

Electronic version of an article published in Salinesi, C.; Regnell, B. (Hrsg)
Proceedings of the 8th International Working Conference on Requirements
Engineering: Foundation for Software Quality (REFSQ'02), Reihe: Essener
Informatik Beiträge, Band 7, pp. 102-107

Copyright © [2002] Universität Duisburg-Essen

http://www.refsq.org/

Functional requirements, non-functional requirements,
and architecture should not be separated
–A position paper

Barbara Paech,* Allen H. Dutoit,** Daniel Kerkow,* Antje von Knethen*

*Fraunhofer IESE
{paech,kerkow,vknethen}@iese.fhg.de

**Technische Universität München, Institut für Informatik

dutoit@in.tum.de

Abstract. Requirements engineering approaches have for a long time mainly
focused on functional requirements . During the last 5 years, several approaches
dealing specifically with non-functional requirements have emerged. They
support the elicitation, documentation, verification and validation of non-
functional requirements: sometimes only concentrating on the non-functional
requirements, sometimes in conjunction with functional requirements, and
sometimes in conjunction with architecture. The position we put forward in this
paper is that functional requirements, non-functional requirements, and
architecture must be treated together.

It is well known that functional requirements (FRs) and non-functional requirements
(NFRs) constrain each other and therefore should be treated together. Similarly, it is
well known that both FRs and NFRs must be realized through the architecture.
However, typically, the development of an architecture is not considered part of
requirements engineering. In this paper we argue that FRs, NFRs and architectural
decisions (ADs) must be developed in a tightly integrated approach. In the rest of the
paper, we first sketch the solutions published so far that deal with NFRs and FRs or
ADs. Then, we motivate our case with an example. We argue that none of the existing
approaches has truly addressed all three issues in a coherent and integrated manner.
Finally, we discuss the most critical research questions that result from considering
such an integrated approach.

Existing Solutions

When surveying existing approaches to NFRs we distinguish them according to their
support for the different tasks: elicitation, documentation, architecture alignment,
quality assurance, change management and project management. We have not found
any approaches for project or change management specific to NFRs. Similarly, there
are approaches for quality assurance of specific NFRs (e.g. usability testing), but no

general technique for continuous quality assurance for NFRs. The other activities are
sketched in the following.
Elicitation covers the following questions: how to identify NFRs, how to ensure
consensus of all stakeholders (about the NFRs and their respective priorities), how to
relate the NFRs, the FRs and the architecture. Major techniques for dealing with these
questions are on the one hand decomposition and operationalization and on the other
hand negotiation techniques. Examples for the latter are WinWin [BI96, IBR01] and
structured client reviews (SCRAM) [SR98]. Decomposition encompasses the
refinement of NFRs to more detailed NFRs, while operationalization results in
strategies for achieving the NFRs, namely process strategies, such as prototyping for
usability NFR, and product strategies resulting in additional FRs and architecture
requirements. For the purpose of this paper we do not distinguish between
decomposition and operationalization. Both involve general techniques like goal
graphs (e.g. [Yu97]) which are elaborated in the NFR-framework [CNYM00] or
classification e.g. as provided by the standard ISO/IEC 9126 [ISO9126]. The latter
are often enhanced with domain-specific knowledge as in the language extended
lexicon (LEL) advocated by [CLN01] or a general knowledge base on NFRs (e.g.
[BI96]). GQM [BCR94] is a general technique for decomposing high-level NFRs into
verifiable metrics.
Documentation involves the following issues: how to describe NFRs, which
additional information is necessary to deal with them? [BKLW95] distinguishes
different facets on how to describe NFRs, namely concerns, system and
environmental properties relevant for the NFR, and methods how to deal with a NFR.
Several approaches advocate capture the stakeholders of the NFR [CLN01,
IBR01,SM98]. A popular technique for describing NFRs is the usage of scenarios
(e.g. [KBKCW99,SM98,SR98,PBG01]). For each of the non-functional requirements
there are specific notations, often mathematical, corresponding to metrics (e.g. using
lines of code to measure the complexity of a system or using mean time to failure to
measure reliability).
Architecture alignment answers the question of how to take NFRs into account
when selecting an architecture. ATAM [KBKCW99] provide a systematic method of
evaluating scenarios against an architecture. [GEM01] proposes to look at the
implications of NFRs on the architecture in terms of components, bus, system features
(CBSE). Design patterns are another popular solution for relating NFRs and
architecture [GY00].

We have not found an approach addressing NFRs, FRs and ADs in an integrated
fashion. Next, we give an example of why the three entities are highly intertwined,
illustrating why it is not sufficient to first concentrate on two of them and then
concentrate on the third.

Motivating Example

The following example is taken from the Ariane 501 case, the first prototype of the
Ariane 5 series, which exploded 40 seconds after lift-off because of an arithmetic
overflow [L96]. Based on the available literature, we put forward a likely sequence
of development steps that lead to the Ariane 501 failure. Keep in mind, however, that
this example has been simplified for brevity, focusing on the dependencies among
FRs, NFRs, and ADs. The sequence of events leading to the system failure and the
actual causes for this incident are much more complex that our narrative suggests.

The focus of our example is the navigation system of the rocket. The primary function
of the rocket is to put in a payload (e.g., a satellite) on a specified orbit and latitude.
To achieve this, the rocket must follow a precise trajectory during flight. Hence, the
first requirement identified for the navigation system is the following:

− FR1 (requirement): The navigation system shall calculate course corrections

based on differences between the actual trajectory of the rocket and the planned
trajectory for the specific payload.

Before the launch, the navigation system must also compute the starting position of
the rocket to take into account the rotation of the earth and wind. Hence, when
considering the horizontal velocity of the rocket, the navigation system must consider
two cases, the velocity before launch, which is extremely small, and the velocity after
launch, which is several orders of magnitude larger. In both cases, it is possible to
compute the maximum value for the velocity based on physics and the properties of
the rocket:

− NFR1 (domain constraint): The maximum horizontal velocity before launch is at

most vbeforemax
− NFR2 (domain constraint): The maximum horizontal velocity after launch is at

most vaftermax

This distinction leads to the ADs to distribute this functionality to two subsystems:
The alignment subsystem computes the starting position of the rocket. The inertial
reference subsystem computes course corrections. Right before launch, the alignment
subsystem hands over the starting position to the inertial reference subsystem.

− AD1 (subsystem decision): The alignment subsystem computes the initial position

of the rocket.
− AD2 (subsystem decision): The inertial reference subsystem computes course

corrections after launch.

Only NFR1 is relevant to the alignment subsystem, hence, the following AD:

− AD3 (type decision): Horizontal velocity in the alignment subsystem is
represented as a 16-bit integer.

However, the alignment subsystem calculations are complex and take about 45
minutes to initialize. This triggers the FR that despite of this 45-minute penalty it is
important to resume the count down only a few minutes after it is stopped, as the
orbits required by specific payloads can have narrow launch windows.

− FR2 (requirement): The system shall be able to resume count down within 2

minutes of stoppage.

To realize this FR, the developer decide to extend the functionality of the alignment
subsystem to continue these calculations until about 50 seconds after the coordinate
handover. When the count down is stopped after the handover but before lift off,
controllers have then enough time to reset the alignment subsystem without paying
the 45-minute penalty. This results in a new FR and AD:

− FR3 (requirement): The system shall proceed with the alignment calculations for

50 seconds after handover.
− AD4 (subsystem decision): The alignment subsystem takes over the additional

functionality.

However, the addition of FR3 and AD4 puts the decision AD3 at risk, because now
the alignment subsystem also has to deal with horizontal velocity values exceeding
vbeforema and up to vaftermax.. Thus, NFR2 suddenly constrains the decision AD3. In
case of Ariane 5, developers did not note this before flight 501.

Altogether, this example shows that ADs realize FRs and NFRs (as for AD1, AD3
and FR1 and NFR1). But in addition, ADs constrain FRs (as for AD2 and FR2)
resulting in new FRs and ADs (in this case FR3 and AD4). Moreover, NFRs constrain
ADs (as for NFR2 and AD3). Figure 1 illustrates these relationships in general. An
example for the realization of an NFR through an FR is an authentication FR realizing
a security NFR.

NFR FR

AD

realizes

constrains

Figure 1: Relationships between FRs, NFRs and ADs

With this example, we illustrated how FRs, NFRs and ADs are treated in an

iterative, nonlinear, and non-incremental fashion. Hence, we argue for integrated
methods that support developers in dealing with this reality.

Research questions for an integrated approach

A goal of the recently initiated research project EMPRESS (http://www.empress-
itea.org) is to develop an integrated approach for dealing with NFRs, FRs, and ADs.
The following research questions drive this project:

• What are descriptions for FRs, NFRs and ADs that allow identify, verify and

validate as well as maintain dependencies easily? In particular, measurable
definitions of NFRs and suitable architecture views are still open problems.

• How to make explicit different views of different stakeholders? One particular
problem for the integration is achieving the common understanding of
requirements and architecture. Usually, the analysts eliciting requirements and the
architects designing the architecture are different persons, as they require broadly
different skills. The close collaboration of these different types of specialists
require mechanisms for sharing knowledge, for example, in the form of different
views on the NFRs, FRs, and ADs.

• How many different abstraction levels are required when refining and aligning
FRs, NFRs and ADs? How early can dependencies be identified? Goal graphs
support decomposition, but do not give guidance on how many decomposition
steps should be made. In particular, it is not clear how to relate the FRs, NFRs and
high-level ADs to more detailed ADs.

• How to describe the solution space? Often ADs are made early and unnecessarily
restrict further FRs. Therefore, the different options for realizing high-level FRs
and NFRs should be described not in too much detail. Goal graphs allow show
dependencies between single FRs, NFRs and ADs, but do not allow compare
comprehensive options packaging ADs, FRs and NFRs.

In addition to these questions on the integration, questions arise from the

embedding of an integrated method in the overall software-development cycle, for
example:

• What additional information has to be captured to support change of NFRs? For

example, traceability (e.g. [GF94]) is usually thought as a simple bi-directional
relationship between elements (e.g., indicating which requirements impact which
design element). As illustrated in the example, with NFRs, FRs, and ADs, the
relationships can be much more complex.

• How to ensure completeness and consistency of the considered option? This can be
supported e.g. by a knowledge base that should also include rationale to support
trade-off decisions (e.g. [DP02]).

• How to inspect or test NFR? Different communities have investigated specific
quality assurance techniques for specific NFRs (e.g. security, safety). Integrated
quality assurance requires integration of these techniques to mirror the
(de)composition of NFRs into more refined NFRs and additional FRs as well as
ADs. As illustrated in the example, it is not sufficient to only consider NFRs when

designing test plans, as many implicit dependencies can have been introduced
among NFRs by specific ADs.

Acknowledgements

We thank our colleagues at Fh IESE in the EMPRESS project for fruitful
discussions regarding the literature survey and the reviewers for helpful comments.

References

[BCR94] V.R. Basili, G. Caldiera, & H.D. Rombach, “Goal Question Metric Paradigm”, In J.J.
Marciniak (ed.), Encyclopedia of Software Engineering, vol.1, pp.528–532, John Wiley &
Sons, 1994.

[BI96] B.Boehm, H. In: Identifying Quality Requirement Conflicts, IEEE Software, March,
pp.25-35, 1996.

[BKLW95] M. R. Barbacci, M. H. Klein, T. Longstaff and C. Weinstock, "Quality Attributes",
Technical Report CMU/SEI-95-TR-021, Software Engineering Institute, Carnegie Mellon
University, December 1995.

[CLN01] L.M. Cysneiros, J.C. Leite, J.S. Neto: A Framework for Integrating non-functional
requirements into conceptual models, Requirements Engineering Journal, no. 6, pp. 97-115,
2001.

[CNYM00] L. Chung, B.A. Nixon, E. Yu, J. Mylopoulos, “Non-Functional Requirements in
Software Engineering”, Kluwer Academic Publishers, 2000.

[DP02] A.H. Dutoit, B. Paech. “Rationale-based Use Case Specification”, Requirements
Engineering Journal, Special Issue on REFSQ’2001, 2002.

[GEM01] P. Grünbacher, A. Egyed, N. Medvidovic: Reconciling Software requirements and
architectures: The CBSP approach, RE’01, pp. 202-211, 2001.

[GF94] O. Gotel and A. Finkelstein, “An Analysis of the Requirements Traceability Problem,”
ICRE’94., pp. 94–101, 1994.

[GY00] D. Gross, E. Yu, “From Non-functional requirements to design through patterns],
REFSQ’00, pp.86-97, 2000

[IBR01] H. In, B. W. Boehm, T. Rodgers, M. Deutsch, "Applying WinWin to Quality
Requirements: A Case Study", ICSE 2001, pp. 555-564, 2001

[ISO9126] ISO 9126, “Information technology - Software product evaluation - Quality
characteristics and guidelines for their use”, 1991

 [KBKCW99] R. Kazman, M. Barbacci, M. Klein, S.J. Carriere, S.G. Woods, “Expereience
with Performing Archietcure Tradeoff Analysis”; ICSE 99, pp.54-63, 1999

[L96] J.-L. Lions, ARIANE 5 Flight 501 Failure: Report by the Inquiry Board,
http://ravel.esrin.esa.it/docs/esa-x-1819eng.pdf, 1996.

[PBG01] K. Pohl, M. Brandenburg, A. Gülich, „Integrating requirements and architecture
information: a scenario and meta-model based approach. REFSQ’01, pp. 68-84, 2001

 [SM98] A. Sutcliffe and S. Minocha, "Scenario-based Analysis of Non-Functional
Requirements", REFSQ’98, 1998.

[SR98] A. Sutcliffe & M. Ryan, “Experience with SCRAM, a SCenario Requirements Analysis
Method,” In ICRE’98, April 1998.

[Yu97] E. Yu, ”Towards Modeling and Reasoning Support for Early-Phase requirements
Engineering”, RE'97, pp.226-235, 1997

