

Electronic version of an article published in Kazman, R.; Bass, L.; Bosch, J. (Hrsg) Proceedings of
ICSE 2003 Workshop on Bridging the Gaps Between Software Engineering and Human-
Computer Interaction, May 3-4, 2003, Portland, Oregon, USA; IFIP 2003; pp. 36-40

Copyright © [2003] IFIP

http://www.se-hci.org/

Usability Engineering integrated with Requirements Engineering
B. Paech, K. Kohler

Fraunhofer Institute Experimental Software Engineering
Sauerwiesen 6, 67663 Kaiserslautern, Germany

{ paech,kohler}@iese.fhg.de

Abstract

In this paper we argue that the gap between Software
Engineering and Human-Computer Interaction should be
closed through the integration of usability engineering and
requirements engineering. In particular, we present the
elements such an integrated process has to cover.

1. Introduction
Requirements Engineering (RE) is the systematic

process of developing requirements through an iterative
cooperative process of analyzing a problem, documenting
the resulting observations in a variety of representation
formats, and checking the accuracy of the understanding
gained [1]. The essential tasks of RE during software
engineering (SWE) are the elicitation and negotiation of
requirements, their specification and validation as well as
the their management over time.

The field of human-computer interaction (HCI) is
concerned with the joined performance of tasks by humans
and computational machines [2]. From the computer
science perspective one essential contribution of HCI is the
design, evaluation and implementation of interactive
computing systems for human use [2]. The process that
guides these tasks by specifying, measuring and improving
the usability of a product is commonly called usability
engineering [3].

The requirements process is typically characterized as
an analysis process, where user needs and constraints must
be elicited and analyzed. In contrast, most software
engineers view HCI-activities as design (or test) activities.

In practice, this often leads to the misunderstanding that
HCI-considerations can be brought in after the
requirements are elicited and that requirements can be
elicited without the consideration of the user interface.

In our view, a fundamental prerequisite for bridging the
gap between SWE and HCI is that RE is understood as a
design activity that includes the design of the user
interface. During RE the support for the user through the
software system is designed. There are many design
decisions to be made such as the to-be-activities of the user
tasks supported by the software, the system functions
which perform parts of these activities, or the interaction

between system and user when the system functions are
executed.

To substantiate our claim we explain in the following
the requirements design decision types (REDT) we have
identified. This list covers typical functional requirements
as well as typical HCI-issues such as screen structure.

Based on the REDT it is easy to argue that HCI and RE
must be closely integrated to enable informed requirements
decision making.

The paper is structured as follows: First we present the
REDT, then we discuss the implications for an integrated
RE and HCI process.

2. Requirements Design Decisions
In the following we concentrate on functional requirements
and on user interface- and information-intensive systems
(UIS for short).
By an extensive study of the HCI- and SWE-literature we
identified 16 requirements decisions to be made for UIS.
These are shown in Figure 1 at the end of the paper.

• (T1) Decisions about the user tasks:

The decisions determine the user roles and the tasks of
these roles to be supported by the system. Business
processes determine these tasks.

Example: A customer of a book-store has the tasks
“search book” and “buy book”.

• (D1) Decisions about the as-is activities:
The user tasks consist of several activities. As-is
activities are the steps user currently perform as part of
their work without the new system. Decisions must be
made what the as-is-activities of a task are (as these are
rarely explicit) and whether they are relevant for the
system. These decisions shape the understanding of the
purpose and the responsibilities of the new system.

Example: The activities of the “buy book”-task in an
conventional book store are “select book”, “carry
book to the till”, “pay book”.

• (D2) Decisions about the to-be activities:
It has to be decided how the as-is-activities will change
as a consequence of the new system. As-is-activities
always have potential for improvement. New
technologies like the internet or handheld can result in

radically new to-be activities. To-be-activities
constitute the steps of the user tasks in the future.

Example: The to-be activities for the “buy book” task
change in comparison to (D1). For the Web-book-
store they are ”select book”, “provide payment
information” and “order book”. To complete the
buying task the system additionally has to support the
“delivery of the book” task of the bookseller.

• (D3) Decisions about the system responsibilities:
Typically, the system does not support all to-be-
activities, but only a subset. These are the system
responsibilities. These decisions clarify the key-
contribution of the system.

Example: The booksellers’ activity to “inform
customer about shipping of the order” is supported by
the software, and thus is a system responsibility. In
contrast, the to-be-activity “package book” is not
supported by software.

• (D4) Decisions about the domain data relevant for a
task:
System responsibilities of UIS manipulate data.
Decisions have to be made what domain data is relevant
for the system responsibilities.

Example: “Book”, “order” and “customer” are
examples of domain data.

• (I1) Decisions about the system functions:
System responsibilities are realized by system functions.
The decision about the system functions determines the
border between user and system.

Example: The system responsibility “select book” is
supported by the system functions “search book” and
“shopping bag”.

• (I2) Decision about user-system interaction:
It has to be decided how the user can use the system
function to achieve the system responsibilities. This
determines the interaction between user and system.

Example: The following interaction defines the
system responsibility “select book”:
- User calls the “search book” function by specifying
search criteria.
- System displays a list of books.
- User marks one or more books and calls the
“shopping bag” function.
- System stores the marked books in the shopping

bag.

• (I3) Decisions about interaction data:
For each system function the input data provided by the
user as well as the output data provided by the system
has to be defined.

Example: Interaction data of the “search criteria”
example in (I2) is for example “book title”, “author
name”, “ISBN”, “key-word”.

• (I4) Decision about the structure of the user interface
(UI-structure):
Decisions about the grouping of data and system
functions in different workspaces have to be made.
System functions and data grouped in one workspace
will be close together in the graphical user interface
(GUI). This means that users need less navigation effort
in the interface to invoke system functions and view
data within the same workspace. By the UI-structure the
rough architecture of the user interface is defined. This
structure has a big influence on the usability of the
system.

Example: The shopping system has three workspaces
a “select book” workspace, the “place order”
workspace and the “provide customer data”
workspace (see Figure 2 at the end of the paper).

• (C1) Decision about the application architecture:
The code realizing the system functions is modularised
into different components. In the decision about the
component architecture existing components and
physical constraints as well as quality constraints such
as performance have to be taken into account. During
requirements only a preliminary decision concerning the
architecture is made. This is refined during design and
implementation.

Example: The software follows the model-view-
controller paradigm consisting of three subsystems:
the core, the GUI and the database.

• (C2) Decisions about the internal system actions:
Decisions have to be made regarding the internal system
actions that realize the system functions. The system
actions define the effects of the system function on the
data. These decisions also define an order between the
system actions as far as is necessary to understand the
behaviour of the system function.

Example: The “place-order” function internally
checks whether the customer paid bills of previous
orders.

• (C3) Decisions about internal system data:.
The internal system data refines the interaction data to
the granularity of the system actions. The decisions
about the internal system data reflect all system actions.

Example: To check whether the customer paid bills
of previous orders, a “payment behaviour” record has
to be added to the customer data.

• (G1) Decisions about navigation and support
functions:
It has to be decided how the user can navigate between

different screens during the execution of system
functions. This determines the navigation functions. In
addition support functions that facilitate the system
functions have to be defined. These functions realize
parts of system functions that are visible to the user, for
example by processing chunks of data given by system
functions in a way that can be represented in the user
interface. Another example are support functions that
make the system more tolerant against user mistakes.

Example: A support function is the function “check
address” that checks for the completeness of the
customer address before the complete order is
submitted. This avoids incomplete order information.

• (G2) Decision about dialog interaction:
 For each interaction the detailed control of the user has
to be decided. This determines the dialog. It consists of
a sequence of support and navigation functions
executions. These decisions also have a strong influence
on the usability of the system.

Example:
- User presses “send order” function.
- Systems checks for completeness of order
information.
If e.g. the “shipping address” is missing, the system
asks the user to specify the”shipping address”. It
opens the “customer account” screen containing the
address fields.

- User types “name”, “street” and “city”. User selects
“country” from a list. User presses “send order”
function again.

- System shows “Thank you” screen and sends
confirmation mail.

-
• (G3) Decisions about detailed UI-data:

For each navigation- and support-function the input data
provided by the user as well as the output data provided
by the system has to be defined. These decisions
determine the UI-data visible in each screen.

Example: To specify the country of the shipping
address a “choice box” lists all European countries.

• (G4) Decisions about screen-structure:
The separation of workspaces as defined in (I4) into
different screens that support the detailed dialog
interaction as described in (G2) has to be decided. The
screen-structure groups navigation and support
functions as well as UI-data. The decisions to separate
the workspaces in different screens are influenced by the
platform of the system.

Example: The “select book” workspace is realized by
two HTML-Pages. One to search for books (“search
book screen”) and one to view details of selected
books (“book detail screen”).

3. Implications for an integrated process
There is no approach so far in the literature which

covers all REDT presented in the last section. SWE
approaches such as the RUP [1], typically focus on D2-D4,
I1,I3 and C1-C3. HCI-approaches focus on task modelling
(T1) and user interface concepts (T1, I2-I4, G1-G4), e.g.
[5][6][7][8]. With the advent of use cases, I2 and
sometimes also G2 are nowadays also designed as part of
the RE process, e.g. [9]. In practice, typically D1-D4, I1-I4
and C1-C3 are fixed separately from G1-G4. Often HCI-
models such as user interface prototypes are used to
stimulate elicitation of requirements, but the decisions wrt.
the user interface are not seen as part of RE. One notable
exception is [10] which uses the user interface design to
drive the requirements specification.

In the following we argue that there are inherent

dependencies between these REDTs which imply that HCI
and RE activities must be closely intertwined.
The REDTs are aligned on 4 abstraction levels:

• Task level: The motivation for users to use a UIS is

their work. UIS support the tasks users do as part of
their work in a specific role. Decisions about the roles
and tasks to be supported by the UIS are made on this
level.

• Domain level: Looking at the tasks in more detail,

reveals the activities users have to perform as part of
their work. These activities are influenced by
organizational and environmental constraints. At this
level, it is determined how the work process changes as
a result of the new system. This includes in particular
the decision what activities will be supported by the
system and which domain data is relevant for these
activities.

• Interaction level: On this level decisions about the
partition of activities between human and computer are
made. They define how the user can use the system
functions to achieve the system responsibilities. This
decision has to be aligned with the decision about the
UI-structure, which the user can use to invoke the
system functions.

• System level: Decisions about the internals of the
application core and the graphical user interface (GUI)
are on the system level. They determine details about the
visual and internal representation of the system to be
developed.

Each level corresponds to a specific view on the system

and its context on a specific level of detail. Furthermore,
the decisions on one level depend on the decisions of the

previous levels. Decisions of one level have to be made
after all decisions of the previous level have been
determined. If decisions of lower levels are made without
taking into account the higher level decisions, the system
will not support the users adequately in their tasks.

So the first major observation is that the decision about
the tasks is an indispensable prerequisite for starting the
RE process. As for example advocated in [11], RE
approaches often start with goals. However, there is little
guidance on how to identify these goals. Task support is
the most important goal, since a system will only be
accepted by the users, if their tasks are adequately
supported. SWE can learn a lot from HCI for the
identification of tasks.

The second major observation is that – in contrast to
typical RE approaches - the decision about the UI-structure
(I4) is an essential ingredient of the interaction level. Use
Cases have shifted the focus from system functions (I1) to
the interaction between system and user (I3), but without a
preliminary UI-structure, it is not possible to make
adequate decisions about the interaction (see [7]and [10]
for forceful arguments why this is necessary). It is an
interesting observation that such an integrating structure is
also part of the application core and the GUI, namely the
architecture (C3) and the screen structure (G4). At all
levels there are decisions concerning behaviour chunks like
activities, functions or actions as well as decisions
concerning data. Interaction and dialog put these chunks
into a sequence. UI-structure, architecture and screen-
structure group data and behaviour chunks together.

A third major observation is that the design of the
application core and the GUI are heavily interdependent.
The details of the system functions depend on the way
these functions are presented to the user. Navigation and
support functions must be designed to ease the control of
the user on the execution of the system functions.

Thus, altogether these dependencies imply that RE and
HCI must be intertwined and thus RE and HCI experts
must collaborate closely.

4. Conclusion
We have presented the fundamental decisions to be

made during RE and argued that they need to include the
usability engineering decisions.

The REDT and their dependencies have been identified
from conceptual considerations as well as our experience.
We have validated them by looking at different RE and
HCI approaches. We checked whether these decisions are
covered by these approaches and whether we miss issues
covered in the approaches.

Of course, further application to industry-scale projects
is necessary to evaluate them wrt. completeness and
necessity. In [12] we sketch a specification method
covering all the REDT. We believe that in practice there is

rarely time to specify all of them explicitly, but we are
convinced that depending on the project context, different
subsets of the decisions for different subsystem parts
should be specified explicitly.

In our view an agreement about the decision types and
their dependencies is an important prerequisite for the
development of joint RE and HCI curriculae and joint RE
and HCI processes and tools. The curriculae should cover
all the REDT such that RE and HCI experts are aware of
the decisions to be made by the other experts and their
dependencies. Processes and tools should in particular
support the intertwining of the decisions e.g. with giving
detailed guidance to use decisions from the higher-levels to
come up with the lower-levels decisions.

5. Acknowledgement
We thank Soren Lauesen for fruitfull discussions on the

intertwining of SWE and HCI decisions. The work has
been funded by the BMBF in the project EQF under the
label: e.-Qualification Framework - VFG0008A.

6. References
[1] Loucopoulos, P., Karakostas, V., System requirements
engineering, McGraw-Hill, 1995
[2] Hewett, T., Baecker, R., Card, S., Carey, T., Gasen, J.,
Mantei, M., Perlman, G., Strong, G., and Verplank, W., ACM
SIGCHI Curricula for Human-Computer Interaction, 1996,
htttp://www.acm.org/sigchi
[3] Good ,M, Spine, T. M., Whiteside, J. , George, P., User-
derived impact analysis as a tool for usability engineering,
Conference proceedings on Human factors in computing systems,
April 1986
[4] Kruchten, P. B., The Rational Unified Process: An
Introduction, Addison-Wesley, 2000
[5] Diaper, D., Task analysis for human-computer interaction.
Ellies Horwood, 1989
[6] Hackos, J.T., Redish, J.C., User and Task Analysis for
Interface Design, John Wiley & Sons, 1998
[7] Beyer, H., Holtzblatt, K., Contextual Design: Defining
Customer Centered Systems, Morgan Kaufmann Publishers,1998
[8] Constantine, L., Lockwood, L., Software For Use, Addison
Wesley, 1999
[9] Armour, F., Miller, G., Advanced Use Case Modeling,
Addison-Wesley, 2000
[10] Lauesen, S., Harning, S., “Virtual Windows: Linking User
Tasks, Data Models and Interface Design”, IEEE Software, pp.
67-75, July/August 2001
[11] Cockburn, A.,Writing Effective Use Cases, Addison Wesley
2001
[12] Paech, B., Kohler, K., Task driven requirements in object-
oriented development, in Leite, J., Doorn, J.,(eds.) Perspectives
on Requirements Engineering, Kluwer Academic Publishers, to
appear

(T1)

 tasks

(C1) int.
actions

(C2) int.
data

(G3)
UI-data

(G2)
dialog

(I3) in-
ter. data

(I4) UI-
struct.

(I2) in-
teract.

(I1) sys.
funct.

(C3)
arch,

(G4) scr.
struct.

Domain-Level

 System-Level: Application Core and GUI

Interaction-
Level

Task-Level

(D2)
 to-be

(D1)
as-is

(D4)dom.
data

(D3) sys.
respons.

(G1)
navig./sup

Figure 1: Requirements Design Decision Types

 Search books
Purpose: Selection of books
Data:
- search criteria
- list of books with title and author
Function:
- search
- move to shopping bag

Book details
Purpose: Detailed info about book
Data: abstract, picture of cover,
ISBN Nr., year, review, order
conditions, availability
Function:
- move to shopping bag

Shopping Bag
Purpose: overview about selected
books
Data: shopping bag, total sum
Function:
- delete item from list
- move to memo

Memo
Purpose: Keep list of interesting
books
Data: memo list
Function:
- delete item from memo list

I d Ei k f hi b

Order
Purpose: Definition of order
conditions
Data: Payment method, address
Function:
- submit order

Customer account
Purpose: View and change
information about customer
Data: status of order, Email,
customer address, payment
Function:
- change customer data

Select Books

Place Order

Provide customer data
Figure 2: Workspace example

