
Evaluation of Techniques to Detect Wrong
Interaction Based Trace Links
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Abstract. [Context and Motivation] In projects where trace links
are created and used continuously during the development, it is impor-
tant to support developers with an automatic trace link creation ap-
proach with high precision. In our previous study we showed that our
interaction based trace link creation approach achieves 100% precision
and 80% relative recall and thus performs better than traditional IR
based approaches. [Question/problem] In this study we wanted to
confirm our previous results with a data set including a gold standard
created by developers. Moreover we planned further optimization and
fine tuning of our trace link creation approach. [Principal ideas/re-
sults] We performed the study within a student project. It turned out
that in this study our approach achieved only 50% precision. This means
that developers also worked on code not relevant for the requirement
while interactions were recorded. In order to improve precision we eval-
uated different techniques to identify relevant trace link candidates such
as focus on edit interactions or thresholds for frequency and duration
of trace link candidates. We also evaluated different techniques to iden-
tify irrelevant code such as the developer who created the code or code
which is not related to other code in an interaction log. [Contribution]
Our results show that only some of the techniques led to a considerably
improvement of precision. We could improve precision almost up to 70
% while keeping recall above 45% which is much better than IR-based
link creation. The evaluations show that the full benefits of an interac-
tion based approach highly depend on the discipline of the developers
when recording interactions for a specific requirement. Further research
is necessary how to support the application of our approach in a less
disciplined context.

Keywords: traceability, interaction, requirement, source code, precision

1 Introduction

Existing trace link creation approaches are typically based on information re-
trieval (IR) and on structured requirements like use cases or user stories. Also,
they often focus on links between requirements [2]. It is known that precision
of IR created links is often not satisfying [8] for their direct usage even in the



case of structured requirements. Thus, handling of false positive IR created trace
links requires extra effort in practice which is even a research subject on its own
[9, 19, 7].

Still, the research focus in RE is to improve recall, since security critical
domains like the aeronautics and automotive industry require complete link sets
and thus accept the effort to remove many false positives [3]. These links are
created periodically, when needed for certification to justify the safe operation
of a system.

However, in many companies requirements are managed in issue tracking
systems (ITS) [15]. For open source projects ITS are even the de facto standard
for all requirements management activities [17]. In ITS the requirements text is
unstructured, since ITS are used for many purposes, e.g. development task and
bug tracking in addition to requirement specification. This impairs the results
of IR-based trace link creation approaches [18]. Furthermore, for many develop-
ment activities it is helpful to consider links between requirements and source
code during development, e.g. in maintenance tasks and for program comparison
[16]. If these links are created continuously, that means after each completion of
an issue, they can be used continuously during the development. In these cases,
large effort for handling false positives and thus, bad precision is not practicable.
Therefore, a trace link creation approach for links between unstructured require-
ments and code is needed with perfect precision and good recall. Recall values
are reported as good above 70% [9].

In a previous paper [10] we provided such a trace link creation approach
(called IL in the following) based on interaction logs and code relations. Inter-
action logs capture the source code artifacts touched while a developer works on
an issue. Interaction logs provide more fine-grained interaction data than VCS
change logs [6]. Code relations such as references between classes provide addi-
tional information. In a previous study using data from an open source project
we showed that our approach can achieve 100% precision and 80% relative recall
and thus performs much better than traditional IR based approaches [11]. As
there are no open source project data available with interaction logs and a gold
standard for trace links, we only could evaluate recall relative to all correct links
found by our approach and IR.

In contrast to the previous paper we now present a study based on interaction
log data, requirements and source code from a student project. We used a student
project in order to be able to create a gold standard with the help of the students.
This enabled the calculation of the recall against the gold standard.

The presented study consists of two parts. In the first part we calculated
precision and real recall values for our IL approach. The first results of the
study showed that IL has only around 50% precision. We therefore evaluated
the wrong links identified by IL. We found out that these links were caused by
developers not triggering the interaction recording for requirements correctly.
They worked on different requirements without changing the requirement in the
IDE. Thus, all trace links were created for one requirement.



In consequence, in the second part of our study, we evaluated different tech-
niques to improve precision by identifying relevant trace link candidates such
as focus on edit interactions or thresholds for frequency and duration of inter-
actions. We also evaluated different techniques to identify irrelevant code such
as the developer who created the code, or code which does not refer to other
code in an interaction log. In the best cases we could improve the precision up
to almost 70% with still reasonable recall above 45%.

The remainder of this paper is structured as follows. Section 2 gives a short
introduction into the evaluation of trace link creation approaches and the project
used for the evaluation. Section 3 presents our interaction based trace link cre-
ation approach. Section 4 introduces the experimental design along with the
creation of data sets for our study, states the research questions and introduces
the improvement techniques to detect wrong trace links for our approach devel-
oped in this study. In Section 5 we present the results of the study and answer
the research questions including a discussion. Section 6 discusses the threats to
validity of the study. In Section 7 we discuss related work. Section 8 concludes
the paper and discusses future work.

2 Background

In this section we introduce the basics of trace link evaluation and the study
context.

2.1 Trace link Evaluation

To evaluate approaches for trace link creation [2, 8] a gold standard which con-
sists of the set of all correct trace links for a given set of artifacts is important.
To create such a gold standard it is necessary to manually check whether trace
links exist for each pair of artifacts. Based on this gold standard precision and
recall can be computed.

Precision (P) is the amount of correct links (true positives, TP) within all
links found by an approach. The latter is the sum of TP and not correct links
(false positive, FP). Recall (R) is the amount of TP links found by an approach
within all existing correct links (from the gold standard). The latter is the sum
of TP and false negative (FN) links:

P =
TP

TP + FP
R =

TP

TP + FN
Fβ = (1 + β2) · P ·R

(β2 · P ) +R

Fβ-scores combine the results for P and R in a single measurement to judge
the accuracy of a trace link creation approach. As shown in the equation for Fβ
above, β can be used to weight P in favor of R and vice versa. In contrast to other
studies our focus is to emphasize P, but still consider R. Therefore we choose
F0.5 which weights P twice as much as R. In addition we also calculate F1-scores
to compare our results with others. In our previous paper [11] information about
typical values of P and R in settings using structured [9] and unstructured [18]



data for trace link creation approaches can be found. Based on these sources for
unstructured data good R values are between 70 and 79% and good P values are
between 30 and 49%.

2.2 Evaluation Project

Due to the labor intensity of creating a trace link gold standard often student
projects are used [5]. In the following we describe the student project in which we
recorded the interactions, the application of the used tools and how we recorded
the interactions. The project lasted from Oct. 2016 to March 2017 and was per-
formed Scrum oriented. Thus it was separated into seven sprints with the goal
to get a working product increment in each sprint. The projects aim was to de-
velop a so called master patient index for an open ID oriented organization of
health care patient data. A typical use case for the resulting product would be to
store and manage all health care reports for a patient in a single data base. The
project involved the IT department of the university hospital as real world cus-
tomer. Further roles involved were the student developers and a member of our
research group with the role of a product owner. Seven developers participated
in the project. In each of the sprints one of developer acted as scrum master.

All requirements related activities were documented in a Scrum Project of the
ITS JIRA1. This included the specification of requirements in the form of user
stories and the functional grouping of the requirements as epics. For instance
the epic Patient Data Management comprised user stories like View Patients or
Search Patient Data. Complex user stories in turn comprised sub-tasks docu-
menting more and often technical details. For instance the Search Patient Data
user story comprised the sub-tasks Provide Search Interface or Create Rest End-
point. The project started with an initial vision of the final product from the
customer and was broken down by the developers using the scrum backlog func-
tionality of JIRA to a set of initial user stories which evolved during the sprints.

For implementation the project used JavaScript which was requested by the
customer. Furthermore the MongoDB2 NOSQL database and the React3 UI
framework were used. The developers used the Webstorm4 version of IntellJ
IDE along with Git as version control system. Within the JIRA project and the
JavaScript source code we also applied our feature management approach [21].
A feature in this project corresponded to an epic. This approach ensures that
all artifacts are tagged with the name of the feature they belong to. So that a
user story is tagged with the epic it corresponds to, but also the sub-tasks of the
user stories and the code implementing the user story are tagged.

The developers installed and configured IntelliJ plug-ins we used for inter-
action recording (cf. Section 3) and were supported whenever needed. They got
a short introduction about interaction recording and associating requirements

1 https://www.atlassian.com/software/jira
2 https://www.mongodb.com/
3 https://reactjs.org/
4 https://www.jetbrains.com/webstorm/
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and source code files. The plug-ins recorded all interactions in the IDE in locally
stored csv and xml files. The developers were asked to send us their interaction
log files by email after each sprint on voluntary basis so that we had the possi-
bility to check the plausibility of the recorded interactions. In the first sprints
some of the developers had problems with activating interaction recording and
using the desired IntelliJ plug-in to interact with requirements. After detecting
such problems we explained it to them and asked them to solve these problems
for the processing of the next sprint. However some of the developers only sent
their interaction logs once or twice in the final project phase. Therefore four of
the seven log files received were not usable for our evaluation. One was almost
empty due to technical problems, in the other three only a very low number
of requirements were logged. The corresponding developers stopped to record
changes to requirements at a certain point in time and thus all following inter-
actions were associated with the last activated requirement. We used the three
correctly recorded interaction logs to apply our IL approach. Overall the inter-
action logs of the three developers contained more than two million log entries.
The developers recorded these interactions while working on 42 distinct user
stories and sub-tasks and touching 312 distinct source code files.

3 Interaction based Trace Link Approach
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Fig. 1: IL Trace Link Creation Overview: Interaction Capturing, Trace Link Cre-
ation and Improvement ILi

Figure 1 shows our interaction based trace link creation approach (IL) and
the improvement step ILi. First we use an IDE Plug-in to capture the interactions
of the developer while working on requirements and code. In a second step trace
links are created between requirements and code based on the interactions. The
last step is an improvement step that uses source code structure and interaction
log data. In the following we explain the steps in more detail.

3.1 Interaction Logs

In contrast to our last study we used the IntelliJ IDE5 and implemented the first
interaction capturing step of our IL approach with two IntellJ Plug-ins:

5 https://www.jetbrains.com/idea/

https://www.jetbrains.com/idea/


1. To log interactions we used the IntellJ Activity Tracker Plug-in which we
modified to our needs. We extended the Plug-ins ability to track the interac-
tions with requirements. The only action to be performed by the developers
for this plug-in was to activate it once. After this all interactions within the
IDE of the developer were recorded, comprising a time stamp, the part of
the IDE and the type of interactions performed. The most important part
of the IDE for us are the editor for the source code, the navigator which
displays a structural tree of all resources managed by the IDE, and dialogs
which are often involved in high level actions like committing to Git and per-
forming JIRA Issue related actions. The interaction types can be low level
interactions like editor keystrokes, but also high level interactions (selected
from the context menu) like performing a refactoring or when committing
changes to Git.

2. To associate interactions with requirements the Task & Context IntellJ func-
tionality was used. The developers connected this Plug-in with the JIRA
project. When working on a requirement the developers selected the specific
JIRA issue with the Task & Context functionality. When committing their
code changes to the Git repository the Task & Context plug-in supported
the finishing of the respective JIRA issue.

The following listing shows two abridged log entries as created by the modified
version of the activity tracker tool.

1 2016−10−04T10 : 1 4 : 5 0 .910 ; dev2 ; Action ; Ed i t o rSp l i tL in e ; i s e ; Editor ;
/ g i t /C o n t r o l l e r . j s ;

2 2016−10−13T13 : 2 8 : 2 6 .414 ; dev2 ; Task Act ivat ion ; ISE2016−46:Enter Arrays ;
i s e ;

The first log entry is a typical edit interaction starting with a time stamp,
the developers user name, the kind of performed action, the performed activity
(which is entering a new line), the used Git project, the involved component of
the IDE (editor) and the used source code file (/git/Controller.js). The second
log entry shows an interaction with a user story from JIRA including its issue
ID and name (ISE2016-46:Enter Arrays).

3.2 Trace Link Creation and Improvement

The actual IL trace link creation has been implemented in our Python NLTK6

based tool. As shown in Figure 1 in step IL-Trace Link Creation(1) interactions
of the same requirements are aggregated and trace link candidates are created
using the data of interaction logs, the source code touched by the interactions
extracted from the version control system and the requirements from the ITS.
The candidates relate the requirement associated to the interaction and the
source code touched in the interaction.

In the ILi-Trace Link Improvement (2) step source code structure and inter-
action log data such as duration and frequency are used to improve recall (cf.
Figure 1). The source code structure based improvement of this step has been

6 http://www.nltk.org/

http://www.nltk.org/


implemented with the Esprima7 JavaScript source code parser. With source code
structure we denote the call and data dependencies between code files and classes
[14]. Using the code structure to improve trace link creation is part of traceability
research [13]. In our previous study we added additional links to a requirement by
utilizing the code structure of source code files already linked to the requirement
[11]. As we aim at trace links with perfect precision this recall improvement only
makes scene, if the trace links have excellent precision. Otherwise utilization of
code structure might increase recall but very likely also decrease precision.

In this paper we also use the code structure to support precision by utilizing
the relations between source code files involved in the interaction logs of one
requirement (cf. Section 4.4).

4 Experiment Design

In this section we describe the details of our study (cf. Figure 2), in particular
wrt. the data sets and the techniques to detect wrong interaction links.
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Fig. 2: Experimental Design: Overview of Performed Activities

4.1 Research Questions

The initial purpose of this study was to calculate precision and real recall values
instead of relative recall as in our last study, for our approach (RQ1) and for
comparison also for IR (RQ2) [11]. After we realized that the precision of our
IL approach was not sufficient for direct usage of the trace links with the data
of the student project we investigated the improvement of precision and thus
detection techniques for wrong trace links (RQ3). Thus the research questions
we answer in the two parts of our study are:

RQ1: What is the precision and recall of IL created trace links? Our hypoth-
esis was that IL has very good precision and good recall.

RQ2: What is the precision and recall of IR created trace links? Our hypoth-
esis was that IR has bad precision and good recall.

RQ3: What is the precision and recall of IL with detection techniques for
wrong trace links? Our hypothesis was that detection techniques uti-
lizing details of the interaction log like the time stamp, and detection
techniques considering the source code like using the source code struc-
ture should enhance precision considerably and keep reasonable recall.

7 http://esprima.org/
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4.2 Gold Standard Creation

Table 1: Interaction Data and Gold Standard
Interaction Logs Gold Standard Creation

#Req.
#Inter-
actions

#Code.
Files

#Req.
#Code.
Files

#Link
Cand.

#Rated
Correct

#Rated
Wrong

#Rated
Unkonw

Dev1 12 628.502 155 3 99 139 37 90 2
Dev2 20 506.726 273 11 141 374 128 241 5
Dev3 16 893.390 256 5 83 189 52 123 14
Sum 42* 2.028.618 312* 19 151* 692 217 454 21

* Same issues and source files used by different developers have been accumu-
lated

The left side of Table 1 shows the overview of all recorded interactions for
user stories or sub-tasks and the number of involved source code files of the three
developers which we used for further processing and evaluation in our study.

The right side of Table 1 shows the overview of the gold standard. For the gold
standard creation we first selected 21 user stories of the 42 requirements, since
these 21 user stories were assigned directly to the three developers. The others
had been assigned to other developers or had a different issue type. Through this
we made sure that the developers knew the requirements very well. We further
excluded two of the 21 user stories. For one user story one developer had not
stopped the interaction recording and thus links to almost all source code files
in the Git repository had been created. The other user story was the first in
the interaction logs of a developer and no activation event was recorded for that
user story.

To limit the link candidates to a reasonable amount we considered all possible
link candidates between user stories and code files tagged with the same feature.
For the remaining 19 user stories we selected all code files from the Git repository
with the same feature tag (cf. Section 2.2). This excluded in particular files with
a format different than javascript and json and xml. Examples for such files
are html files and build scripts. After this 151 code files, as shown in the sixth
column of the last row of Table 1, remained. Then we created all possible link
candidates between user stories and code files with the same tag. This resulted
in 692 link candidates.

We provided a personalized questionnaire with link candidates for the three
developers. The developers labeled the links as correct (217), wrong (454) or un-
known (21). The latter means they did not have the competence to judge. The
developers also confirmed that all feature labels were correct. The three devel-
opers worked on their personalized questionnaire in individual sessions lasting
between two to three hours in a separate office room in our department and had
the possibility to ask questions if something was unclear. Thus initially all links
of the gold standard were only rated by one developer. After the first part of our
study we checked the link ratings of the developers for plausibility. By inspecting
the source code files and requirements involved in each link we manually checked
113 wrong links created by our approach.



4.3 Part 1: Trace Link Creation with IL and IR

We initially created trace links with our IL approach (cf. Section 3) and with the
common IR methods vector space model (VSM) and latent semantic indexing
(LSI) [2, 4]. We applied both approaches to the user stories together with their
sub-tasks (see section 2.2) and to the 151 code files used for the gold standard
creation. We only used these code files, as we only had the gold standard links
for them.

For IL we combined the interactions of a user story with the interactions
of the corresponding sub-task for further evaluations, as the sub-tasks describe
details for implementing the user story. From the resulting link candidates we
removed all links to code files not included in the gold standard. We applied
IR to the texts of user stories and corresponding sub-tasks and to the 151 code
files used for the gold standard. In addition we performed all common IR pre-
processing steps [1, 2], i.e. stop word removal, punctuation character removal and
stemming. We also performed camel case identifier splitting (e.g. PatientForm
becomes Patient Form), since this notation has been used in the source code [4].
Since the user stories contained only very short texts, the used threshold values
for the IR methods had to be set very low.

4.4 Part 2: Detection Techniques for Wrong Trace Links

Since our IL approach had worse precision values as we expected, we decided to
investigate how IL can be extended by the detection of wrong trace links. Thus
we extended our initial study with a second part in which we wanted to answer
RQ3 (cf. section 4.1) for the evaluation of wrong link detection techniques. We
looked at two different kind of wrong trace link detection techniques. The first
set of techniques was based on the data available in the interaction logs. The
second set of techniques used the source code files touched by interactions and
data around these files. The main idea was to directly detect link candidates not
relevant for a user story or code files not relevant for a user story.

For the interactions logs we used (a) the type of interaction, i.e. whether an
interaction is a select or a edit, (b) the duration of interactions based on the
logged time stamp and (c) the frequency how often an interaction with a source
code file occurred for a user story. The rationale was that (a) edit events are
more likely than select events to identify code necessary for a user story and
that (b,c) a longer duration of the interaction or higher frequency signify that
the developer made a more comprehensive change and not only a short edit e.g.
correcting a typo noticed when looking at a file.

For source code we used (a) the ownership that is the developer who created
the interaction, as one developer might have worked less disciplined than others
(b) the number how often source code files were interacted with for different
user stories, as files used for different user stories might be base files which had
not been considered relevant for the gold standard by the developers (c) filtering
on only JavaScript source code files as other formats might not be so relevant
for a user story and (d) the code structure for the source code files involved



in one user story to detect files which had no relation in the code structure to
other files, as the unrelated code files might signify a different purpose than
the user story. We then combined the most promising techniques. Altogether we
implemented wrong link detection so that link candidates were removed when
their logged values were below a certain threshold , different of a certain type or
when the source code file did not match the aforementioned criteria. We choose
the thresholds, the type and the combination of thresholds and source code filter
criteria to optimize the precision of the links created by IL and minimize the
effect on the recall.

5 Results

This section reports the results of evaluations along with answering the RQs.

5.1 Part 1: Precision and Recall for the Initial Evaluation

Table 2: Precision and Recall for IL and IR

Approach
GS
Links

Link
Cand.

Correct
Links

Wrong
Links

Not
Found

Precision Recall F0.5 F1

IL 217 372 160 212 57 0.430 0.737 0.469 0.543
IRV SM(0.3) 217 191 38 153 179 0.199 0.175 0.194 0.186
IRV SM(0.2) 217 642 104 538 113 0.162 0.480 0.187 0.242
IRLSI(0.1) 217 102 35 67 182 0.343 0.161 0.280 0.219
IRLSI(0.05) 217 363 77 286 140 0.212 0.355 0.231 0.266

Table 2 gives an overview of the evaluations performed as described in section
4.3. Our approach created 372 link candidates, 212 of them were wrong. 57
correct links were not found. We can answer RQ1 as follows: The precision for
our IL approach is 43.0% and recall is 73.7%

We can answer RQ2 looking at the different IR variants with different thresh-
olds: with very low thresholds the best achievable precision is 34.3% (LSI(0.1))
and the best achievable recall 48.0% (VSM(0.2)). These results are bad com-
pared to IL and bad compared to typical IR-results on structured data [9] (cf.
Section 2.1).

As the IL precision was much lower than expected, we investigated whether
there was a problem with the gold standard. We therefore checked manually
113 wrong links which resulted from edit interactions (see next section) and
confirmed that these links are really wrong. We concluded that the developers
had not used the interaction logging properly and worked on code not relevant
for the activated user story. This happened typically for smaller code changes
on the fly beside the implementation of the activated user story. So for example
developers updated a file from which they had copied some code, but they did
not activate the requirement the change should have been associated with.



Table 3: Duration based IL Improvement
Dur.
(sec)

GS
Links

Link Cand. Correct Wrong Not
Found

Precision Recall
F0.5 F1

All Edit All Edit All Edit All Edit All Edit

1 217 372 220 160 107 212 113 57 0.430 0.486 0.737 0.493 0.488 0.490
10 217 317 199 144 104 173 95 73 0.454 0.523 0.664 0.479 0.513 0.500
60 217 231 167 113 90 118 77 104 0.489 0.539 0.521 0.415 0.508 0.469
180 217 183 142 93 78 90 64 124 0.508 0.549 0.429 0.359 0.497 0.435
300 217 154 122 81 70 73 52 136 0.526 0.574 0.373 0.323 0.496 0.413

5.2 Part 2: Precision and Recall Using Wrong Link Detection

In this section we report on the answers to RQ3. Table 3 shows the results for
focusing on edit interactions and different minimal duration. The first row corre-
sponds to our IL approach without any restrictions. It shows that by focusing on
edit interactions the precision slightly improves from 43.0% to 48.6%. As focus
on edit always improved the precision a little, we only report the F-measure for
IL focused on edits and we only describe these numbers in the following text.
When increasing the minimum duration for an interaction precision can be im-
proved up to 57.4%. This impairs of course recall. We show at the end of this
section how recall can be improved by using the code structure.

Table 4: Frequency based IL Improvement
Fre-
quency

GS
Links

Link Cand. Correct Wrong Not
Found

Precision Recall
F0.5 F1

All Edit All Edit All Edit All Edit All Edit

1 217 372 220 160 107 212 113 57 0.430 0.486 0.737 0.493 0.488 0.490
2 217 314 220 142 107 172 113 75 0.452 0.486 0.654 0.493 0.488 0.490
5 217 220 191 113 98 107 93 104 0.514 0.513 0.521 0.452 0.499 0.480
10 217 181 169 99 93 82 76 118 0.547 0.550 0.456 0.429 0.521 0.482
20 217 158 151 90 87 68 64 127 0.570 0.576 0.415 0.401 0.530 0.473
100 217 86 86 59 59 27 27 158 0.686 0.686 0.272 0.272 0.526 0.389

Table 4 shows the results for different minimal frequencies within one inter-
action log. Again row one gives the numbers for the original approach. Here the
improvement is stronger leading to a precision of 68.6% for a frequency of 100.
In particular, by this restriction all select interactions are removed. However,
recall is even more impaired.

Table 5: Developer Specific Differences
Dev-
eloper

GS
Links

Link Cand. Correct Wrong Not
Found

Precision Recall
F0.5 F1

All Edit All Edit All Edit All Edit All Edit

Dev1 37 41 17 19 6 22 11 18 0.463 0.353 0.514 0.162 0.286 0.222
Dev2 128 252 155 110 79 142 76 18 0.437 0.510 0.859 0.617 0.528 0.558
Dev3 52 77 46 30 21 47 25 22 0.390 0.457 0.577 0.404 0.445 0.429

Table 5 shows the distribution for the three developers. One can see that
developer Dev2 was the most active and Dev3 contributed more than Dev1.
However, for all three the interactions led to more wrong than correct links. So
precision does not differ much.
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Fig. 3: Code Files Which had Interactions in 3 or more User Stories

Figure 3 shows the 28 code files which have been touched in interactions
for three or more user stories. Furthermore it shows how often each developer
touched these files. The developer distribution shows that some of the files have
been touched by different user stories from one developer and some from several
developers. One can see that only three out of 28 files have only wrong link
candidates. Also files which have many link candidates sometimes have many
correct link candidates and sometimes not. So there is no clear pattern that
these files are the reason for more wrong link candidates.

Table 6: Source Code based Improvements

Code
Res.

GS
Links

Link Cand. Links Wrong Not
Found

Precision Recall
F0.5 F1

All Edit All Edit All Edit All Edit All Edit

none 217 372 220 160 107 212 113 57 0.430 0.486 0.737 0.493 0.488 0.490
>3 US 217 208 92 83 43 125 49 134 0.399 0.467 0.382 0.198 0.368 0.278
Only .js 186 327 203 129 99 198 104 57 0.394 0.488 0.694 0.532 0.496 0.509
Con. 217 274 169 147 99 127 70 70 0.536 0.586 0.677 0.456 0.554 0.513

This is confirmed in Table 6 which shows the results for the different source
code restrictions with the first row showing the numbers without restrictions.
The second row shows the precision for code which was touched by interactions
in three or more user stories. Here the precision increased slightly to 46.7%. The
third row shows a precision 48.8% when only looking at Javascript files. The
best precision of 58.6% could be achieved when removing code files which were
not connected by source code relations to other code files of the same user story.

When looking at the individual techniques for detecting wrong links we thus
can answer RQ3 as follows: The best precision 68.6% can be achieved with a
minimum frequency of 100. This leads to a recall of 27.2%. The second best
precision 58.2% can be achieved with removing files which are not connected.
This leads to a recall of 45.6%.

We therefore also investigated in the combination of these two techniques.
We first removed the not connected code files and then restricted the remaining
interaction links wrt. frequency. Table 7 shows the resulting precision of 66.7%
for frequency 20 (F0.5 is 0.578) and 66.2% for frequency 100 (F0.5 is 0.469).



Table 7: Combination of Improvements

Code
Con.

Freq.
Code
Struct

GS
Links

Link Cand. Correct Wrong Not
Found

Precision Recall
F0.5 F1

All Edit All Edit All Edit All Edit All Edit

True 20 0 217 124 123 82 82 42 41 135 0.661 0.667 0.378 0.378 0.578 0.482
True 20 4 217 151 148 101 101 50 47 116 0.669 0.682 0.465 0.465 0.624 0.553
True 100 0 217 71 71 47 47 24 24 170 0.662 0.662 0.217 0.217 0.469 0.326
True 100 4 217 87 87 58 58 29 29 159 0.667 0.667 0.267 0.267 0.513 0.382

So for frequency 100 precision decreased when looking at connected files. For
frequency 20 we get the best F0.5-measure of all evaluations. We applied the
recall improvement (ILi) to both settings. Again frequency 20 yielded the best
results.

Altogether RQ3 can be answered as follows: with the wrong link detection
techniques we could improve precision from 43.0% up to 68.2% (increase of
25.2%). The recall decreased from 73.7% without wrong link detection to 46.5%.
This yields the best F0.5-measure of 0.624.

5.3 Discussion

In the following we discuss all of our hypotheses wrt. IL and the rationale for
the detection techniques. The bad precision compared to our previous study for
IL clearly indicates that the developers did not use the recording in a disciplined
way. The detailed evaluations for the developers did not show big differences, so
this was true for all three developers. We tried several detection techniques for
wrong links: Focus on edit interactions, duration, source code owner, source code
type and removing of files with many links did not yield considerable precision
improvement. Only frequency and removal of non-connected files improved the
precision considerably up to almost 70% with recall above 45%. (cf. Section 2.1).
For our purpose they are not sufficient, as this still means that our approach
would create thirty percent links not directly usable for the developers.

We thus see three further directions of research. (a) We can try to come
up with further techniques to detect wrong links which yield a precision close to
100%. (b) We can try to support the developers in applying interaction recording
in a more disciplined way. The results of our previous paper [11] on the Mylyn
project showed that it is possible for developers to use interaction recording
in a disciplined way. It could be that students are particularly bad with this
discipline. (c) Instead of automatic link creation support we can generate links
through IL as recommendations to the developers.

In previous research [6] we had used more coarse-grained VCS change logs to
create links and had given the developers different means to create links based on
the logs during a sprint or at the end of a project. We could use our IL approach
to give recommendations to the developers at different points in the sprint or
project which links to create based on their interactions. Then developers have
to detect the wrong links themselves. However, we would like to avoid such
overhead for the developers as much as possible.



6 Threats to Validity

In this section we discuss the threats to validity of our study. The internal
validity is threatened as manual validation of trace links in the gold standard
was performed by the students working as developers in a project context of
our research group. However, this ensured that the experts created the gold
standard. Also the evaluation of the links was performed after the project had
already been finished so that there was no conflict of interest for the students to
influence their grading.

When comparing the results achieved with our approach to IR the setup
of the IR algorithms is a crucial factor. Wrt. preprocessing we performed all
common steps including the identifier splitting which is specific to our used data
set. However, the low threshold values impair the results for the precision of
IR. Thus, further comparison of IL and IR in which higher threshold values are
possible (e.g. with more structured issue descriptions) is necessary.

The external validity depends on the availability of interaction logs and re-
spective tooling and usage of the tooling by developers. The generalizability
based on one student project is clearly limited. In the Mylyn open source project,
used in our last study, the developers used their own implemented interaction
logging approach and thus worked very disciplined. It is very likely that the stu-
dent developers did not apply the interaction logging as disciplined as the Mylyn
developers, since they had no awareness for it. Interaction recording is not yet
applied often in industry. So it is an open question how disciplined interaction
logging can be achieved.

7 Related Work

In our previous paper [11] we discuss other work on IR and interaction logging
such as the systematic literature review of Borg on IR trace link creation [2]
or Konopkas approach [12] to derive links between code through interaction
logs. Most similar to our work is the approach of Omoronyia et al. [20] who
capture interactions between source code and structured requirements specified
as use cases. We adopt their approach using select and edit events for trace link
creation. In contrast to our goal their tool support focuses on visualizing the
trace links after a task has been performed and not on direct availability and
usage of trace links.

For this paper most relevant is research on the quality of recorded interac-
tion. We only found a very recent study of Soh et al. [22] studying interactions
recorded in Mylyn. They show that the assumptions that the time recorded for
an interaction is the time spent on a task and that an edit event recorded by
Mylyn corresponds to modification in the code are not true. They could detect
these differences by comparing the interactions and videos capturing developer
behavior in a quasi-experiment. These differences are not due to any misbehav-
ior of the developers, but only due to Mylyns recording algorithm. For example
searching and scrolling is not counted in the time spent and idle time is not



treated correctly. In this study these problems do not apply as we used a dif-
ferent logging environment. We are not aware of any noise problems with this
environment. Similar to their work, we also use duration as an indicator for a
relevant event.

8 Conclusion and Outlook

In this paper we investigated the precision and recall of our IL-approach for
trace link creation in a student project. Contrary to our previous work the origi-
nal approach only achieved a precision of about 50%. We therefore implemented
several techniques for the detection of wrong links: Focus on edit interactions,
duration, source code owner, source code type and removing of files with many
links did not yield considerable precision improvement. Only frequency and re-
moval of non-connected files improved the precision considerably up to almost
70% with above 45% recall. As discussed in section 5.3 this is not sufficient
for our purpose. We are starting to apply the IL-approach in another student
project. In this project we will make sure through regular inspections that the
students apply the approach in a disciplined way. We will use the two best im-
provement techniques as quick indicators for undisciplined usage and interview
the students for reasons of such usage. Given sufficient precision we plan to also
create the links immediately after each interaction and observe the use of the
links in the project.

Acknowledgment We thank the students of the project for the effort.

References

1. Baeza-Yates, R., Ribeiro, B.d.A.N.: Modern Information Retrieval. Pearson
Addison-Wesley, Harlow, Munich, 2. edn. (2011)
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