

Electronic version of an article published in Achour-Salinesi, C. B. (Hrsg): Proceedings of
the Seventh International Workshop on Requirements Engineering. Foundations of
Software Quality (REFSQ'01), Reihe: Essener Informatik Beiträge Band 6, pp. 85-100

Copyright © [2001] Universität Duisburg-Essen

http://www.refsq.org/

Developing Guidance and Tool Support for
Rationale-based Use Case Specification

Allen H. Dutoit* and Barbara Paech°

*Technische Universität München, Institut für Informatik, 80290 Munich, Germany
dutoit@in.tum.de

°Fraunhofer Institute for Experimental Software Engineering, 67661 Kaiserslautern, Germany
paech@iese.fhg.de

$EVWUDFW��Few requirements engineering techniques are widely applied in indus-
try. This can–at least to some extent–be attributed to lack of dedicated guidance,
tool support, and technique integration. In this paper, we describe dedicated tool
support and guidance for rationale-based use case specification, which we incre-
mentally derived from several students experiments. Through this example, we
want to promote student experiments as a good basis for developing and improv-
ing guidance material and tool support, hence facilitating technology transfer.

� ,QWURGXFWLRQ

There is a wide variety of techniques for elicitation, specification, validation, and
management of requirements, but only few of them are used in industry. For example,
at a seminar given last year to around 100 developers in the car industries (suppliers
and procurers), 90% of the participants used natural language text edited in MS Word
for the requirements specification [18]. Also, the experience from several industry
projects the authors were involved in, shows that even the quality of requirements
documents that adhere to some standard is often fundamentally flawed, because:
• they do not contain the information needed by the people who have to rely on it,
• this information is often inconsistent, ill-structured, and imprecise,
• the authors of the specification did not find an adequate level of abstraction

avoiding design decisions, but capturing all relevant requirements details.
The reasons for these flaws are manifold and typically depend on the context. However,
in general, three issues seem to be essential for a successful requirements engineering
process:
• 'HWDLOHG�JXLGDQFH�IRU�SDUWLFLSDQWV. Most techniques suggested from academia are

not sufficiently well explained to be usable by persons other than their inventors.
Similarly, this holds true for established techniques like use cases, where, for
example, there is almost no guidance regarding the right level of abstraction
adequate for certain project contexts.

• 'HGLFDWHG�WRRO�VXSSRUW. Although there exist modeling and requirements
management tools, these tools are general purpose and do not support specific
tasks. Again, this holds true, for example, for use cases, where there is no dedicated
tool support for the capture and management of use cases.

• 6PRRWK�LQWHJUDWLRQ�DPRQJ�WKH�WHFKQLTXHV�DSSOLHG. The lack of integration among
techniques and with the rest of the process is the most critical of these three issues.
For example, there is no integrated method established for the simultaneous usage

of use cases and class models.
In this paper, we describe such guidance, tool support, and integration for rationale-
based use case specification. Our ultimate research goal is to support the evolution of
software by making available to developers rationale captured during requirements and
kept up-to-date throughout the software life cycle [10]. However, before we can work
towards that goal, we first need to understand the details of applying use case
specification and rationale capture to a realistic problem. We have done this by
developing a dedicated tool integrating both use case specification and rationale
capture. We have evaluated and refined this tool in the context of case studies conducted
with students in project courses.

Literature about experiments in software engineering (e.g., [2][20]) warns about the
threats to the validity of experiments using student subjects. The main argument is that
the experience of the subjects in skills that are relevant to the study must be
representative of the population to which the results will be generalized, which is not
always the case with student subjects. The case studies described here, however, have
given us much insight on how to improve our approach. They also reinforce the position
above that guidance and integrated tool support are essential. By evaluating the tool
with students, we have the opportunity to develop and improve guidance material for
the tool and the process. Student experiments, in this case, are especially valuable for
deriving guidance EHFDXVH of the general lack of specific experience of students, which
would have allowed them to apply requirements engineering techniques without
guidance and integration [2]. Therefore, if the guidance and integration is appropriate
for the students, it will most likely also be appropriate for practitioners.

Thus, the purpose of this paper is twofold: First, we describe dedicated tool support
for use case specification and rationale capture. Second, with this example, we want to
promote the idea of student experiments as a means of refining requirements techniques
and tools with specific guidance and integration, hence facilitating technology transfer.
In Sect. 2, we describe our assumptions, the tool we developed, and its evaluation
setting. We discuss the problems encountered with use case specification in Sect. 3, as
well as the guidance we devised to overcome these problems. Similarly, in Sect. 4, we
describe the problems encountered with rationale capture and the resulting
improvements. In Sect. 5, we describe the problems with the integration and the details
involved in improved integration. The conclusion summarizes the guidance and tool
support derived from the case studies.

� ([SHULPHQWDO�(QYLURQPHQW

In [10], we described an integrated process for use case specification and rationale
capture, as well as the requirements for a tool supporting this process. Developers use
the tool for describing a problem statement (we assume a meaningful problem statement
has already been negotiated with the client) and refining the problem statement into a
requirements specification. Developers and reviewers have the opportunity for entering
rationale information, as a side effect of specification, collaboration, and review. In the
following, we give an overview on the tool (Sect. 2.1) and describe the context for the
two case studies, a software engineering project course (Sect. 2.2) and a requirements
engineering seminar (Sect. 2.3).

��� 7RRO�2YHUYLHZ

The design goals of the first version of the tool were to provide a simple and integrated
solution to manipulate use case and rationale models without embedding process
specific assumptions. The tool is a web application that can be accessed via most
popular web browsers. This enables users to access the tool remotely from a variety of
environments (e.g., lab, home, office) without the installation of additional software.
The main view of the tool presents the user with three frames: a title/menubar, a
requirements specification view and a rationale view (see Fig. 1.).

The requirements view displays the requirements specification as a hypertext
document, structured into actors, user tasks, use cases, services, and non-functional
properties [10]. Actors and user tasks describe the application domain from the user’s
point of view and independently from the system. The services describe the features of
the system, independently from the user. The use cases describe how user tasks are
realized in terms of services and provide traceability from the problem statement to the
specification. Non-functional properties can be used to describe non-functional
requirements on the system or to describe facts of the domain that are more easily
expressed as properties than task descriptions. The user can also provide examples in
terms of actor instances and scenarios and define important terms using a glossary. The
tool provides templates, text boxes, and selection menus for each requirements element.
The tool recognizes known terms and highlights them automatically in text fields (e.g.,
the flow of events of a user task or a use case). For example, Fig. 2. displays the detailed
view of a use case.

)LJ� ���Overview of tool: requirements specification (left column) and rationale (right column)
are allocated the same amount of screen real estate.

In the rationale view, information is structured according to the Questions, Options,
Criteria (QOC) paradigm [14] and displayed as tables and hyperlinks, thus maximizing
the density of information that the user can read in a single screen (see Fig. 3.). A single
page describes the question under consideration, the decision (if any) that resolves the
question, and a table describing the trade-offs that were evaluated. The rows of the table
are the different options that were considered. The columns of the table are the criteria
relevant to the question that were used to evaluate the options. The table cells contain
the assessments of each option against each criteria.

Displaying rationale as text is a different approach than other well-known rationale-
based tools (e.g., gIBIS[7], SYBIL[12], QuestMap[19]), which display rationale as a
graph. In addition to the QOC structured information, users can annotate questions with
informal comments or arguments (with the [Post Comment] feature) to provide
reference information or negotiate various aspects of the question.

An important assumption behind our process is that requirements and rationale must
be tightly integrated for decreasing the overhead of rationale capture and increasing its
utility. This integration is visible in the tool in two ways: the interlinking of
requirements elements and questions, and the interlinking of non-functional properties
and criteria.

/LQNLQJ�RI�UHTXLUHPHQWV�DQG�UDWLRQDOH�HOHPHQWV�� the user can create questions
in two ways: by challenging a specific requirements element with the [Question] feature
or by justifying a requirements element with the [Justify] feature (see buttons at the top
of the use case view in Fig. 2.). By clicking on [Question], the user is presented a series
of forms to enter a question, its relevant criteria, one or more options, and the
assessments of the options against the criteria. Users use [Question] to request a
clarification, express a disagreement, or more generally, to initiate a discussion. Once
other users have contributed to the question and a consensus is reached, the user can
close the question with a decision. By clicking on [Justify], the user is presented with a
similar series of forms, except that the resulting question is closed and the current

)LJ� ���Detailed use case view. The user is provided a template for each requirements elements.
Questions can be associated to any element.

alternative is described and used as a decision. The resulting question can only be
discussed if it is first reopened. [Question] is used to open a discussion with multiple
users and hence collaboratively building a rationale behind one or more evolving
requirements element; while [Justify] is used (usually by a single user) to enter the
justification of the current version of a requirements element.

When creating questions, either with [Question] or [Justify], the tool stores a
bidirectional link between the questioned requirements element and each of its
corresponding questions. This enables the user to navigate and update related questions
or related elements quickly.

/LQNLQJ�RI�QRQ�IXQFWLRQDO�SURSHUWLHV�DQG�FULWHULD��Non-functional properties
are treated as criteria in the rationale view (Fig. 3.). This enables the user to select non-
functional properties that are relevant to a given question. These non-functional
properties are then included as columns in the assessment table as a regular criteria.
Each option can thus be evaluated according to the degree of satisfaction of each non-
functional property. Links between the columns in the rationale view and the non-
functional properties in the requirements view enables the user to view detailed
descriptions of non-functional properties and their context. Note that, while all non-
functional properties correspond to a criteria, not all criteria correspond to a non-
functional property. Some criteria, for example, can originate from other tools (e.g.,
design goals during system design).

)LJ� ���Detailed question view. Users can collaborate by adding options, criteria, assessments, and
references to elements.

Finally, the tool has minimal process knowledge, thus to increase the flexibility of the
tool and the evaluated processes: Users can manipulate any requirements elements and
rationale elements in any order and at any time. Process guidance is provided instead
through training and on-line help documentation within the tool.

��� 67$56�&DVH�6WXG\

The tool was first used in the software engineering project course offered at Technische
Universität München (TUM) [5]. 22 students divided into four teams developed
STARS (Sticky Augmented Reality Technology System), a prototype augmented
reality application for nuclear powerplant technicians. Three of the four teams (15
students) were involved in the requirements engineering of the system, which lasted
five weeks (Fig. 4.).

The students were provided with a nuclear powerplant maintenance scenario
illustrating the use of the STARS system and a general problem statement in terms of
actors, user tasks, and non-functional properties. The instructors spent two lectures on
requirements engineering in general and a 45 minute tutorial on using the tool. In
addition to the on-line help, the students had access to a toy example describing the
specification for a supermarket check out system. Coaches and instructors provided
feedback to 2D mock-up and on the initial version of the specification during reviews
and using questions in the tool. Students spent the final week of the requirements phase
consolidating the specification by discussing and answering any remaining open
questions.

We used four different source of data for the evaluation of the tool: logged user
actions, user questionnaire, informal comments and discussions about the tool, and the
final version of the requirements specification and its associated rationale. In using

)LJ� ���Requirements engineering phases and schedule during STARS. Subsequent development
phases (in gray) included for completeness.

2D paper mock-up

Specification, 1st draft
Consolidated specification

System design
System design consolidation

Build 1

Build 3 (Final)

:HHN

Kickoff

1

Build 2

Delivery

0LOHVWRQH

2
3
4
5
6
7
8
9

10
11
12
13

67$56�5HTXLUHPHQWV�3KDVHV

these different data, we focused only on qualitative aspects, as our goal was to uncover
limitations and elicit ideas for improving the tool and its associated guidance.

The students produced a 24 page requirements specification using the tool, including
29 use cases. The quality of the requirements specification was average. For example,
several use cases documented system design level features of the system and the
granularity of the use cases was too small. Several weaknesses of the specification
(discussed in Sect. 3) were traced to misunderstandings of the process and lack of
distinctions between user tasks, use cases, and services.

The rationale information included 62 questions (with their associated options,
decisions, comments, and criteria), spanning 40 pages of text. About half of this
information was related to clarifications and omissions, and thus, would not be useful
information downstream for system evolution. While students did understand relatively
easily the basic concepts of the QOC paradigm, their use of comments and questions
sometimes pointed to missing features in the tool (discussed in Sect. 4).

We observed that students used the tool as a mechanism for delivering specifications
and for obtaining feedback from instructors. In some instances, the students used the
tool to obtain clarifications from other students about their contribution to the
specification. However, the tool was not used as a collaboration mechanism within the
teams. Instead, they used face-to-face meetings and designated a volunteer to enter their
decisions in the tool. In total, only about 6 students used the full range of the
functionality provided by the tool.

��� 0HHWLQJ�6FKHGXOHU�&DVH�6WXG\

In the STARS case study, several use cases did not have any questions attached, in other
words, there was no rationale associated with them. This lead us to add the [Justify]
feature for developers to explicitly justifying use cases and services (discussed in
Sect. 2.1). This feature is similar to the feature for raising questions, except that it
produces only closed questions. This feature was then evaluated in the next case study.

Four students taking a requirements engineering seminar at TUM spent four weeks
developing a requirements specification for the meeting scheduler problem [11]. We
structured the original problem statement into three actors, four user tasks, and 10 non-
functional properties. The students were already familiar with requirements engineering
methods and, hence, were given only a 15 minute tutorial on user tasks, use cases, and
QOC.

Except for an explicit phase during which students justified their use cases, the
requirements phases followed in this case study were the same as in STARS (Fig. 5.).

)LJ� ���Requirements engineering phases during Meeting Scheduler case study.

Use cases, 1st draft

:HHN

Kickoff

1

0LOHVWRQH

2
3
4

Consolidated use cases
Justified use cases
Justified services, 1st draft

0HHWLQJ�6FKHGXOHU�5HTXLUHPHQWV�3KDVHV

Similar to STARS, the students spontaneously decided to meet face-to-face once per
week. The students also met once per week with the instructor (as part of their regular
seminar duties), which provided an opportunity for clarifying the process and the
concepts behind the tool. Given the smaller size of the forum and the better system
development experience of the students, much fewer misunderstandings about the
process occurred.

The same data collection methods were used as in STARS. This case resulted in a
specification of better quality than STARS, including 20 pages and 18 use cases. The
rationale information included 40 questions, including 13 justifications which were
much likely to be useful during system evolution. Students spent more effort than in
STARS on capturing and structuring this rationale.

� 6XSSRUWLQJ�8VH�&DVH�6SHFLILFDWLRQ

In both case studies we had given the students a tutorial on user tasks and use cases. We
did not provide them with a very specific use case template, since it was not our
intention to develop and teach a new use case approach. However, it turned out that the
students needed more guidance, that the textual representation in the tool was lacking
means for use case structuring and that the use of non-functional requirements as criteria
for the evaluation of options required more specificity for the non-functional
requirements specification. In the following, we describe these problems in more detail
together with planned improvements.

��� 8VH�&DVH�*XLGDQFH

We had emphasized to students that in use cases the LQWHUDFWLRQ between system and
actors should be described. However, the use cases written by the students suffered from
several problems, some of them mentioned also in [13]. In particular,

1. the use cases were written from the system´s point of view,
2. the single steps of the flow of events were often indistinguishable,
3. actor names were inconsistent,
4. exceptions were described as separate use cases or omitted
5. the students wrote too many small use cases with too little coherence.
Another problem was that the difference between user tasks and use cases was not clear.
So for example, use cases which described new functionality were added as new user
tasks. Therefore, a lot of time planned for review and consolidation of the rationale
actually went into review and consolidation of the form of user tasks and use cases.

To overcome these problems we will provide different templates for user tasks and
use cases. The QHZ�WHPSODWHV are shown in Fig. 6 and 7.

The use case template is adapted from the HVVHQWLDO�XVH�FDVHV of [8], where each use
case step has a number, and actor and system steps have to alternate. This way, we hope
to avoid the first two problems. Explicit naming of actors and exceptions should
alleviate the third and fourth problem. The includes relationships as well as
preconditions and postconditions can be used to structure the set of use cases, thus
supporting coherence between use cases.

We will also provide tool support for filling in the templates. Thus, e.g. the actors can
be selected from the set of actors already defined or a new actor can be created. In the
latter case, this actor is simultaneously included in the list of available actors.

User Task Name Manage Interaction Among Participants

Initiating Actor Meeting Facilitator

Participating Actors Meeting Participant

Task description The Meeting Facilitator is responsible for getting replies from
participants who have not reacted promptly, for notifying
participants of changes of date or location, and for keeping
participants aware of current unresolved conflicts or delays in the
scheduling process.

Realized in Use Cases Cancel Meeting, Handle Replies, Remind Participant, Set Meeting,
React to Replan Request

)LJ� ���User Task Template

Use Case Name Remind Participant

Initiating Actor Meeting Facilitator

Realized User
Task

Manage Interaction Among Participants

Participating
Actors

Meeting Participants

Flow of events Actors

1. The Meeting Facilitator selects a
scheduled meeting and the “Remind
Participant”-Feature.

3. The Meeting Facilitator selects a
participant.

5. The Meeting Facilitator writes the
message and requests the message
sending.

System

2. The System allows a choice
between the meeting-participants.

4. The System allows the formulation
of the message.

6. The System sends the message to
the selected participant [Exception:
Message Fails].

Exceptions [Message Fails] If the System cannot the deliver the message, it notifies the
Meeting Facilitator.

Rules Retry Message Sending for 5 hours

Precondition The meeting has been scheduled

Postcondition The meeting participant has been reminded through a message by the
meeting facilitator

Includes Use
Cases

None.

Used services Message Send

)LJ� ���Use Case Template

��� 6XSSRUW�IRU�8VH�&DVH�6WUXFWXUH

To emphasize the structure and coherence of use cases we will encourage students to
write for each user task one complex use case, possibly including other use cases.
Another means to support the structure and the “big picture” of the use cases altogether,
is to allow for a use case diagram. While it is beyond the scope of the current tool to
automatically link the diagram elements with the specification elements, just providing
the picture will be helpful to understand the overall structure. In addition use cases will
be grouped according to user tasks, and services will be grouped (possibly with
duplicates) according to use cases.

��� *XLGDQFH�IRU�1RQ�)XQFWLRQDO�3URSHUWLHV

During the case studies it became clear that there are different kinds of non-functional
properties with different usage as criteria. By making this explicit we hope to focus the
options, arguments and criteria provided by the students. Thus, we will use the property
types described in Table 1. The table also indicates when the different criteria are used.
So, for example, domain properties are used as criteria on how well use cases and
services realize a user task.

In some sense these criteria can be viewed as goals for the system design. However,
our types are much simpler than goal types in goal-oriented approaches to requirements
engineering (e.g. GBRAM[1] or KAOS[11]). In contrast to these approaches we use
user tasks instead of goals to drive the requirements elicitation and specification
process. We only use the non-functional properties as criteria for the evaluation of the
adequacy of use case or service design wrt. to user tasks and use cases, respectively.

� 6XSSRUWLQJ�5DWLRQDOH�&DSWXUH

Our ultimate goal is to provide rationale information to developers for supporting
evaluation. Currently, we have evaluated how this rationale can be first captured by
developers as a side effect of development (entering explicit justifications for specific
requirements elements), collaboration (asking questions and negotiating solutions), and

Table 1. Types of non-functional properties.

Property type Explanation
Used as criteria in

questions for:

Domain
Property

Facts of the domain to be adhered to by the software
system (e.g. “a person may not be a two different
places”)

Use Cases,
Services

Global
functional
properties

High-level functional requirements that cannot be
attributed to single use cases, but affect several use
cases (e.g.”the meeting scheduler must in general
handle several meetings in parallel”)

Use Cases

Quality
requirements

Requirements on characteristics of user tasks, use
cases or system services, e.g. “the elapsed time
between the determination of a meeting date and
location and the communication of this information
to all participants concerned should be as small as
possible”.

User Tasks, Use
Cases, Services

review (requesting changes and pointing out defects by raising questions). In the
STARS case study, the initial version of the tool provided the same mechanism for all
three types of activities, a simple matrix representation based on QOC (see Sect. 2). In
the Meeting Scheduler case study, we added the [Justify] feature for supporting the
creation of closed questions to better support justification. However, all questions
resulting from the three activities were still represented using QOC.

When examining the questions generated during the case studies, we realized that
QOC is too general a paradigm. Once a question was raised, users often did not know
whether they should discuss the question, realize the first option, or simply comment on
the relevance of the question. Moreover, for simple cases (e.g., a clarification question),
most of the complexity of QOC is not needed (e.g., clarifications do not have alternative
options or criteria associated with them).

For the next series of case studies, we are refining the rationale model to address the
issues we encountered while supporting justification, collaboration, and review. In
particular:
• Question authors specify the type of question being asked (challenge on form,

challenge on content, clarification, inconsistency, justification, omission, see
Table 2.).

• The set of available actions that can be invoked on a question is then restricted
based on the type of question. For example, clarification questions can only be
closed while challenges on content can have new options, criteria, and assessments.

• The tool provides additional views to filter questions by type. This enables, for
example, a rationale maintainer to see only the questions that have potential use for
long term rationale.

• Arguments can be attached to assessments in addition to questions. This enables
users to focus on specific cells in the assessment matrix. This is critical when the
QOC matrix alone does not seem to justify the selected decision. We will also focus
on heuristics for specifying and reviewing assessment matrixes in the tutorial.

Table 2. summarizes the types of questions, the set of available actions for each type,
and the potential value of each type of question for the rationale maintainer.
The taxonomy of questions in Table 2. results from the classification of the defects with
which each question is associated.1 This is a different taxonomy of question than that
used in other rationale-based approaches, such as [3] and [16]. [16] uses a taxonomy
based on the type of information missing from the specification (e.g., what-is, how-to,
who, what-kinds-of, when) which encouraged reviewers to ask questions by identifying
missing information, usually the hardest types of defects to identify. [3] uses a domain
specific taxonomy that analysts develop as part of the requirements process. This
enables stakeholders to identify quickly which questions are relevant to their win
criteria. In our case, we decided to select the defect taxonomy given that our focus is on
use case developers (as opposed to the reviewers or the clients) and provide them more
guidance about what to do with the questions. Moreover, we do not need to create an
explicit domain-based taxonomy as questions are already attached to specific
requirements elements (which can also be glossary entries).

1. With the exception of the Justification type which can be viewed as a subcase of the “Challenge
on Content” type.

� ,QWHJUDWLQJ�6SHFLILFDWLRQ�DQG�5DWLRQDOH

When developing the tool and its associated process, we believe that only a tight
integration between the requirements and the rationale activities can yield to a cost
effective capture of rationale and a significant return on investment. While Sect. 3 and
4 discussed refinements in the requirements and the rationale models supported by the
tool, in this section, we describe improvements in their integration. In the following,
we describe the problems (and their planned remedies) we encountered for
justification, collaboration, and review activities.

��� 6XSSRUWLQJ�-XVWLILFDWLRQ

In STARS justifications did not come naturally as a side effect of development. This is
consistent with other studies and is a well-known obstacle to the wide spread use of
rationale [17]. In the Meeting Scheduler study, we provided the [Justify] feature for
developers to enter rationale about use cases explicitly and made justifications part of

Table 2. Types of questions.

Question type Relationship to requirements Available actions
Value for
rationale

Challenge on
the form

Linked to one or more
elements that do not comply
to the structure supported by
the tool (e.g., confusion
between user tasks and use
cases).

• Close question by revising
related elements

None

Challenge on
the content

Linked to one ore more
elements the author of the
question disagrees with.

• Propose options
• Select criteria
• Revise assessments
• Close question once

consensus is reached

High

Clarification Linked to statement in a
requirements element that is
not clear.

• Close question by clarifying
unclear requirement. (No
criteria or options are
associated with this
question)

None

Inconsistency Linked to two or more
elements that are inconsistent.

• Propose option
• Close question by revising

related elements.

Low

Justification Linked to requirements
element that is being justified.

• Reopen question (in which
case this question behaves
the same way as a challenge
on the content)

High

Omission Linked to one or more
elements and describes
statements that have not been
written down.

• Propose option.
• Close question by filling the

gaps.

Low

the deliverables. While justifications cost additional overhead, we found that there are
concrete incentives for including justifications on use cases. For example, when a
justification was phrased as explaining how a use case satisfies better the non-functional
properties than other versions of the same use case, missing (non-functional)
requirements were found.

Currently, however, non-functional properties can only be created in the
requirements view. It is then impractical and unintuitive to create new non-functional
properties on the fly when writing a justification. We plan to modify [Justify] so that
non-functional properties can be created as a side effect of writing a justifications. We
believe this will improve the completeness of the requirements elements by the
elicitation of more non-functional properties (especially domain facts) and improve the
quality of the rationale information by documenting more accurately the trade-offs that
were investigated.

��� 6XSSRUWLQJ�&ROODERUDWLRQ

In both case studies, developers collaborated mostly outside the tool, except for limited
cases of collaboration between different teams. We believe this lack of collaboration
through the tool was due to two main reasons: First, developers had the opportunity to
meet face-to-face. Second, the tool lacked features typically offered by newsgroups or
E-mail. Once a question was posted, it was not always obvious who the target of the
question was and what actions were expected. Some developers attempted to indicate
this with the [Post Comment] feature, but this was not a common case. We plan to
improve collaboration support within the tool by adding features for asynchronous and
synchronous notification (e.g., by enabling users to send a link to a question via e-mail),
and by embedding more information about user responsibilities.

During consolidation, each student (or team) was responsible for resolving the open
questions related to their requirements elements. However, since several questions
related to different use cases could interact, developers would have to read all the
questions related to their elements to be able to comprehensively consolidate their
requirements elements. Since questions could only be viewed by single attributes of
questions (e.g., requirements element they are related to, time of modification, author,
and status), this task was difficult when many questions were still open. We plan to add
views into rationale that are more closely related to how responsibilities are assigned.
For example, developers should be able to view all questions related to all requirements
elements pertaining to a single user task, or to view all the questions by author of related
requirements elements.

We also plan to add a facilitator attribute to questions that can be explicitly set by
users and that can be used to sort questions. The facilitator of a question (which may be
the author of the related requirements elements) is then understood by all users as the
person responsible for facilitating the negotiation about the question, and, once
consensus is reached, to close the question and revise the related requirements elements.

In general, however, it will not be possible to remove completely the need for face-
to-face meeting, in which cases, we still need to capture the important questions that
were raised during the meeting. This could be done by a minute taker taking notes as
QOC matrixes [7][9] or by supporting the post-processing of meetings using QOC [4].

The definition of views could, of course, be alleviated by the use of a general-purpose
requirements management tool like DOORS. A first version of the tool had also been
implemented as a DOORS prototype. However, the effort to turn DOORS into a
dedicated tool, e.g. with concurrent view of requirements and rationale, specific input
and output templates for use cases and rationale, and especially the assessment matrix
with options, criteria and arguments, was soon deemed too high for our purpose. Also,
the students would have needed much more training on DOORS than they need on the
current tool.

��� 6XSSRUWLQJ�5HYLHZ�

In both case studies, more than half of the questions were generated during review, by
the instructors, the coaches, and the authors. Of these questions, half were request for
clarifications and reports of omissions, which, once the requirements specification is
revised to resolve these questions, do not contain much useful rationale information. We
also found some rationale that was buried in unrelated clarification questions, and
justification questions were often missing assessments and alternative options.
Consequently, a hypothetical rationale maintainer would have to spend a substantial
effort filtering, completing, and restructuring this information to be useful during
evolution.

By adding more information about questions, such as the question types described in
Sect. 4 and the question facilitator described in Sect. 5.2., reviewers will be able to
better focus their questions and elicit alternative options from specific developers.
Moreover, when justifications are written by developers as part of their work, the
reviewers will also be able to not only step through the requirements specifications but
also the justification questions. The reviewer can comment on the justifications if non-
functional properties are missing or if the assessments provided by the developers are
not clear (with the argument on assessment feature described in Sect. 4). We anticipate
that this will reduce the number of clarification questions while increasing the amount
of discussion on the justifications.

� &RQFOXVLRQ

In this paper, we described tool support for integrated use case specification and
rationale capture as well as two case studies where we have evaluated the tool. The
problems we encountered and the resulting proposed improvements (including
enhanced tool features and improvements to the guidance) are summarized in Table 3.

We will evaluate the tool and its guidance again during the summer in several case
studies using again the meeting scheduler as problem domain. With the input of these
case studies we hope to have completed the guidance on use case specification and
rationale capture, so that we can focus on rationale usage during the winter software
engineering project course at TUM. To further study collaboration during requirements
engineering, we also plan a distributed case study where students from Kaiserslautern
and TUM collaborate for the specification, only by way of the tool.

It is generally recognized that case studies and experiments with students are limited
when testing the effectiveness of a method or a tool and for generalizing to the
population of software developers. However, we showed, using rationale-based use

case specification as an example, how qualitative case studies using students as subjects
can lead to improvements in both tool support and guidance. To support the claim of
practical usefulness of the tool, experiments with practitioners have to be carried out.

5HIHUHQFHV

[1] A. Anton & C. Potts.”The Use of Goals to Surface Requirements for Evolving Systems,” International
Conference on Software Engineering, pp.157-166, Kyoto, 1998.

[2] V.R. Basili, F. Shull, & F. Lanubile. “Building Knowledge through Families of Experiments,” IEEE
Transactions on Software Engineering, vol. 25, no.4, July/August, 1999.

[3] B.Boehm, A. Egyed, J. Kwan, D. Port, A. Shah, & R. Madachy, “Using the WinWin Spiral Model: A
Case Study,” IEEE Computer, pp. 33–44, July 1998.

[4] A. Braun, B. Bruegge, & A.H. Dutoit. “Supporting Informal Meetings in Requirements Engineering”
Submitted to REFSQ’2001, Interlaken, Switzerland, June 2001.

[5] B. Bruegge, A.H. Dutoit, R. Kobylinski, & G. Teubner. “Transatlantic Project Courses in a University
Environment,” Asian Pacific Software Engineering Conference, Singapore, December 2000.

[6] S. Buckingham Shum, “Analyzing the Usability of a Design Rationale Notation,” in T.P. Moran & J.M.
Carroll (eds.)

������� �	��
��� � ������� ����������������� ��� ������!���� "�#��$��������%'&(�$� � Lawrence Erlbaum, Hillsdale, NJ,
1995.

[7] J. Conklin & K. C. Burgess-Yakemovic, “A process-oriented approach to design rationale,”) #�*�����+�,��*-��#.� ��/�01�.� ��/��.�2� � ���
, vol. 6, pp. 357–391, 1991.

Table 3. Summary of improvements for tool and guidance.

Technique Goal Tool Feature Guidance

Use case
specification

Distinction of
user task and
use case

Differentiated templates for
use cases and user tasks

Improved flow
of events

Refined use case template Essential use cases

Improved
coherence and
structuring

Pre- and postconditions, use
case diagram

One use case for each
user task, inclusion of
other use cases

Improved non-
functional
properties

Property types & restricted
application

Restriction of
applicability of types as
criteria

Rationale
capture

Improved
response to
questions

Question types, restricted
actions, question facilitator

Restrictions of actions by
question types

Improved
assessments

Arguments attached to
assessments

Heuristics for reviewing
assessments.

Use case/
rationale
integration

Improved non-
functional
properties

On the fly creation of criteria
during justification

Relationship between
non-functional properties
and criteria.

Improved
collaboration

E-mail notification, list of
active users, responsibility-
based views, global glossary

Lower
maintenance
effort

Question types
View by question types

Review process includes
review of justification

[8] L.L. Constantine & L.A.D. Lockwood, “Structure and Style in Use Cases for User Interface Design”, to
appear in M. van Harmelen (ed.), Object-Oriented User Interface Design, 2001

[9] A. H. Dutoit, B. Bruegge, & R. F. Coyne, “The use of an issue-based model in a team-based software
engineering course,” Conference proceedings of

� � �.� � ��/ ���,���-� ��� ��/�� � ������%�#��$����� ��� ����%��,/����2� � � �
� � �	�
��� ����

. Dunedin, New Zealand. January 1996.
[10] A. H. Dutoit & B. Paech, “Supporting Evolution: Rationale in Use Case Driven Software Develop-

ment,” In
01�.� ��/������ � ���������,��/����1!�� � ����
,��".#�� / �$* ����� �
��� �-� ������/�� �2�-�����.#���%������ ��������� � � �.� � ��/ ��� #2��� � � �

�

�
� � ��� ���������
, Stockholm, June, 2000.

[11] A. van Lamsweerde, R. Darimont & Ph. Massonet. “Goal-directed Elaboration of Requirements for a
Meeting Scheduler: Problems and Lessons Learnt”, Int. Symp. on Requirements Engineering, pp. 194-
203, 1995

[12] J. Lee, “A qualitative decision management system,” /1� � �.� � � ��� 0 ��� �2� ��� �	������� ���"!�0������	# �(�.��%�� � �$��/ ���.+� � ��/ �
. P.H Winston & S. Shellard (eds.) (MIT Press, Cambridge, MA,) Vol. 1, pp. 104–133, 1990.

[13] S. Lilly, “Use Case Pitfalls: Top 10 Problems from real Projects using Use Cases, Technology of object-
oriented languages and systems, pp. 174-183, 1999

[14] A. MacLean, R. M. Young, V. Bellotti, & T. Moran, “Questions, options, and criteria: Elements of de-
sign space analysis,”) #�* ���.+ �,��*�� #�� �$/ 0 ��� ��/�������� ��� , vol. 6, pp. 201–250, 1991.

[15] T. P. Moran & J. M. Carroll (eds.),
���$��� ����
������ �����.� �2���,���.� � � � ��� ��� ��!���� "�#����1�����.%'& �$�

. Lawrence Erl-
baum Associates, Mahwah, NJ, 1996.

[16] C. Potts, K. Takahashi, & A. I. Anton, “Inquiry-based requirements analysis,” IEEE Software, vol. 11,
no. 2, pp. 21–32, 1994.

[17] S. B. Shum & N. Hammond. “Argumentation-based design rationale: what use and what cost? Interna-
tional Journal Human-Computer Studies, 40:603-652.

[18] Seminar “Steuergeräte-Design im Automobilbau und in der Industrieautomation”, Haus der Technik,
Essen, 24.-25.5.2000

[19] The Softbicycle Company. QuestMap: The Wicked Problem Solver. http://www.softbicycle.com/.
[20] M.V. Zelkowitz & D.R. Wallace. “Experimental Models for Validating Technology” IEEE Computer,

May, 1998.

