

Copyright © [2002] IEEE.

Reprinted from Proceedings of the 10th Anniversary IEEE Joint International Conference on
Requirements Engineering, pp. 273-281

This material is posted here with permission of the IEEE. Internal or personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or promotional pur-
poses or for creating new collective works for resale or redistribution must be obtained from the IEEE
by writing to pubs-permissions@ieee.org

By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

Systematic Requirements Recycling through Abstraction and Traceability

 Antje von Knethen1, Barbara Paech1, Friedemann Kiedaisch2, Frank Houdek3
1Fraunhofer Institute for

Experimental Software Engineering
2University of Ulm

Faculty of Computer Science
3DaimlerChrysler AG

Research and Technology

Sauerwiesen 6,
D-67661 Kaiserslautern

{vknethen, paech}@iese.fhg.de

D-89069 Ulm
friedemann.kiedaisch

@informatik.uni-ulm.de

P.O. Box 23 60
D-89013 Ulm
frank.houdek

@daimlerchrysler.com

Abstract
Ad-hoc recycling between requirements documents of
product variants is a major source of requirements de-
fects. In this paper, we present an approach for system-
atic requirements recycling based on a combination of
abstraction (in terms of a template) and traceability (be-
tween requirements). The main features of our approach
are the use of conceptual models to determine relation-
ships necessary for correct recycling and the focus on
minimizing link setting. This approach can also be used
to develop abstraction and traceability guidelines tai-
lored to other application domains and traceability goals,
such as change or project management.

1. Introduction
In production companies, such as the car industry, many
product variants are typically developed in parallel or
subsequently, and each product variant is specified in a
separate requirements document. Of course, the docu-
ments have many similarities. To save effort, developers
try to reuse as much requirements as possible between the
different variants. Requirements recycling occurs fre-
quently and is often carried out ad-hoc. Such non-
systematic approaches are time consuming and error
prone. One reason for these problems is that it is difficult
to identify requirements that can potentially be reused be-
cause of the varying structure of requirements documents.
In addition, often not all requirements related to a copied
requirement are copied, because these dependencies are
not explicit. For the same reason, too many requirements
might be copied. Thus, omissions, inconsistencies, and
superfluous features are introduced into the new docu-
ment. At DaimlerChrysler (DC), an effort is being under-
taken together with Fh IESE to improve current practice
through systematic requirements recycling, where recy-
cling means the activity of taking requirements from ex-
isting requirements documents and inserting them into a
new requirements document that describes a similar
product (e.g., because of a new car release of a given type

or because of reuse of certain car features between differ-
ent car types). The goal of the cooperation is to find a
simple, yet effective process that would require only
minimal additional effort and training of the developers.

The literature distinguishes between two general types of
reuse approaches [1]: composition- and generation-based
approaches. Generation-based approaches focus on in-
stantiating reusable abstractions. Popular examples are
product-line approaches [2] or patterns [3]. Composition-
based approaches are based on composing reusable com-
ponents. This type of approach is typically applied for de-
sign or code reuse. For requirements reuse, generation-
based approaches are more popular [4]. One exception is
[5], which describes an approach for composition-based
requirements reuse that classifies requirements to support
identification of reusable requirements.

For our purposes, pure product line techniques, such as
domain modeling [2][6][7], which create a specification
of the commonalities and variabilities of the product line,
were not viable. The use of domain models induces a
considerable change of the process for the developers,
because they will mainly focus on the instantiation of the
decision model, not on the creation of a new requirements
document. At DC - as is typical for many production
companies - it was required that
• the resulting process should only marginally deviate

from the existing process,
• the size of the documents should not increase signifi-

cantly and
• the effort of the developers should not increase sig-

nificantly.
In addition, there was no time to develop detailed abstrac-
tions necessary to document variabilities.

Thus, we looked for an approach that keeps some of the
benefits of a product line approach, but adheres to the
process and document restrictions. We combined con-
cepts of generation- and composition-based reuse: A
template, which includes the entities of the existing

documents to be recycled in all future documents, gives
the generation-based facet of the approach. This template
defines a document structure, captures the commonalities
of all requirements documents, and restructures the origi-
nal document to reduce the number of relationships. The
composition-based facet of the approach are the guide-
lines on how to document relationships of recycling can-
didates explicitly and on how to use relationships to copy
recycling candidates correctly. The traceability guidelines
solve the problem of omission and inconsistencies
through selective recycling (i.e., copying an entity with
small changes).

We developed both, the template and the guidelines,
based on a set of typical change scenarios. This helped us
identify the documentation entities most likely to be cop-
ied. In addition, we developed a traceability model to
make the relationships between the requirements explicit.
This helped us to restructure the document template and
to derive the guidelines. The template and the guidelines
were validated against the list of change scenarios and
accepted by DC.

The novelty of our approach lies in the combination of
abstraction and traceability, in particular in the usage of
conceptual models to document commonalities and re-
duce relationships. Although the requirements documents
investigated were on the system level, our approach is
equally applicable to pure software documents.

This paper is structured as follows. In Section 2, we de-
scribe a typical recycling situation derived from DC pas-
senger car development and we discuss related work in
Section 3. Then, we present the foundations of our ap-
proach, in particular the traceability model that includes a
conceptual system model and documentation model. In
the major part of our paper (Section 5 and 6), we present
more detailed change scenarios and our solution with its
benefits and risks. In addition, we compare our solution
with other possibilities. Finally, we summarize our main
contribution and future work in section 7.

2. Typical requirements recycling situation
This section illustrates a typical requirements recycling
situation. This is influenced by DC passenger car devel-
opment. Consequently, we use examples that are typical
for cars. However, similar situations may be found in
various contexts and industries.

Almost always, development activities for a new (sub-)
system do not start on the green field but on existing solu-
tions. Typically, functionality is enhanced incrementally.
Accordingly, the set of requirements increases, too. The
system-level requirements for electronic control units
(ECU) for vehicles may comprise documents of several
hundred pages. A significant portion of requirements
from one increment to another (almost) does not change

at all. There are well-engineered functions, like the
speedometer, that differ at most in (optical) design details.
This naturally leads to reusing old documents when speci-
fying the same ECU for a new car. However, reuse is car-
ried out ad-hoc: the person in charge copies an old docu-
ment and edits or enhances all parts s/he considers rele-
vant. S/he integrates parts from other documents that deal
with functionalities s/he has to add. Obviously, this ap-
proach is error prone.

In addition, different persons create the source require-
ments documents (RDs) over time. Thus, deviations in the
RD’s structure make it even harder for the engineer to
identify related requirements.

In previous projects [8][9], DC tried to restructure exist-
ing RD to get rid of unnecessary information and to in-
troduce a common basis for further improvements. But
this structure was not very well accepted by the engi-
neers, because the new RD became too large, even if
there was no change in content. As in all industries, the
workload of the engineers is pretty high. Often, they are
not computer scientists, but electrical technicians or other
engineers. Their main focus is the car development, not
writing advanced RDs. All these reasons limit the over-
head accepted with new processes. As stated in the intro-
duction, a solution to the recycling problem must main-
tain the size of the RD and the workload. Labor-prone
rework of RD (e.g., for domain engineering) is not an op-
tion.

3. Related work
Supporting reuse through a template is also advocated in
[10]. This template supports fine-grained reuse on the
level of words in sentences. In contrast, we support
coarse-grained reuse of documentation entities. [11] also
uses a conceptual model to capture similarities, however,
this work focuses on similarities between different do-
mains, while we focus on similarities between documents
in the same domain.

From the traceability literature, three general types of re-
lationships can be identified: The first type relates entities
in the same software artifact (e.g., a requirement depends
on another requirement). These relationships are called
horizontal relationships [12]. The second type relates en-
tities of different artifacts (e.g., a set of design classes re-
alizes a requirement). These relationships are called verti-
cal relationships [12]. The third type relates entities of
different versions of an artifact. These relationships are
called evolutionary relationships [13]. Direct support for
requirements recycling requires investigating horizontal
relationships (i.e., between entities in one version of a re-
quirements document).

There are many approaches to traceability, but only few
to tracing horizontal relationships. To confirm this obser-
vation, we conducted a literature survey [14].

Previous studies on and approaches to traceability aimed
at understanding and characterizing traceability and at de-
scribing general principles on how to implement trace-
ability (e.g., [15][16][17][18][19]). The approaches focus
on vertical traceability to support change. Ramesh and
Jarke [19] found that most approaches simply specify that
there are horizontal relationships without the ability to
specify their nature. They pointed out that it is very valu-
able to distinguish among different types of dependencies
and classified dependencies into four categories: goal,
task, resource, and temporal dependencies. They did not
state which types of dependencies should be traced to
support a certain goal, such as recycling.

To get more insight into practical experience with trace-
ability, we screened reports of tool user conferences like
InDOORS [20]. These reports confirmed the findings of
the study [19] that traceability is mainly used for post-
traceability in terms of requirements refinement, require-
ments allocation and compliance verification, and – for
high end users – also, pre-traceability or rationale capture.
Again, only few reports on the details of supporting hori-
zontal relationships could be found. One exception is
[21], which reports on experience in using DOORS to en-
sure completeness of the products. In this case, the fol-
lowing relationships are used:
• Cascade links (i.e., evolution or part-of links) between

artifacts of the same type (e.g., from requirements for
the interior to requirements for the vehicle).

• Interdependency links representing dependencies
within one artifact (e.g., requirements for fuel econ-
omy and vehicle weight).

• Interface links representing dependencies according to
the flow of data, material or energy between elements
of different requirements artifacts (e.g., engine and
transmission requirements).

In the following section, we describe the relationships
that we used to support the recycling goal.

4. Identification of relationships
Software artifacts consist of several parts (e.g., functional
requirements, design classes). In the following, we call
these parts documentation entities.

4.1. Relationships
Documentation entities are related through different types
of relationships. Each documentation entity represents a
certain logical entity (e.g., a paragraph of an “Overview
Description” (documentation entity) represents a function
“seat control” (logical entity)). We suggest identifying
types of horizontal relationships by investigating logical

entities described in the RD and their relationships. Of
interest are relationships between logical entities but also
relationships between logical and documentation entities.

[22][23] distinguishes two general types of relationships
between logical entities: (1) refinement and (2) depend-
ency relationships. Refinement relationships are relation-
ships between logical entities on different levels of ab-
straction. A complex system function “seat control”, for
instance, has a refinement relationship to a set of system
functions, such as “seat back angle control”. Dependency
relationships are relationships between logical entities on
the same level of abstraction. A system function “seat
control”, for example, has an influence relationship to an
environmental item “seat position”.

Relationships between documentation entities can be de-
rived from relationships between logical entities. A sec-
tion “Seat Control” of an RD, for example, represents the
logical system function “Seat Control” (see Figure 1,
lower half). One subsection of the same section includes
an “Input list”. One paragraph describes a “Push button”
that represents a logical item “Push button”. There is a
dependency relationship “monitors” between the logical
entities “Push button” and “Seat Control” because push-
ing the button results in moving the seat. From this logi-
cal relationship, a dependency relationship “monitors”
between the paragraph that describes the “Push button”
and the section “Seat Control” can be derived.

In order to identify all types of horizontal relationships, it
is not enough to investigate logical entities and their rela-
tionships. Typically, a logical entity is described more
than once in a software document, for example, in differ-
ent views. Representation relationships are relationships
between two documentation entities that represent the
same logical entity [22][23]. If a system function, for in-
stance, is represented in paragraph “Seat Control” within
chapter “Product overview” and section “Seat Control”
within chapter “Function Description” (see Figure 1,
lower half), there is a representation relationship between
the section and the paragraph.

To deal with several RDs (as in the case of requirements
recycling), one has to abstract from concrete entities and
their relationships. The contents of an RD are captured on
the level of types. The arrows between the lower and the
upper half of Figure 1 illustrate the relationships between
concrete and abstract logical and documentation entities.

4.2. Conceptual system model
A conceptual system model (CSM) [22][23] describes
types of logical entities and their relationships that appear
in several RDs of a certain domain. Each relationship de-
scribed for a certain logical entity type (e.g., “function”
has a “dependency relationship” to “monitored environ-
mental item”) must be instantiated for a logical entity of

this type described in a concrete RD (e.g., function “seat
control” has a dependency relationship to a monitored
environmental item “push button”).

We developed a CSM for electronic control units. The
model is based on the Four Variable Model for document-
ing embedded systems developed by Parnas et al.
[24][25]. The model describes the contents of different
software artifacts and their relationships without specify-
ing their representation.

Figure 1 (upper half) shows a subset of our CSM. The
UML class diagram describes logical entity types and re-
lationships of the logical entity type “atomic function”.
The different kinds of relationship types are marked in
gray. The model describes, for example, a “refinement
relationship” between “complex functions” and “func-
tions”, and different dependency relationships. Each
“monitor relationship” is, for instance, associated to one
or more “input devices” that enable the monitoring of an
“atomic environmental item”.

4.3. Conceptual documentation model
A conceptual documentation model (CSM) [22][23]) de-
scribes types of documentation entities and their relation-
ships that appear in several RDs in a certain domain. Each
relationship described for a documentation entity type
(e.g., a paragraph included in section “Product Overview”
has a “representation relationship” to a section of the
chapter “Function Description”) must be instantiated for
each documentation entity of this type (e.g., the paragraph

that describes the function “Seat Control” has a “repre-
sentation relationship” to a section “Seat Control” of the
chapter “Function Description”).

Each documentation entity type has an attribute “vari-
able” that defines whether the documentation entity type
must be instantiated with a type “name” in the RD (value
= false) or whether it can be instantiated differently (value
= true). The type “Function description”, for example,
must be instantiated to a heading “Function Description”.
In contrast, the type “Input item” can be instantiated to
types “Push button”, “Transmitter”, etc.

•Product overview
•1. Short description

Seat Control
Adjust seat back angle, …

1.2. Seat Control

7. Function Description
7.1. Seat Control
7.1.1. Input list

S1.Push button

Conceptual Documentation Model (CDM) Conceptual System Model (CSM)

Documentation entities and relationships

Complex Function
„Seat Control“

Monitored
Environmental Item

„Push button“

Logical entities and relationships

instantiates
represents
monitors

Legend:

Figure 1: Documentation and logical entities and their types

•Product overview
•1. Short description

Seat Control
Adjust seat back angle, …

1.2. Seat Control

7. Function Description
7.1. Seat Control
7.1.1. Input list

S1.Push button

Conceptual Documentation Model (CDM) Conceptual System Model (CSM)

Documentation entities and relationships

Complex Function
„Seat Control“

Monitored
Environmental Item

„Push button“

Logical entities and relationships

instantiates
represents
monitors

Legend:

•Product overview
•1. Short description

Seat Control
Adjust seat back angle, …

1.2. Seat Control

7. Function Description
7.1. Seat Control
7.1.1. Input list

S1.Push button

Conceptual Documentation Model (CDM)Conceptual Documentation Model (CDM) Conceptual System Model (CSM)Conceptual System Model (CSM)

Documentation entities and relationships

Complex Function
„Seat Control“

Monitored
Environmental Item

„Push button“

Logical entities and relationships

instantiates
represents
monitors

Legend:

Figure 1: Documentation and logical entities and their types

Figure 1 (upper half) shows a subset of our CDM. The
UML class diagram describes documentation entity types
(colored light gray) and their representation relationships
(colored dark gray). In addition, the figure shows the rela-
tionships between the CDM and the CSM (dashed lines)
used to identify the representation relationships. As can
be seen from the CDM, six documentation entities have a
representation relationship because they all represent an
“complex function”. The figure only visualizes the three
dashed “represents” arrows corresponding to the example
in the lower half.

Dependency and refinement relationships are transferred
from the CSM to the CDM. The figure shows a depend-
ency relationship between a paragraph “Title of Function”
of a section “Function” and a paragraph “Input item” of a
subsection “Input list”.

Our traceability model consists of a CSM and a CDM.
Both models are the foundation of our recycling approach
described in the next chapter. From this model, we de-
rived guidelines on how to prepare the documents for re-
cycling and how to recycle requirements.

5. Systematic Requirements Recycling
In this section, we describe the systematic process Fh
IESE recommended to DC as well as the activities that
are necessary to provide the details of the process.

5.1. Change Scenarios
To guide the search for an efficient recycling process, DC
identified the most common variation scenarios between
two generations of ECUs influencing the recycling:

1.) Changes in the system environment
• New sensors or actuators
• Sensors or actuators, formerly wired directly, now

communicate via the CAN-bus.
• Additional messages for communication with

other ECUs via the CAN-bus.
2.) Architectural changes

• Functionalities are relocated between ECUs.
3.) Changes in functionality

• New, innovative functionality is integrated into an
existing ECU

• Existing functionality is enhanced or redesigned.
4.) Changes of parameters

• Limits for values like voltage, speed, etc. change
due to new technology or legal restrictions.

5.) Changes in conditions
• New laws, standards, business rules must be ad-

hered to.
• Variants for specific countries must be handled.

5.2. Systematic Recycling Process
Systematic requirements recycling is based on the notion
of logical recycling candidates. A logical recycling can-
didate is a logical entity described in an existing RD that
can be used (with minor modifications) in a new RD. A
documentation entity representing a logical recycling
candidate is called documentation recycling candidate.

Our recycling approach combines composition-based and
generation-based reuse concepts. It provides a template
(generation-based) that
• defines a document structure,
• includes stable entities of an RD, and
• restructures the original document to reduce the num-

ber of relationships.
In addition, it provides traceability guidance (composi-
tion-based) on
• how to document relationships of recycling candidates

explicitly and on
• how to use relationships to copy recycling candidates

correctly.
Both, the template and the guidance are based on the
traceability model.

Requirements engineers who want to develop a new RD
with the help of recycling candidates execute the follow-
ing process steps:
• Take the template and use its structure as a checklist

to ensure completeness of the new RD.
• Search for documentation recycling candidates in the

existing RD. In general, this requires a complex
matching process. In this context, however, matching
is not the problem, because the developers know very
well how to identify the recycling candidate. Thus,
keyword search is sufficient.

• If documentation recycling candidates were found:
Copy these together with related documentation enti-
ties into the new RD and adapt them.

• If no recycling candidates were found: Add new
documentation entities to the new document and relate
them to the rest of the document. The latter supports
recycling of the new RD.

5.3. Development of the Recycling Process
The template and the guidelines for the development of a
new RD must be tailored to the domain and traceability
goal, for instance, change, recycling or project manage-
ment. In the following, we describe the activities to de-
velop the recycling process.

1.) Distinguish documentation recycling candidates from
documentation entities not relevant for new RD. Im-
portant recycling candidates are mentioned by the
change scenarios. Since the scenarios cannot cover all

reuse situations, domain know-how is necessary in
addition to identify reusable documentation entities.

2.) Develop a CSM and a CDM of a typical existing RD.
Types for all (documentation or logical) recycling
candidates and related (documentation or logical) enti-
ties are included in the models. Since the models are
on an abstract level of types (e.g., “function” instead
of “seat control”), the number of entities and, there-
fore, the number of relationships is limited.

3.) Restructure the CDM to minimize representation rela-
tionships and to position documentation entities re-
lated by dependency relationships close to each other.
Minimization of representation relationships reduces
redundant information on a specific logical entity type
in the document as much as possible. This supports
the identification of documentation recycling candi-
dates as well as the effort during copying. The latter is
also supported through the positioning.

4.) Develop a template for the new RD corresponding to
the restructured CDM. Each documentation entity
type with variable value “false” is instantiated by a
(sub-) heading or a fixed text in the template.

5.) Provide guidelines for documenting relationships be-
tween documentation entities that reduce the necessity
for link setting. Use implicit links as described in
[26][27] namely name tracing, and relationships given
by documentation structure. In particular, all represen-
tation relationships can be established through name
tracing in such a way that all documentation entities
related to the same logical entity can be identified by
the same name. All refinement relationships can be es-
tablished through documentation hierarchy. That
means that the documentation entity corresponding to
the logical child entity is part of the documentation
entity corresponding to the logical parent entity. If
manual link setting should be avoided altogether (e.g.,
because of missing tool support), dependency rela-
tionships can be established through referencing and
name tracing. Related documentation entities refer-
ence each others´ names. In addition, all the instances
of documentation entities are tagged with a “d”, if this
instance describes a logical entity, and tagged with an
“r”, if this instance only references this entity. Thus,
in case of name tracing the search for the related en-
tity is implemented through name search. Using the
tags, all references and descriptions can be found,
while accidental usages of these names (e.g., just for
explanation) are ignored.

6.) Provide guidelines for searching and copying recy-
cling candidates that make use of the explicit and im-
plicit links. In particular, the guidelines should ensure

that all documentation entities related to a recycling
candidate are copied together with the candidate.

5.4. Experience
The activities above are illustrated in the following by our
results and experience.

From the change scenarios described in Section 5 and the
domain know-how provided by DC, Fh IESE identified
the set of recycling candidates for the RD published in
[28]. The majority of recycling candidates deal with
“functions”, “environmental items” and “devices”. But
product aspects, such as “country”, or hardware aspects,
such as “voltage”, are also likely to be recycled.

The analysis of the conceptual models resulted in several
opportunities for restructuring: As an example for the re-
duction of representation relationships consider Figure 1
once more. It shows the documentation types of the origi-
nal document. Besides the “Title of function” and “De-
scription of function” within the complete “Functional
description”, entity types in the “Product overview” also
represented a “complex function”, namely the “Picture”,
“Title of short overview“, “Title of function overview”,
and “Function overview description”1. The “Short func-
tion overview” characterized the “function” in one sen-
tence; the “Function overview” described the “function“
in one paragraph. Both only served to give a short over-
view. Thus, we replaced the “Short function overview”
with the “Function overview” and saved one representa-
tion relationship. Figure 2 shows the part of the template
corresponding to the restructured version of Figure 1.
However, typically at least one representation relationship
remains, because major entities will be mentioned in the
introduction as well as in the functional description. This
redundancy is essential for the understandability of the
document.

 1.Product Overview
1.1 Function overview

1.1.1 Function name1
…..
1.1.2 Function name2

Figure 2: Template restructures original document

Figure 3 gives another example for the reduction of repre-
sentation relationships. In the original document, each
“Input item” included in an “Input list” of a “Function”
had a representation relationship to the “Pin” and the “In-
put signal description” (namely, through naming the input
“S1.T_OPEN”). The reference to the pin number, and
thus the first representation relationship can be omitted,

1 Note that for the sake of clarity, not all relationships are
shown in the figure.

since the pin number can be inferred through the refine-
ment relationship between “Input signal description” and
“Pin description”.

Figure 3: Representation relationships of “input item”

Figure 4 shows another part of the template. We focused
especially on the description of the functions, since they
are the major recycling candidates. One obvious choice
for function description are automata or corresponding
tabular representations.

 7. Function
7.1. Function Fname1
7.1.1 Input list
Iname1:…
Iname2:…
7.1.2 Output list
Oname1:..
Oname2:..
7.1.3.Behavior description
precondition:…
input :..
output :…
interrupt:…
failure:…
timeout:…

Figure 4: Template refines original document

However, the description of the ECU functions is not de-
tailed enough to provide all information for automata de-
scriptions. Since we did not want to enlarge the docu-
ments, we identified six major information categories de-
scribed in the documents, namely precondition, inputs
and outputs of functions as well as conditions for inter-
rupt, and timeout and fault handling.

The link setting guidelines use the following principles to
reduce explicit links: The recycling candidates of type
“item” and “function” have to be given a unique name,
which has to be used consistently throughout the docu-
ment. This ensures that representation relationships need
not be set explicitly. Related entities are identified
through searching for the specific name. Refinement rela-

tionships are realized through the documentation hierar-
chy. That means that, for example, in the section “func-
tional description”, each “atomic function” that refines a
“complex function” has to be described as part of the “de-
scription” of the “complex function”. If an “atomic func-
tion” is part of several “complex functions”, only a “title”
is included in all complex functions “description”, and the
detailed description is given as a separate “function” in
the “functional description”. Similarly, dependency rela-
tionships are realized through documentation hierarchy
and name references, or through explicit links. In our ex-
perience, explicit links are, of course, more comfortable.
If a document is reused more than once, then at first,
name search should be used. While navigating through
the document, links should be set explicitly to be used in
later recycling steps.

The guidelines for searching and copying are straightfor-
ward. If a documentation entity (e.g., a function “Seat
Control”) is to be recycled, all documentation entities re-
lated through representation and refinement relationships
(i.e., including the same name and all subparts of the cor-
responding “Description”) have to be copied as well.
Tracing the dependency links leads to further documenta-
tion entities that possibly have to be copied. Of course,
this procedure has to be applied recursively.

Our solution is able to handle all change scenarios given
by DC (see Section 5.1). In the following, we discuss one
example. It shows how our solution helps to avoid omis-
sions and inconsistencies when copying a function and
related items. Suppose that all except the function “Seat
Control” should be recycled. The developer copies all
function descriptions except the one for “Seat Control”.
When copying the “Input signal description” and “Output
signal description”, s/he checks for each of the inputs or
outputs of “Seat Control” whether it is on the “Input list”
or “Output list” of another function. If it is, it can be cop-
ied without change. If not, the corresponding description
is not copied.

Of course, there are more complicated recycling steps that
involve adaptation. Suppose, for example, that the input
“Door_open” is to be recycled, but its type changes from
“input signal” to “CAN-signal”. Because the explicit re-
presentation relationship between the “Input item” of a
“Function” and the “Pin” was removed (see Figure 3), all
“Function descriptions” can be copied without change.
However, because “Door_open” changes its signal type
from “PinSignal” to “CANSignal”, the “CAN-
description” instead of the “Input signal description” has
to be instantiated.

More detailed guidelines for the instantiations (giving
technical details on how to adapt a documentation entity
depending on the content) require further research.

Other constraints and risks, as well as benefits of our ap-
proach are discussed in the following chapter.

6. Benefits and Risks
The process helps the developers to reduce effort for re-
cycling because the template localizes as much informa-
tion as possible. It also helps to prevent omissions and
inconsistencies, because it supports copying a documenta-
tion entity together with its related entities.

The process does not require any change in tool support,
because it can be implemented with the search feature of
an editor, if all links are realized through names and ref-
erences. The additional effort required from the develop-
ers is the effort to use consistent naming, to adhere to the
template and make relationships explicit. Because we
only put information in the template that was in common
with other RD, we did not enlarge the documents.

The major risk of our approach is that developers are not
disciplined and do not adhere to the template and the
guidelines. This would destroy the implicit naming links
and the structure. This risk has to be mitigated through
organizational measures.

Another risk are omissions and inconsistencies due to se-
mantic dependencies (e.g., between the timeout behavior
of the two functions). There are two major sources of se-
mantic dependencies: relationships through a common
usage context or because of design decisions. The former
can be identified through capturing the usage context in
terms of use cases for ECU (see [29]). The latter is sup-
ported by capturing additional information about design
rationale for the requirements (see [30]). Both would at
first significantly enlarge the effort (because of the addi-
tional effort for capturing), but would pay off in the long
run. It is, however, an open question whether this effort
would be more worthwhile than the effort for a full prod-
uct-line approach. Our approach does not include these
additions so far. However, the CSM and CDM can easily
be extended to cover the identified semantic dependen-
cies.

There does not seem to be an alternative simpler than our
approach. The traceability guidelines without the template
are not sufficient, because without the template the num-
ber of relationships cannot be minimized. The template
without the traceability guidelines is not sufficient, be-
cause the template alone does not prevent omissions and
inconsistencies in case of selective recycling. Another ap-
proach for minimizing manual link setting is automatic
trace capture as described in [31]. This approach was not
viable because of the additional tool support required.

Creating the CSM and CDM and deriving a template and
guidelines requires effort, but this effort must be spent
only once. The CSM can also be used for other applica-

tions (e.g., motor control, seat control) or types of em-
bedded systems, such as building automation. The CDM
can easily be adapted for more structured natural lan-
guage documents, like use cases or tables. Furthermore,
because of the well-defined relationships, the analysis of
the conceptual models can be partially supported by a
tool.

People responsible for the development process benefit
from our approach. The whole approach can be seen as a
first step towards product lines, where the template gath-
ers the information on commonalities, not on variabilities.
If our approach is used for some time, new insights will
be gained on how new RDs differ. This can be used to
refine the template. In addition, one can exploit our ap-
proach to support other traceability goals.

7. Main Contribution and Future Work
We described a solution to the recycling problem based
on abstraction and traceability. In addition, we described
our process to develop this solution based on a CSM and
a CDM. This process was already validated in the domain
of building automation. [22] shows how to derive guide-
lines for changing requirements and design documents
based on a CSM and a CDM for use cases and UML-
models. Experimental results showed a significantly
beneficial influence of the guidelines on the correctness
and completeness of a predicted set of change impacts in
comparison to traditional development guidelines. Thus,
we are convinced that our approach pays off for this do-
main and goal as well. Furthermore, we are sure that the
process can be tailored to further domains and traceability
goals, such as change and project management.

We see two directions for future work for the recycling
problem:
• More fine-grained recycling would be supported

through the provision of default values and default
sentences in the template.

• Better understanding of the overall purpose of recy-
cling candidates could be achieved through capturing
the context and rationale.

8. Acknowledgements
We thank Joachim Weisbrod for helpful feedback during
the literature study and the development of our approach.
In addition, thanks goes to Erik Kamsties, Kirstin Kohler,
Daniel Kerkow, and the anonymous reviewers for helpful
comments. This work was partially funded by the German
BMBF in the project QUASAR under grant VFB0004A.

References
[1] T. Biggerstaff, A. Perlis (Ed.) “Software Reusability. Vol-

ume 1 Concepts and Models”, ACM Press Frontier Series,
1989.

[2] W. Lam, “A case-study of requirements reuse through
product families”, Annals of Software Engineering, 5 , pp.
253-277, 1998.

[3] M. Fowler, “Analysis Patterns”, Addison Wesley, 1996.
[4] W. Lam, S. Jones, and C. Britton, “Technology Transfer

for Reuse: A Management Model and Process Improve-
ment Framework”. ICRE’98, pp. 233- 240, 1998.

[5] L. Cybulski and K. Reed, “Requirements Classification
and Reuse: Crossing Domain Boundaries”. W. B. Frakes
(Ed.): ICSR-6, LNCS 1844, pp. 190-210, 2000.

[6] A. Sutcliffe and N. Maiden, “Domain Modelling for Re-
use”, ICSR, 1994.

[7] S.R. Faulk, “Product-Line Requirements Specification
(PRS): an Approach and Case Study”, RE’01 , pp. 48-55,
2001

[8] F. Kiedaisch, M. Pohl, J. Weisbrod, S. Bauer and S. Ort-
mann, “Requirements Archaeology: From Unstructured
Information to High Quality Specifications”, RE’01, 2001.

[9] F. Kiedaisch, M. Pohl, J. Weisbrod, S. Bauer and S. Ort-
mann, “Experiences on Outsourcing Requirements Speci-
fications”, EuroSPI’01, 2001.

[10] W. Lam, J.A. McDermid and A.J. Vickers, “Ten Steps
Towards Systematic Requirements Reuse”, Requirements
Engineering Journal, No. 2, pp. 102-113, 1997

[11] A. Sutcliff and N. Maiden, “The Domain Theory for Re-
quirements Engineering”, IEEE Transaction on Software
Engineering, vol. 24, no.3, March 1998

[12] B. Ramesh and Edwards, E., “Issues in the Development
of a Requirements Model”, ISRE’93, pp. 256-259, 1993

[13] K. Pohl, “Process-Centered Requirements Engineering”.
WS, 2nd Edition, 1996.

[14] A. von Knethen and B. Paech, “A Survey on Tracing Ap-
proaches in Practice and Research”, IESE-Report No.
095.01/E, January 2002.

[15] B. Ramesh, T. Powers, C. Stubbs, and M. Edwards, “Im-
plementing Requirements Traceability: A Case Study”,
ISRE’95, pp. 89-95, 1995.

[16] M. Lindvall and K. Sandahl, “Practical Implications of
Traceability”, Software – Practice and Experience, Vol.
26, No. 10, pp. 1161-1180, 1996.

[17] O. Gotel and A. Finkelstein, “An Analysis of the Re-
quirements Traceability Problem”, ICRE’94, pp. 94-101,
1994.

[18] B. Ramesh, “Factors influencing requirements traceabil-
ity” Communications of the ACM, Vol. 41, No. 12, pp. 37-
44, 1998.

[19] B. Ramesh and M. Jarke., “Towards Reference Models for
Requirements Traceability”. IEEE Transactions on Soft-
ware Engineering, Vol. 27, No. 1, 2001.

[20] http://www.telelogic.com/
[21] J. Bedocs. “A Data Architecture for DOORS Projects”,

InDOORS 1999, http://www.telelogic.com/
[22] A. von Knethen, “Change-Oriented Requirements Trace-

ability. Support for Evolution of Embedded Systems”.
PhD Theses in Experimental Software Engineering, Vol.
9, Fraunhofer IRB, 2002.

[23] A. von Knethen, “A Trace Model for System Require-
ments Changes on Embedded Systems”. IWPSE’ 01,
2001.

[24] D. Parnas and J. Madey,. “Functional Documentation for
Computer Systems Engineering”. CRL Report 237,
McMaster University, Hamilton, Ontario, Canada 1991

[25] R. Bharadwaj and C. Heitmeyer, “Hardware/Software Co-
Design and Co-Validation: Using the SCR Method”,
HLDVT’99, Nov. 1999.

[26] M. Lindvall, “A Study of Traceability in Object-Oriented
Systems Development. Licentiate thesis Linköping Studies
in Science and Technology No 462, Linköping University,
Institute of Technology, Sweden, 1994.

[27] D. Leffingwell and D. Widrig, “Managing Software Re-
quirements. A Unified Approach”, Addison-Wesley, 2000.

[28] F. Houdek and B. Paech, “Das Türsteuergerät – eine Bei-
spielspezifikation”, IESE-Report, 002.02/D, 2002

[29] I. Alexander and F. Kiedaisch, “Towards Recyclable Sys-
tem Requirements”, ECBS’2002, p.9-16, 2002

[30] A. Dutoit and B. Paech, “Rationale Management in Soft-
ware Engineering”, Handbook of Software Engineering
and Knowledge Engineering, World Scientific Publishing
Company, 2001.

[31] K. Pohl, “PRO-ART: A Process Centered Requirements
Engineering Environment”, M. Jarke, C. Rolland, A. Sut-
cliffe, R. Dömges (Ed.) “The Nature of Requirements En-
gineering”, Berichte aus der Informatik, Shaker Verlag,
1999.

