text preprocessing techniques, and Machine Learning Features

(MLFs) to detect the following three parts of an SFR [3]:

(1) “requests”, text that requests for a distinguishing charac-

teristic of a software item (e.g. a quality or functionality) that

provides value for users of the software; (2) “clarifications”,

text that explains a request, e.g. because the functionality

needs further context; and (3) “solution proposals”, text that

describes implementation ideas for an SFR.

Challenges in classifying ITS natural language (NL) data

are introduced in Section II along with a brief background on

ML, text pre-processing, and ITSs. Related literature can be

found in Section III and is split in related feature extraction

work and literature which serves as a basis for some of our

MLFs.

The main research goal is divided into three research ques-

tions in Section IV and the experiment setup is described there-

after in Section V. Our main findings are that request can be

detected best out of the researched SFR parts. This detection

works best if linguistic MLFs are used in combination with

MLFs from ITS meta-data. Our evaluation shows that issues or

data fields containing SFRs can be identified reasonably well,

but it is rather hard to identify the exact sentences describing

the SFRs. Finally, the choice of ML algorithms should depend

on the corresponding data mining goal: some algorithms

maximize the detection rate of SFRs, others maximize the

balance between detection rate and precision. The results are

presented in detail in Section VI and discussed in Section VII.

The final two sections discuss study related threats to validity

and conclude the paper.

II. BACKGROUND

This section briefly introduces ML in general and how ML

performance can be measured. Then it gives an overview of

ITS and details challenges of ITS data in the context of ML.
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A. Machine Learning Background

In the experiments supervised ML algorithms were em-

ployed. Supervised learning means that previously labeled

training data is used for training the model [5], [6]. For the

purpose of training, a set of MLFs and their corresponding

labels are needed. For example, a model is trained to predict

whether an issue should be classified as feature or bug using

all the words that occur in the issue. In this case feature and

bug are the labels and all the words that occur in the issue is

the MLF. This MLF is also called Bag Of Words (BOW).

An ML algorithm calculates a statistical prediction model

from MLFs. In general, the prediction model is more precise,

the more examples (training data) are provided. Besides the

amount of training data, the selection of MLFs is very im-

portant [7], [8]. As an example, assume the ML model from

the example above was not trained with the BOW, but with

the number of comments to each issue. Then, it would be

difficult for the ML algorithm to compute a precise prediction

model1. However, the combination of both BOW and number

of comments may improve the results.

In this paper, the following 7 algorithms that are often

employed in text classification tasks, are used to detect SFRs

[9]: (1) Naive bayes (NB); (2) Multinomial naive bayes

(MNB); (3) Linear support vector classifier (also known as

support vector machine, SVM); (4) Logistic regression (LR,

also known as maximum-entropy); (5) Stochastic gradient

descent (SGD); (6) Decision tree (DT); (7) Random forest

(RF); We use the default settings, as provided by the NLTK

[10] and the Scikit-learn [9] APIs, for all our experiments,

which implies that no parameter tuning was done. Details on

ML algorithms can be found in [5], [10], or [6].

B. Issue Tracking System Data

ITSs are utilized in many projects [11] to store SFRs, bug

reports, and to discuss and keep track of the corresponding

development tasks. Thus, the data in ITSs comprise manifold

topics [3].

An excerpt of an SFR, taken from our data, is shown

in Figure 1. An issue comprises at least two separate data

fields: a title (or summary) and a description. Additionally

issues can be commented in almost every ITS, as shown in

Figure 1 below of “History”. We refer to title, description, and

comments as ITS data fields in the remainder of this paper.

Each data field comprises two parts: NL text and data field
meta-data, e.g. timestamp, author, etc. The issue itself includes

ITS meta-data, too, e.g. the status or the issue type. ITSs

support either defining one issue type per issue, or tagging

issues with multiple descriptors.

C. Impact of ITS NL data on ML algorithms

There are three major problems in ITS NL data, impeding

SFR detection: (1) Flaws in the natural language, (2) mixing

natural language with technical noise, and (3) flaws in the

assignment of issue types.

1However, such a classification is in rare cases possible, e.g. if every bug
issue has more comments than a feature issue or vice versa.

Fig. 1. Screenshot of Redmine Issue 641 with Manual Annotations

Flaws in the natural language: In previous research [3] we

studied the NL content in ITS data. We found that NL is

often used imprecisely, contains flaws, or does not form a

whole sentence. Issues are seldom corrected or re-organized,

and some issues or comments represent only hastily written

developer notes. In addition, the comments to an issue often

drift from the original topic, mentioned in the title and the

description, towards something different (e.g. a discussion

about a new feature in an issue that initially describes a bug).

Since ML algorithms use properties of the NL to learn their

models, spelling errors, hastily written notes, and content drifts

have a negative impact on the performance.

Mixing NL with technical noise: NL is mixed with technical

noise such as source code, stack traces, or links. Sometimes

this noise can easily be filtered but often technical artifacts,

such as class names or HTML-tags, occur as parts of a sen-

tence. Such technical artifacts can have a positive or negative

impact on ML algorithms: On the one hand, an ML algorithm

could learn that SFRs typically do not contain patterns of a

stack trace. On the other hand, code snippets, such as package

names, might confuse the algorithm because they do not follow

the same patterns as NL.

Flaws in the assignment of issue types: Issue types, such as

“feature” or “feature request”, should actually denote issues

containing SFRs. In practice, however, issue types are often

not available at all [3] and if appropriate issue types are used,

they are often assigned incorrectly [4].

D. Levels of Detail for ITS ML Evaluation

Issues contain data fields, data fields contain NL text, and

NL text is composed of sentences2. Hence, the detection of

SFRs can be approached on different levels of detail. Detection

on issue level reveals, whether the issue contains one or many

SFRs. Detection on data field level reveals, whether the title,

the description, or a certain comment to the issue contains one

or many SFRs. Detection on sentence level reveals, whether

2We use sentence as synonym for phrases, bullet points, and so on.
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a certain sentence in the NL describes an SFR. In figures and

tables we will refer to these levels as I, DF, and Se.

In general terms: The higher the level of detail, the harder

is a detection due to the following two circumstances:

• On a lower level, more MLFs can be employed to train

the model. E.g. on issue level, the words in the title,

description and comments can be used to create the BOW

MLF. In contrast, on sentence level only the words of that

sentence form the BOW.

• More objects need to be classified on a higher level

with the same amount of training data. E.g our data

set includes > 200 SFR annotations. These are used

for a detection within 599 issues and 11149 sentences,

respectively.

For each level, some MLFs can be derived directly (e.g.

issue meta-data MLFs on issue level). To gather the MLFs

from other levels, we employ the concepts of inheritance and

aggregation. E.g. when the detection is done on sentence

level, each sentence can inherit the meta-data MLFs from

the comprising data field and issue. If the detection is done

on issue level, each issue accumulates the MLFs from its

embedded data fields and, transitively, the MLFs derived from

their textual contents. On data field level both concepts are

used. This allows to compare the same combinations of MLFs

on different levels and thus evaluate which level yields the best

results.

E. Measuring Machine Learning Performance

ML performance is typically measured by comparing the

results of a classifier to a manually created gold standard.

An ML algorithm classifies data (e.g., text document) along

predefined labels (e.g. SFR). More precisely, the trained model

determines whether a piece of data (e.g., a sentence) corre-

sponds to predefined MLFs of a label or not (e.g., either the

data is an SFR or not). This classification can then be either

correct or not. Thus, a classification ends up in four different

measures of relevance: (1) the piece of data is correctly

classified to belong to the label (true positive, TP), (2) the

piece of data is correctly identified not to belong to the label

(true negative, TN), (3) the piece of data is wrongly classified

to belong to the label (false positive, FP), (4) the piece of data

is wrongly identified not to belong to the label (false negative,

FN). Based on these four measures of relevance, recall (R)

and precision (P ) are defined:

R =
TP

TP + FN
P =

TP
TP + FP

(1)

R measures how many relevant SFRs are found and P
measures how many relevant SFRs are found correctly. Since

R can be maximized by classifying all sentences as SFRs,

which results in a low P and P can be maximised by

classifying a single SFR correctly, which results in low R,

the Fβ-Measure, as their harmonic mean, is often employed.

In the paper we report on P , R and the F1 measure, which

balances P and R:

Fβ =
(1 + β2)× P× R
(β2 × P) + R

(2)

In addition, we report on a measure denoted as

MAX(R), P≥p throughout the paper as it is often desired to

maximize recall in favor of precision as argued e.g. by Berry

[12]. MAX(R), P≥p is defined as best achievable recall if

the precision is higher than p%. In other words, a reason-

able precision is defined to be at least p%. The following

example illustrates the use of MAX(R), P≥p: With 76 SFRs,

as in the agreed upon data set, a MAX(R), P≥0.05 yields

76× 20 = 1, 444 hits. This implies that 1, 444− 76 = 1, 364
false positives have to be winnowed manually, to correctly

identify all SFRs (P = 1). Hence, the additional manual

work is amortized, if the number of objects to be classified is

> 1, 364 for 76 SFRs.

This is the case on the data field level, which consists of

599 titles +599 descriptions +3519 comments = 4717 data

fields, and on the sentence level, which consists of 11149
sentences, as shown in Table I. MAX(R), P≥p will be reported

for p = 0.05 on the sentence and data field levels, and p = 0.2
on the issue level3.

III. RELATED WORK

First, this section presents mining approaches for SFR.

Then, it summarizes related work used to define our MLFs.

A. Mining Approaches to Identify Software Features

Bakar et al. [13] performed a systematic literature review

on feature extraction approaches from natural language re-

quirements in context of software product lines. Their review

includes multiple methods to summarize, cluster, or abstract

from software requirements to generate a representation of

software features. In contrast to the reviewed approaches, we

use a bottom-up technique to detect NL describing parts of

software features (e.g. feature request or feature clarification).

In addition, we use ITS data as input whereas the reviewed

approaches in [13] utilize requirement documents or product

descriptions, which are usually better structured.

On ITS side, much work is related to classification of issues,

e.g. bug vs. feature [14], [15] with improving results. Our work

is complementary, and we report on the ability to identify

SFRs in ITSs on different levels of detail.

Vlas et al. [16] present a bottom-up approach similar to

ours. They use heuristics and language engineering to detect

software requirements in ITSs. They assume that a software

requirement is described by a single sentence and detect the

requirements by means of language patterns and keyword lists.

In contrast, we use supervised ML algorithms since we cannot

ensure SFRs to be described by a single sentence.

3With these settings for p sound values for R can be achieved. If p is
doubled (p ∈ 10, 20), the results for R become significantly worse.
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B. MLF Suggestions to Identify Software Features
Guzman et al. [17] use collocations (also called bi-grams

[10]) to denote fine grained software features in app store

reviews. They employ a likelihood-ratio test [18] to filter likely

irrelevant collocations. We adopt their idea and create MLFs

out of bi-grams and tri-grams. Fitzgerald et al. [19] use a

mixture of ITS meta-data MLFs and linguistic MLFs for early

failure prediction in ITS. Maalej et al. [20] show that meta-

data, such as star ratings in app stores, can improve SE-related

classification tasks. Based on the ideas in [19], [20], we derive

MLFs from ITS meta-data and data field meta-data. Moreover,

we add the concepts of inheritance and aggregation to make

use of this meta-data on different levels.
Besides other heuristics, the aforementioned approach in

[16] uses a subject-action-object (SAO) pattern based on [21]

as central basis for their heuristics. The action is actually the

main verb of the sentence filtered by different heuristics and

keyword lists, e.g. “need” in “The software needs logging”.

Though a replication of all their heuristics is unfeasible in the

ML context, we adopt their central approach and derive MLFs

from subject-verb-object triplets based on typed dependency

parsing [22].

IV. RESEARCH QUESTIONS

The overall research question of this paper, whether soft-

ware feature requests can be detected automatically in ITS

NL data, is divided in the following three research questions:

RQ1 How should text be preprocessed for SFR detection?

RQ2 Which combinations of MLFs derived from the NL and

ITS meta-data should be used for SFRs detection on

different levels of detail?

RQ3 How well can trained prediction models be reused?

Section II-C states problems with ML and ITS data, that

can often be mitigated with preprocessing techniques. RQ1
discusses which combination of such techniques should be

used. RQ2 contrasts rather traditional MLFs with ideas from

related work and takes MLFs based on issue and data field

meta-data into account. Furthermore, it investigates whether

the very sentence that contains the SFR can be extracted or

if more data (e.g. from the comprising data field or issues) is

needed. RQ3 asks whether models have to be trained for every

project or if trained models can be applied to other projects,

different from the projects used for training.

V. RESEARCH PROCESS

The research process has four important steps: (1) The

extraction and preparation of the data, (2) the creation of a

gold standard, (3) the engineering of MLFs, and (4) the eval-

uation of different ML algorithms, MLFs, and preprocessing

techniques.

A. Data Extraction
150 issues were randomly extracted out of the first 1000

issues4 that were committed to each of the following four

open-source projects:

4Older issues often contain more SFRs than newer issues [2].

TABLE I
PROJECT CHARACTERISTICS

c:geo Lighttpd Radiant Redmine all

Software Type Android
app

HTTP
server

CMS ITS

Audience consumer technician consumer
developer

developer

Programming Lang. Java C Ruby Ruby
ITS GitHub Redmine GitHub Redmine
ITS Usage ad-hoc structured ad-hoc structured
ITS size (# of issues) 3850 2900 320 19.000
Open issues 450 500 50 4500
Closed issues 3400 2400 270 14.500
Project size (in LOC) 130, 000 41, 000 33, 000 150, 000

Extracted Issues 150 150 150 149 599
Marked as Feature 12 39 0 73 124
Marked as Bug 23 111 6 52 192
Marked as Other 47 0 36 24 107
Without Issue Type 68 0 108 0 176
# of Comments 1060 569 658 1232 3519
Avg. # Comm. / Issue 7.1 3.8 4.4 8.3 5.9
# Sentences 2896 1975 2044 4234 11149
LOC 181 1266 217 526 2190

• c:geo, an Android application to play a real world treasure

hunting game.

• Lighttpd, a lightweight web server application.

• Radiant, a modular content management system.

• Redmine, an ITS.

The projects show different characteristics with respect to

software type, intended audience, programming languages and

used ITS. Details of these characteristics and the amount of

extracted data is shown in Table I separated by a horizontal

line. The c:geo and the Radiant projects use the GitHub

ITS whereas Redmine and Lighttpd use the Redmine ITS.

Therefore, the issues of the first two projects are categorized

by tagging and each issue of the other two projects is assigned

to exactly one category, e.g. feature or bug as in Table I.

c:geo was chosen because it is an Android application, and

thus the ITS contains more consumer requests than the other

projects. Lighttpd was chosen because its ITS contains more

code snippets and noise than the other projects. Radiant was

chosen because its issues are not categorized as feature or

bug at all and it contains fewer issues than the other projects.

Finally, Redmine was chosen because it is a very mature

project and ITS usage is very structured, compared to the

other projects. Some of the researchers were already familiar

with these projects since we reported on ITS NL contents

earlier [3].

B. Gold Standard

We manually created a gold standard to train the models

and evaluate their results. Each sentence of each selected issue

(including all comments) was annotated – if relevant – by two

different persons (annotators) independently with one of the

following labels5:

• Request Functionality to denote functional SFRs.

• Request Quality6 to denote quality SFRs
• Solution to denote technical solutions for an SFR.

5Among others, which are irrelevant for this paper.
6Too little data was found to train a model for requests for quality.
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TABLE II
EXTRACTED DATA AND ANNOTATIONS

# Annotations / Avg. # of Sentences per Annotation
Annotations agreed upon by two coders.

Label c:geo Lighttpd Radiant Redmine all

Req. Functionality 23 / 1.08 9 / 1.0 10 / 1.0 34 / 1.12 76 / 1.05
Request Quality 4 / 1.0 0 0 0 4 / 1.0
Solution 18 / 1.0 2 / 1.0 6 / 1.16 10 / 1.0 36 / 1.04
Clarification 46 / 1.04 17 / 1.12 11 / 1.27 26 / 1.23 100 / 1.17

Uncertain cases.
Req. Functionality 70 / 1.17 28 / 1.0 43 / 1.07 155 / 1.21 296 / 1.11
Request Quality 8 / 1.0 1 / 1.0 4 / 1.0 4 / 1.0 17 / 1.0
Solution 72 / 1.36 14 /1.5 28 / 1.36 148 / 1.41 262 / 1.41
Clarification 223 / 1.50 77 / 1.44 110 / 1.21 234 / 1.38 644 / 1.38

• Clarification to denote additional explanations to an SFR.

A guidebook with examples was created and multiple issues

were discussed in the group, to gain a common understanding

of the annotations. The annotators classified the sentences

based on the definition of the labels given in Section I. In our

results we report on two data sets that are composed of the very

same issues: (1) the sentences that were annotated identically

by two annotators, as the agreed upon cases data set, (2) and

the sentences that were only found by a single annotator, as

the uncertain cases data set. Both data sets are summarized

in Table II. On average, the annotators agreed with a Cohens

kappa [23] of 0.91 on the labels for issue titles and 0.88 on the

labels for issue descriptions, which is a rather high agreement.

Due to limitations in our annotation tool, we cannot report

on the exact kappa for the issue comments. However, we

observed significantly lower agreements in random samples

of comments, compared to title and description. This can also

be seen in Table II which shows a disparity of labels for

the two data sets. These differences imply that even human

experts have a tendency not to agree upon whether a sentence

contains an SFR , a request for quality , an clarification, or a

solution. The influence of agreement factors will be discussed

in Section VIII.

During the annotation phase, the annotators collected key-

words for the Request Functionality label. New keywords were

added to a keyword list, if a word was noticed repeatedly by

the annotator, whereas “repeatedly” was generally interpreted

as “more often than 5 − 15 times”. Examples from this

collection are modal verbs such as should, would and could
as in “we should implement <functionality>” or “could you

please add <functionality>”. The full keyword list is used

as one MLF in the detection, as described in the following

Section.

C. Machine Learning Features

To train a classifier, different MLFs, all modeled as binary

features, were employed. MLFs that are not binary by nature,

such as the number of comments of an issue, are quantized.

The following MLFs were used to conduct the experiments:

BOW: As reference for other MLFs in the experiment, the

BOW is employed (see Section II-A).

Bi- and Tri-Grams: We expand the BOW with bi- and tri-

grams in our measurements. Both, bi- and tri-grams denote

words that occur together in tuples or triplets. Due to the fact

that a huge amount of bi- and tri-grams can occur in the textual

content of a single issue, the number of extracted bi- and tri-

grams is restricted to 200, as rated by a chi-square-test [10].

SAO: To replicate the SAO pattern from [16], the Stanford

Dependency Parser [22] is employed. The Stanford Depen-

dency Parser outputs a directed acyclic graph of all words in

a sentence. If a sentence contains a main verb, we check for

each subject and object whether a path can be found between

subject, main verb and object. If and only if (1) a sentence

contains a main verb, and (2) at least one subject and object,

and (3) the subject(s) and object(s) are indirectly connected to

the verb, these triplets are used as MLFs.

Keywords: The keyword list, gathered during data anno-

tation (see Section V-B), is used to check whether a simple

gathering technique improves the ML model. In addition, a

keyword list, which contains positive words, is employed since

SFRs tend to be written gently and politely [3].

Issue Meta-Data: In addition to the linguistic MLFs de-

scribed above, MLFs derived from issue meta-data are con-

sidered in the experiments: (1) the issue type (or the tags,

if appropriate, as described in Section II-B), (2) the users

that participated in the issue (the author and all users that

commented or changed the issue), (3) the author of the issue,

(4) the duration of the issue7, (5) the number of comments

to the issue8, (6) all possible former states of the issue (e.g.

open, closed, in development, in test, . . . ), and (7) the current

status (open, in progress, closed, etc.).

Data Field Meta-Data: The following meta-data was

extracted from ITS data fields: (1) the data field author,

(2) whether the issue status changed while the data field was

updated, (3) the duration since the previous comment.

D. Text Preprocessing

Five techniques are employed to preprocess the NL texts

in the experiments:

1) Lowercasing: Each letter is lowercased, e.g. “Feature” or

“featURE” become “feature”. The technique helps to treat

capitalized words in the same way as all the other words.

Since we are not interested in names or places, lowercasing

should not bear any disadvantages.

2) Stemming [24]: Stemming is the process of reducing words

to their word-stem. E.g. the words: “implementing” and

“implemented” become “implement” after stemming. This

is a useful technique to equalize verbs with different tenses

unless the verbs are irregular.

3) Punctuation removal: The following characters are

removed: ’.’, ’,’, ’?’, ’!’, ’:’, ’;’, ’-’,
’(’, ’)’, ’[’, ’]’, "’", ’"’, ’/’.

4) Separation of technical noise: Code and stack-traces are

separated, before the NL is processed. To separate technical

noise from NL, the text denoted by special code tags (e.g.

<pre>...</pre> in Redmine or a special indentation

7Quantized as < 4 hours, ≤ 8 hours, ≤ 1 day, ≤ 10 days or > 10 days
8Quantized as < 1, ≤ 2, ≤ 4, ≤ 6, > 6; quantization was made on the

basis of [3, Fig. 2]
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TABLE III
EVALUATED PREPROCESSING TECHNIQUES AND LINGUISTIC MLF-SETS

Setting Lower Stem Punc- Sep. Tech. Stop-
tuation Data words

1̄ - - - - -
2̄ � � - - -
3̄ � � - - �
4̄ � � - � -
5̄ � � - � �
6̄ � � � - -
7̄ � � � - �
8̄ � � � � -
9̄ � � � � �

(a) Preprocessing Settings

MLF BOW bi- & SAO
Set tri-grams

1̈ � - -

2̈ - � -

3̈ - - �

4̈ � � -

5̈ � - �

6̈ � � �

7̈ - � �

8̈ � - �

(b) Linguistic MLF-Sets

in Github) is removed. Although more advanced techniques

can be employed, e.g. [25], a careful inspection of the data

revealed that a removal by code tags already yields good

results on our data samples.

5) Stop-word removal: Common English words that usually

do not carry much semantic meaning are removed, using the

stop-word list distributed with NLTK toolkit [10]. However,

as described in Section V-C, many modal verbs are in our

keyword lists. Hence, only the stop-words not in the keyword

lists are removed, whenever the keyword MLF is active.

E. Evaluation

Each experiment is run with all of the algorithms introduced

at the end of Section II-A.

Data Splitting and Measuring: To evaluate the results,

a classical ten-fold-cross validation is employed. First, the

issues are randomized and divided into 10 equal groups. Each

experimental run then uses the issues of 9 groups for training.

The issues of the remaining group serve as evaluation data.

Each experiment runs 10 times, thus utilizing each issue

9 times as training data and one time as evaluation data.

To answer RQ3 a different setup is necessary. The selected

issues of three projects are used for training and the issues

of the fourth project are used for evaluation. This results in a

75%/25% split.

VI. RESULTS

All results presented in the following sections are available

for download9. To answer RQ1, the performance among

different ML algorithms with different preprocessing settings

on linguistic MLFs is compared. Then, the best performing

preprocessing setting is used in further evaluations to answer

RQ2 and RQ310.

A. Best Preprocessing Techniques (RQ1)

As the combination of all preprocessing techniques results

in 25 combinations, the reporting is constrained on the pre-

processing settings defined in Table III (a): the first setting

9Data sets, complementary figures, code, and a result database with SQL-
queries for each RQ are available at: https://zenodo.org/record/56907.

10Preprocessing settings and MLF-sets need to be fixed for further experi-
ments: calculating all permutations of preprocessing techniques, MLFs, levels
of detail, and labels yields more than one year runtime on a standard laptop.

uses no preprocessing as a reference. Lowering and stemming

are considered best practices [18], [26] and are therefore

included in all further preprocessing settings. All combinations

of punctuation removal, stop-word removal, and separation of

technical data are evaluated. These preprocessing techniques

influence all the linguistic MLFs derived from the NL text,

hence the preprocessing results are reported for all linguistic

MLF-sets shown in Table III (b).

TABLE IV
AVERAGE AND MAXIMUM F1 SCORES FOR PREPROCESSING

Agreed Cases Max F1, BOW Only Avg Max F1, All MLF Sets Avg

Level Label Conf. Alg. Value F1 Conf. Alg. Value F1

I Req. Funct. 6̄ / 1̈ LR 0.495 0.279 3̄ / 6̈ SGD 0.643 0.168

Clarification 3̄ / 1̈ SGD 0.401 0.201 3̄ / 1̈ SGD 0.401 0.124

Solution 3̄ / 1̈ MNB 0.343 0.097 2̄ / 6̈ MNB 0.492 0.062

DF Req. Funct. 7̄ / 1̈ MNB 0.130 0.088 3̄ / 6̈ MNB 0.195 0.054

Clarification 8̄ / 1̈ SGD 0.102 0.089 3̄ / 6̈ MNB 0.119 0.055

Solution 7̄ / 1̈ MNB 0.104 0.036 6̄ / 6̈ MNB 0.109 0.022

Se Req. Funct. 7̄ / 1̈ MNB 0.078 0.048 9̄ / 6̈ MNB 0.106 0.030

Clarification 0̄ / 1̈ SVN 0.055 0.047 9̄ / 5̈ MNB 0.078 0.029

Solution 7̄ / 1̈ MNB 0.059 0.02 6̄ / 6̈ MNB 0.088 0.013
Uncertain Cases

I Req. Funct. 7̄ / 1̈ LR 0.752 0.501 7̄ / 4̈ LR 0.757 0.314

Clarification 7̄ / 1̈ LR 0.551 0.412 7̄ / 4̈ LR 0.556 0.304

Solution 9̄ / 1̈ SVM 0.498 0.258 9̄ / 1̈ SVM 0.498 0.181

DF Req. Funct. 9̄ / 1̈ LR 0.325 0.272 9̄ / 8̈ SGD 0.33 0.174

Clarification 2̄ / 1̈ LR 0.435 0.403 2̄ / 4̈ LR 0.435 0.298

Solution 9̄ / 1̈ SGD 0.227 0.197 9̄ / 4̈ SGD 0.227 0.129

SE Req. Funct. 9̄ / 1̈ LR 0.164 0.122 9̄ / 4̈ LR 0.164 0.078

Clarification 2̄ / 1̈ LR 0.249 0.229 2̄ / 1̈ LR 0.249 0.161

Solution 9̄ / 1̈ LR 0.117 0.099 7̄ / 6̈ MNB 0.125 0.066

Table IV summarizes average and best achieved F1 scores

(1) for each of the 7 ML algorithms, (2) for each of the 3
labels, and (3) for each of the 3 levels of detail. The results

on the left hand side of Table IV are achieved using the BOW

MLF only, whereas the right hand side shows the results for all

linguistic MLF-sets. For cells marked with a gray background

in Table IV, additional details with respect to the preprocessing

settings can be found in Figure 2, which utilizes a combination

scatter and box plots to show the influence of all preprocessing

settings together with the related standard deviation, median

and mean, on four representative examples.
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Fig. 2. Detailed Examples for Preprocessing Setting Influences

In comparison with other preprocessing settings, Setting 1̄
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TABLE V
MACHINE LEARNING FEATURE SETS

MLF-Set 1̊ 2̊ 3̊ 4̊ 5̊ 6̊ 7̊ 8̊ 9̊ 1̊0 1̊1 1̊2 1̊3 1̊4 1̊5 1̊6 1̊7 1̊8

BOW � � � � � � � � � � � � � � � � � �
bi- & tri-grams - � - � - � - � - � - � - � - � - �

SAO - � - � - � - � - � - � - � - � - �
data field - - � � - - - - - - � � � � � � � �

issue w/o type - - - - � � - - - - � � - - � � - -
issue with type - - - - - - � � - - - - � � - - � �

keywords - - - - - - - - � � - - - - � � � �

performed best in a single experiment run only. This indicates

that lowering and stemming can be considered best practices

in SFR detection, too. Preprocessing settings 7̄ and 9̄ deliver

the best results in nine and ten cases respectively, covering

55% of the entire cases. Both, settings 7̄ an 9̄ employ all

preprocessing techniques. Additionally, setting 7̄ separates

technical data from NL. These results suggest that most

preprocessing techniques have a positive influence on SFR

detection. In 10 out of 36 cases, or 28%, settings 2̄ and 3̄,

which include only lowering, stemming and stopword removal,

achieve best F1 scores. This implies that SFR detection can

be approached without punctuation removal or the separation

of technical data. However, there is no pattern in terms of

detection level, label, or data set, and we cannot state that

a specific preprocessing setting should always be employed:

e.g. the detailed examples in Figure 2 show that the two

preprocessing settings that perform best on the agreed upon

data set, 2̄ [ ] and 4̄ [ ], perform bad on the uncertain cases

and vice versa for the settings 7̄ [ ] and 9̄ [ ]. But even with

this uncertainty, preprocessing setting 9̄ will be employed to
answer the remaining RQs for two reasons: (1) it generally

shows a reasonable performance on the random samples that

were examined in detail, and (2) it results in the best reduction

of MLF vectors, which saves memory, computation time, and

accounts for better scalability.

In terms of ML models, Table IV shows that MNB performs

best for the agreed upon cases, whereas LR performs better on

the uncertain cases. There are two possible explanations for

this: (1) LR is known, in essence, to outperform NB variants

with more training data [27], and (2) more annotations are

contained in uncertain data set and thus more linguistic MLFs

are included in the training data. MNB assigns independent

weights to repetitive MLFs that correlate with the label and

with each other due to a conditional independence assumption.

In contrast LR compensates such inter-MLF correlations,

which may improve the prediction rate.

B. MLFs and Detection Levels (RQ2)

The previous Section included various linguistic MLF-sets

to study appropriate preprocessing settings for SFR detection,

shown in Table III (b). The right hand side in Table IV shows

that settings 6̈ (the combination of all linguistic MLFs), 4̈
(BOW combined with bi- and tri-grams) and 1̈ (BOW only)

provide the best results across all preprocessing settings. In

fact, only preprocessing settings that include the BOW MLF

train usable models for SFR detection. E.g. on the agreed upon

data set, BOW results in a detection rate between 34% and

49% on the issue level and 10% to 13% on the data field

level. In contrast, MLF-sets without BOW do not exceed 10%
on any level of detail . However, the combination of linguistic

MLFs (e.g. MLF-sets 4̈, 5̈, and 6̈) generally improves detection

rates.

Table V summarizes the MLF-sets that are used for further

experiments. We decided to include the linguistic MLF-sets

1̈ and 2̈ in all further MLF-combinations: MLF-set 1̈ can be

derived easily and quickly, having competitive performance,

whereas MLF-set 6̈ delivers best results. MLF-sets 3̊ to 1̊0
extend the linguistic MLFs with data field meta-data, issue

meta-data, and keywords. The issue type or tag might be a

very strong indicator for a functionality request. Therefore, the

issue meta-data is split up into two separate sets: (1) excluding

the issue type or tags, and (2) including the issue type or tags.

MLF-sets 1̊1 - 1̊8 are combinations of linguistic MLFs, data

field meta-data, issue meta-data and keywords.

For each MLF-set, the box plots on the left hand side

of Figure 3 visualize the F1 scores over all ML models.

White boxes represent the agreed upon cases, gray boxes

the uncertain cases. In addition, a small symbol indicates

the algorithms that performed best for the F1 scores. The

scatter plots on the right hand side of Figure 3 visualize the

MAX(R), P≥p scores for the ML models with the best score.

Similar to RQ1, the results for uncertain cases are better

compared to the results of agreed upon cases. As already

mentioned, our annotators did not annotate sentences they

felt uncertain about so that these sentences did not make

it in the agreed upon data set. However, we may claim

that our annotators, in general, annotated SFRs correctly.

Therefore, more presumably correct data might be found in the

uncertain data set. Assuming that the algorithm detects most

of these uncertain cases, this leads to fewer false positives

and thus a higher precision, which is underpinned by the

MAX(R), P≥0.05 scores for the data field level in Figure 3.

The inclusion of keywords hardly impacts the results,

clearly evident in the comparison between MLF-sets 1̊ and

2̊ with 9̊ and 1̊0. The inclusion of data fields, on the other

hand, and especially ITS meta-data do have a positive impact.

However, additional combinations of data field and ITS meta-

data do not necessarily improve the results, although a slight

increase can be noticed on the data field level by comparing

only the ITS meta-data MLFs (̊5− 1̊0) with combined MLFs

(1̊0− 1̊8).

The right hand side of Figure 3 shows that linguistic MLFs

are generally sufficient whenever recall is to be maximized.

On the issue level, the SVM model improves the precision

by considering ITS meta-data (see 5̊ − 8̊), while leaving the

recall almost unaffected. The same slight improvement can be

noticed in the F1 scores on the left hand side for SGD and LR

algorithms. Remarkably, using ITS features with or without

issue type impacts detection results little, which renders the

issue type, at least in the projects researched in this paper, a

weaker predictor than initially assumed.

Overall, the combination of all MLF-types delivers the best

performance in terms of F1 score, whereas the linguistic MLFs
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Fig. 3. Request Functionality Detection: Comparison of MLF-sets for Issue and Data Field levels with Different Classifiers.

on their own are competitive in terms of MAX(R), P≥p scores.

The F1 and MAX(R), P≥p scores on issue level are higher

compared to other levels. However, the data field level delivers

competitive scores with respect to the MAX(R), P≥p measure,

especially on the uncertain data set. This is important for the

practical application of the approach: detecting SFRs on the

data field level implies less manual work than a detection on

the issue level. On the sentence level (omitted in Figure 3), the

worst results are generated. For example for MAX(R), P≥0.05

the recall was only slightly over 60% in the agreed upon cases.

For the uncertain cases, however, a recall of 100% can be

achieved for MAX(R), P≥0.05 even on the sentence level with

F1 scores of about 11%.

The measurements in this section are exemplary for the

other two labels. Clarifications are detected with similar P
and R. Solutions are detected with inferior detection rates

compared to the other labels, but the results show the same

characteristics with respect to the MLF-sets11. Table VI sum-

marizes the best achieved F1 and MAX(R), P≥p scores with

the related ML models and MLF-sets for all the labels on

every level of detail.

Finally, combining MLF-sets generally increases the stan-

dard deviation for the F1 scores across all models as shown on

the left hand side of Figure 3. Hence, the algorithm choice (or

an evaluation of multiple algorithms) is important whenever

features are combined or results may deteriorate.

C. Cross-training (RQ3)

To answer this RQ, three of the four project data sets were

used for training, the fourth project for detection. Table VII

shows the best achieved F1 and MAX(R), P≥p scores with

according MLF-sets for the request functionality label. Again,

11Graphs for all levels of detail and all labels are included in the download.

TABLE VI
BEST F1 AND MAX(R), P≥p SCORES FOR ALL LEVELS AND LABELS

level label MLF alg. values MLF alg. values
set set

agreed F1 uncertain F1

I RF 1̊8 SGD 0.74 1̊3 LR 0.87

I C 1̊4 SVM 0.74 9̊ LR 0.78

I S 1̊5 SGD 0.54 7̊ SVM 0.75

DF RF 1̊3 SGD 0.25 1̊7 LR 0.42

DF C 4̊ MNB 0.15 1̊7 SVM 0.45

DF S 9̊ MNB 0.09 1̊7 SGD 0.27

Se RF 1̊3 LR 0.13 1̊8 SGD 0.19

Se C 4̊ MNB 0.08 4̊ MNB 0.25

Se S 1̊ MNB 0.05 4̊ MNB 0.13

MAX(R), P≥p agreed p R P uncertain p R P

I C 7̊ SVM 0.2 0.84 0.66 7̊ NB 0.2 1.0 0.28

I RF 7̊ SVM 0.2 0.85 0.51 1̊ MNB 0.2 1.0 0.29

I S 1̊7 SVM 0.2 0.74 0.39 7̊ SVM 0.2 0.78 0.75

DF C 1̊4 NB 0.05 0.99 0.05 3̊ NB 0.05 0.99 0.25

DF RF 1̊2 DT 0.05 0.83 0.06 9̊ NB 0.05 0.99 0.16

DF S 1̊ MNB 0.05 0.29 0.07 1̊7 NB 0.05 0.98 0.11

Se C 4̊ MNB 0.05 0.18 0.05 3̊ NB 0.05 0.99 0.13

Se RF 3̊ MNB 0.05 0.62 0.06 3̊ NB 0.05 1.0 0.06

Se S 2̊ MNB 0.05 0.03 0.1 1̊ MNB 0.05 0.93 0.06

with: RF=Request Functionality, C=Clarification, S=Solution

similar to RQ2, request functionality is representative for the

other labels.

Comparing these results to the results with 10-fold-cross

evaluation from Table VII, cross-training delivers very similar

F1 and MAX(R), P≥p scores with a variability of ±5%, even

though a lower amount of training data is available for cross-

training than for 10-fold-cross validation.

VII. DISCUSSION

This section discusses the main implications of our study

for future research on SFR detection in ITSs:
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TABLE VII
BEST CROSS-TRAINING F1 AND MAX(R), P≥p SCORES

FOR REQUEST FUNCTIONALITY
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agreed F1 avg. uncertain F1 avg.

cg I 1̊1 SGD 0.74

0.72

1̊5 SGD 0.85

0.87li I 7̊ LR 0.76 6̊ LR 0.84

ra I 5̊ LR 0.67 1̊1 SGD 0.86

re I 1̊4 SVM 0.70 1̊7 SGD 0.91

cg DF 1̊3 SGD 0.29

0.31

1̊7 SGD 0.26

0.39li DF 1̊8 LR 0.42 1̊8 LR 0.41

ra DF 1̊4 SGD 0.24 1̊5 SGD 0.36

re DF 1̊4 SGD 0.29 1̊4 SGD 0.52

cg Se 4̊ MNB 0.17

0.19

1̊1 SGD 0.13

0.19li Se 1̊8 SGD 0.27 1̊7 LR 0.16

ra Se 1̊3 LR 0.16 1̊6 SGD 0.18

re Se 3̊ MNB 0.16 4̊ MNB 0.27

MAX(R), P≥p agreed p R P uncertain p R P

cg I 3̊ NB 0.2 0.89 0.22 1̊ MNB 0.2 1.00 0.24

li I 3̊ SGD 0.2 1.00 0.38 7̊ NB 0.2 1.00 0.21

ra I 1̊ SVM 0.2 0.80 0.22 1̊ NB 0.2 1.00 0.33

re I 1̊3 NB 0.2 0.97 0.27 1̊3 NB 0.2 1.00 0.59

cg DF 1̊ RF 0.05 0.71 0.06 9̊ NB 0.05 0.99 0.13

li DF 4̊ DT 0.05 1.00 0.06 7̊ NB 0.05 1.00 0.08

ra DF 1̊3 SGD 0.05 0.53 0.14 1̊ NB 0.05 1.00 0.10

re DF 9̊ NB 0.05 1.00 0.06 7̊ NB 0.05 1.00 0.19

cg Se 1̊ MNB 0.05 0.52 0.05 5̊ NB 0.05 1.00 0.05

li Se 1̊3 SGD 0.05 0.89 0.07 1̊6 DT 0.05 0.93 0.05

ra Se 1̊2 SGD 0.05 0.40 0.06 1̊ MNB 0.05 0.98 0.06

re Se 3̊ SGD 0.05 0.71 0.06 7̊ NB 0.05 1.00 0.07

with: cg=c:geo, li=Lighttpd, ra=Radiant, re=Redmine

Preprocessing techniques should be employed. Sec-

tion VI-A shows that the application of preprocessing tech-

niques improves F1 as well as MAX(R), P≥p scores in context

of SFR detection. Even stop-word removal improves the

results, although coders considered stop-words such as should,

could, or would relevant for classification.

Enough annotations should be available for training and
evaluation. In Section VI we report on models trained on

36 × 9
10 , 76 × 9

10 and 100 × 9
10 annotations for the agreed

upon data set. . The F1 and MAX(R), P≥p scores increase

relative to the amount of training data.

Simple linguistic features are sufficient. Sets that add bi-,

tri-grams and SAO to BOW (i.e. sets with even numbers in

Figure 3) show almost no improvement. If computation time

or the amount of features need to be reduced, complexity can

be downsized at this point.

MLFs derived from meta-data improve detection rates.
Sets 1̊1-1̊8 in Figure 3 show that the inclusion of MLFs derived

from meta-data improve detection rates. Further research (e.g.

ML feature selection techniques [7]) is needed to identify the

exact MLFs with the highest impact.

The combination of ML algorithms and MLF-sets is
important. Different ML algorithms work differently. For

example, NB treats correlating MLFs independently, LR com-

pensates such correlations [18]. The lower whiskers in Figure 3

indicate that some ML algorithms do not profit from additional

features. Hence, the combination of ML algorithms and MLF-

sets is important to consider.

ML algorithms should be selected according to the data
mining goal. Figure 3 shows that different ML algorithms are

responsible for the best F1 and the best MAX(R), P≥p sores.

Consequently, algorithms performing best in order to maxi-

mize the SFR detection rate might not perform best in order

to balance detection rate and precision.

Trained models can be re-used for other projects. Sec-

tion VI-C reveals that cross-training works competitive to 10-

fold-cross validation for request functionality and clarification
labels. However, this does not not hold true for every project

and thus needs further evaluation or replication by additional

studies.

In some projects SFRs are likely composed of NL
patterns. In five cases setting 9̊ (BOW and manually compiled

keyword lists) achieved the best F1 or MAX(R), P≥p scores,

as shown in Tables VI and VII. This indicates that at least some

request functionalities are described with reoccurring words

or certain NL patterns. As for other requirements [16], such

patterns would be a powerful heuristic and/or ML feature for

SFR detection.

Using only the agreed upon cases from dual coded
data can be inferior for ML. In almost each case, better

predictions can be made for the uncertain cases. This eases

the practical applicability of the approach, as multiple coding

is not applicable in industry, or generally in practice, keeping

the required effort in mind.

On experiment runtime: The runtime on a standard laptop

is reasonable, considering that the code was only slightly

optimized for speed. For example, an experiment using BOW

features, 3 classifiers, and 599 issues takes < 10 seconds. An

experimental run including all MLFs takes < 10 minutes. .

These measures exclude the calculation of typed dependencies,

which takes about an additional hour and is needed only for

the SAO feature12.

The limitations of these implications are discussed in the

next section.

VIII. LIMITATIONS AND THREATS TO VALIDITY

Considering the internal validity, manual data annotation

involves the risk that human coders do make mistakes. This

can result in unusable ML models and thus influence pre-

dictions and results. To mitigate this risk we deployed best

practices in content analysis [28]. In particular, we established

a coding guidebook and discussed annotations on test data

before the actual coding. Although we coded on the level of

sentences, we achieved reasonable kappa scores. Finally, we

created one data set with only those annotations on which two

coders agreed. However, the coders had a lower agreement on

comments. This could be due to increasing tiredness or even

inadvertence. Annotating up to 50 comments in a single issue

is an arduous task. A low agreement might lead to missing

training and validation data and thus to decreasing detection

rates and/or increasing false positive rates.

12Typed dependencies are cached, yielding a > factor 100 speedup.
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However, the assessment whether a sentence describes a

request for software functionality or not is arguably subjective.

Although the agreed upon data set has a higher scientific

quality, using the data created by a single annotator is not

necessarily bad. E.g. the perception of a single analyst might

be exactly what an ML model should replicate when applied

in an industry project. We addressed this subject by including

the uncertain cases in our experiments. Finally, the overall

size of our gold standard is limited. Although we analyzed

over 10, 000 sentences in over 4500 ITS data fields, our gold

standard contains only 76 request functionality, 36 solution
and 100 clarification labels for the agreed upon cases. Al-

though we received promising results on the issue and data

field level, other research indicates that more than 150 labeled

instances are necessary for a reliable classification [20]. Hence,

this study should be seen as a first step in SFR detection and

needs further replication or extension studies.

Considering the external validity, we cannot ensure that our

results can be transferred to ITS data of other projects13. It is

still likely that the overall approach is transferable, since we

intentionally employed projects with a broad range of target

groups, programming languages, etc. In a more consistent data

set even better results can be expected.

IX. CONCLUSION AND FUTURE WORK

In this paper multiple preprocessing techniques, machine

learning algorithms, and machine learning features are eval-

uated to detect software feature requests in issue tracking

systems. By introducing the MAX(R), P≥p measure, we find

that some algorithms maximize the F1 score whereas others

maximize recall. Furthermore, we show that software feature

requests detection can be approached on the level of issues and

data fields with satisfactory results, but the exact sentences that

describe the software feature requests are hard to find. Further

research on this topic can tackle multiple challenges: machine

learning feature sets can be curtailed further to determine

which exact machine learning feature has the highest impact

on software feature request detection. The experiment can

be replicated or extended with additional data or machine

learning features. Finally, multiple machine learning models

or the detection on different levels can be combined. To ease

such efforts, we distribute all our data sets, code and results

along with this paper.
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