

Electronic version of an article published in Regnell, B.; Kamsties, E.; Gervasi, V.
(Hrsg): Proceedings of the 10th Anniversary International Workshop on Require-
ments Engineering: Foundation of Software Quality (REFSQ'04) Reihe: Essener
Informatik Beiträge Band 9, pp. 237-250

Copyright © [2004] Universität Duisburg-Essen

http://www.refsq.org/

Non-Functional Requirements Engineering -
Quality is essential

Invited Anniversary Paper

Barbara Paech1, Daniel Kerkow2

1 Institute for Computer Science, University of Heidelberg,
69120 Heidelberg, Germany

Paech@informatik.uni-heidelberg.de
2 Fraunhofer Institute Experimental Software Engineering,

67661 Kaiserslautern, Germany
Kerkow@iese.fraunhofer.de

Abstract. The purpose of this paper is to review the state-of-the-art in the engineer-
ing of NFR, and to define an agenda for future NFR research. Therefore we define
the requirements on a NFR method, compare this with current approaches and
sketch ideas how to fill the gap between the current methods and our requirements.
The main challenge for future research in our view is to improve the understanding
of the notion quality.

1 Introduction

Since the early nineties requirements engineering (RE) has matured from a discipline
focusing mainly on the specification of formal requirements to a discipline which consti-
tutes the foundation for the whole software development process.

A major step in this development has been the wide-spread usage of business processes,
scenarios and use cases in dealing with functional requirements. This trend had been initi-
ated by a general focus on processes, particularly in economy.

In contrast to this, non-functional requirements (NFR) are still poorly understood. This
is exemplified by the superficial treatment of NFR in all major RE text books. The only
comprehensive NFR approach is the NFR framework described in [11]. This situation is
particularly unsatisfying as today’s development processes put particular emphasis on
quality. Neglecting NFR is counted as one of the top ten risks of requirements engineering
[41]. Given the high competition on the market, companies need to thoroughly understand
and meet the quality needs of their customers. Component developers and buyers need to
understand and negotiate the quality of the components in different contexts. As the soci-
ety as a whole depends more and more on information technology (IT), its need to rely on
the quality of the technology is growing dramatically.

The purpose of this paper is to review the state-of-the-art in the engineering of NFR,
and to define an agenda for future NFR research. The review of the state-of-the-art is split
in two parts. First we identify criteria for evaluating the state-of-the-art, then we evaluate
the available literature according to the requirements. For the former we have identified
requirements on a NFR method. We call this ideal NFR method Non-functional Require-
ments Engineering (NFRE for short).

In the next section we sketch the important terminology. Then we present the NFRE re-
quirements, namely how we want to work with NFR in the future. In section 4 we discuss
what we can do with NFR today, that is the state-of-the-art of NFR. Section 5 discusses
how to fill the gap between presence and future, suggesting a research agenda.

2 Terminology

The term “non-functional requirement” is used to delineate requirements focusing on
“how good” software does something as opposed to the functional requirements, which
focus on “what” the software does. As exemplified already in the session summary on
NFR at the first REFSQ, 1994, there are diverging views whether it is possible to make
this delineation or not, as NFR may become functional through refinement. In the follow-
ing we define NFR as any requirement describing the quality of the system.

The notion of quality is made precise in several newly evolving standards on quality,
notably ISO/IEC 9126-1:2001[31]. In this standard, 4 types of quality levels are distin-
guished:

Quality in use refers to the perception of software quality attributes (QA) through specific
users in specific contexts. This comprises the use of the software product to achieve the
user goals with the following attributes

• Effectiveness: accuracy and completeness
• Productivity: resources appropriate in relation to effectiveness
• Safety: acceptable levels of risk or harm to people, business, software, property or

environment
• Satisfaction.

External and internal quality corresponds to QA of the software as a black box or as a
white box. This comprises

• Efficiency: appropriate performance, relative to the amount of resources used, under
stated conditions.

• Portability: transfer from one environment to another.
• Maintainability: modifications may include corrections, improvements or adaptations

of the software products to changes in environment, and in functional specifica-
tions.

• Functionality1: functions, which meet stated and implied needs when the software is
used under specified conditions.

• Usability: understandability, learnability, operability, attractiveness.
• Reliability: maintainance of a specified level of performance when used under speci-

fied conditions.

Process quality refers to the quality of the product development process and thus influ-
ences all the other quality attributes.

1 Functionality is, in fact, the label of a set of NFR in the ISO standard. It is defined by the sub

quality attributes accuracy, compliance, interoperability, suitability and security.

NFR specify the quality of the software on any of these 4 levels. We distinguish a con-
crete NFR from the QA it belongs to. For example, the NFR “The database of our new
system shall handle 1000 queries per second.” belongs to the QA “performance” or more
specifically the QA “workload of database”. In the NFR-framework QA are called NFR-
type.

As NFR characterize the software product as a whole, they heavily depend on the func-
tional and architectural characteristics of the software. Functional requirements (FR) are
concerned with tasks performed by the user, by the system or by both in an interaction.
Architectural requirements (AR) constrain the physical or logical structure of the system.

3 Criteria for evaluating the state-of-the-art

In this section we define the requirements on NFRE. For their identification we have used
the task-oriented requirements engineering method TORE developed at Fh IESE [48].
This method is designed to deal with requirements on IT-systems and the related business
and user processes. Thus, we view NFRE as an IT-based process to support different
stakeholders dealing with NFR.

TORE describes the decisions to be made when defining functional requirements. It
does not prescribe any particular representation for these decisions. The following deci-
sions are distinguished:

• The first decisions concern the stakeholders to be supported and their tasks (task
level).

• This is followed by the decision on the to-be-activities of these tasks, the relevant
domain concepts and the decision which of these tasks and concepts should be
supported by IT (domain level).

• Furthermore, the interaction between users and the system has to be defined: in par-
ticular the system functions, the user interface concept in terms of data exchanged
in the interaction and the grouping of the data and system function in the user in-
terface (interaction level).

• On the last level the system details, namely the system architecture, internal func-
tions, and the user interface details, have to be decided (application core and
GUI level).

In this paper we only concentrate on the task, domain and part of the interaction level.

These define the features (functions and concepts) of NFRE and how they are derived
from user tasks and to-be-activities.

Table 1 shows the method features and the quality aspects of the features we have iden-
tified by looking at the different stakeholders, their tasks and to-be-activities. We have not
elicited these from real stakeholders, but from our own experience in and with the differ-
ent roles.

Table 1: NFRE method features
method feature method feature quality to-be-activity user task

1

support identification of
quality aspects in a specific
context

completeness, correct- ness,
creativity,standards specify NFR manage, use

2
support identification of NFR
relative to given FR, AR

completeness, correct-
ness,creativity, standard,
adequate level of detail, no
premature design decisions,
feasability elicit NFR,AR,FR spec

3
support identification of GUI
relevant NFR

completeness,
correctness,standards design GUI spec

4 identify conflicts reflection of means elicit NFR,AR,FR spec

5
support negotiation of
conflicts explicit rationale elicit NFR,AR,FR spec

6 support prioritization explicit rationale prioritize NFR spec

7 identify dependencies completeness
document
NFR,AR,FR spec

8

support to make
dependencies between
AR,NFR,FR explicit good visualization, overview

manage change of
AR, NFR, FR,
estimate and im-
plement change

spec,
change

9 support documentation adequate structure, standards
document NFR, AR,
FR spec

10 support wording
adequate precision, standard
terminology

document NFR, AR,
FR spec

11
support identification of
defects in NFR spec. IEEE830 quality criteria inspect NFR, AR, FR spec

12
support identification of
metrics standards, adequate precision

define test cases for
NFR V&V

13
support identification of
means and patterns

completeness, correct- ness,
creativity, standards

design detailed
architecture design

14

support evaluation of means
(architecture, functional RE)
against a set of NFR good visualization, overview

document NFR, AR,
FR, design detailed
architecture

spec ,
design

15

support discussion and
documentation of different
options explicit rationale

document NFR, AR,
FR spec

16 support trade-off decisions explicit rationale
design detailed
architecture design

17
support cost estimation of
NFR correctness cost estimation manage

18
support to estimate change
impact within requirements

completeness, correct- ness,
good visualization, overview

manage change of
NFR, AR, FR spec

19
support to estimate change
impact on the whole system

completeness, correctness,
good visualization, overview

estimate and
implement change change

20
support controling the status
of NFR completeness project controlling manage

The roles that have a stake on the NFRE method are all roles involved in software en-
gineering. The following list sketches the roles and their main tasks:

• “customers” carry out the task “buy or procure system”, “product and project man-
agement” carry out the task “manage”. We subsume both under (manage) as their
needs concerning NFR are roughly similar.

• “users” carry out the task “use system” (use)
• “requirements engineers” carry out the task “specify system” (spec)
• “designers” carry out the task “design system” (design)
• “testers” carry out the task “verify system against requirements ” (V&V)
• “maintainers” carry out the task “maintain system” (change).

Only the activities dealing with NFR are described. The method features describe how

the method should support the activities. They are of different granularity and precision.
The wording “support for…” indicates that it is not quite clear what the features should
look like, while e.g. “identify conflicts” requests a method feature to identify conflicts
between given NFR. In describing the method features we have used the term means for
any possible solution (FR, QR or AR) to achieve a specific NFR. In the NFR-framework
this is called operalization.

The quality aspects capture aspects which are not inherent in the feature, but important
to achieve a high-quality method. First, they consider standards and experience, as NFR
are very context dependent and therefore heuristics need to be applied. The other impor-
tant quality aspect is to achieve specific quality of the requirements dealt with in the fea-
ture (e.g. completeness and consistency). This is due to the fact that NFR are typically
very vague (often due to their global nature) and interdependent (again due to their global
nature).We will go into the details of the features in the next section when we discuss the
state-of-the-art concerning the features.

4 State of the art in NFR engineering

In this section we give a short survey on NFR literature published at all RE-specific con-
ferences and journals, in particular REFSQ, IEEE and ACM RE-conferences, Springer RE
Journal and IEEE Software.

Quality has been a focus of REFSQ, since its start in 1994. REFSQ’94 had a whole sec-
tion on NFR. This contained methods for capturing specific QA like performance or secu-
rity, and some general statements on NFR [45][37][27]. REFSQ’95 did not present any
specific NFR paper. In REFSQ’97 a classification of NFR was presented [26]. REFSQ’98
saw papers on further specific QA like usability, an industry statement on the need for
NFR approaches, and an approach to use scenarios to elaborate NFR [40][39][549. There
were no specific NFR papers in REFSQ’99 and REFSQ’01. In REFSQ’00 an extension of
the NFR framework to incorporate patterns was presented [23]. In REFSQ’02 the authors
presented a position paper emphasizing the importance of architecture in NFR considera-
tions [46]. REFSQ’03 saw again a session on NFR dealing with specific QA [16][25][53].
So altogether NFR have been a topic almost continuously, but mostly on the level of indi-
vidual QA. In the following we do not consider the specific QA, but only the general
NFRE features elicited in the last section.

The features in Table 1 can be roughly grouped into

• The identification of NFR from different viewpoints and different levels of detail (1-
3)

• The support for uncovering dependencies and conflicts between them, and to discuss
and prioritize them accordingly (4-8).

• The documentation of NFR and the evaluation of this documentation (9-12).
• The support for identifying means to satisfy the NFR, to evaluate and discuss means,

and to make trade-off decision accordingly. This includes cost estimation (13-17)
• The support for change and project management (18-20).

4.1. Identification

The identification of NFR involves elicitation from the different stakeholders. Here, of
course general requirements elicitation techniques like workshops and interviews can be
used. These methods should emphasize creativity, as suggested in [43]. There are three
main difficulties specific for NFR:

• Stakeholders perceive the quality of a product differently, e.g. the QA usability has
very different connotations. Many different aspects should be considered.

• Typically, NFR are expressed on a very high-level only, and must be refined. During
the refinement it is important to avoid premature design decisions.

• NFR can often only be stated in relation to given FR and AR.

The first issue can be dealt with by methods focusing on particular stakeholders and

supporting context rich descriptions of NFR. Scenarios as proposed in [54] are very help-
ful for this purpose. [2] gives detailed hints which elicitation technique is useful for which
QA. The first and the second issue can be supported by collecting knowledge on the dif-
ferent QA. This knowledge can be used as a checklist during the elicitation. A first step in
this direction was [4]. The NFR-framework includes catalogues for the major QA. They
have been refined in the EMPRESS project [15]. A practical template asking for specific
NFR is VOLERE [57]. Another important help is the identification of typical kinds of
refinements for NFR. These can be specific to a QA, generic or even specific for the pro-
ject. Again the NFR-framework offers catalogues of typical refinement methods. These
catalogues also help to think abstractly and avoid premature design decisions. The third
difficulty requires an iterative approach to NFR identification. NFR are identified based
on the given FR and AR. During this identification process typically new FR and AR
arise, either because of the general progress of the requirements process or because identi-
fied NFR give rise to new FR and AR. An example for such interdependencies is given in
[46]. Another example is given in [49] which argues for early architecture consideration
similar to trade-off-analysis in systems engineering. Based on the new insights concerning
FR and AR, new NFR have to be identified. [13] describes an approach that combines
NFR and use cases. Use cases and NFR are first elicited separately and then combined to
make sure that the use cases satisfy the NFR.

Another reason for iteration is the prioritization of specific NFR and the consideration
of different means for achieving the NFR. This is discussed in the following sections.

4.2. Negotiation

Like other requirements, NFR elicited from different stakeholders often are in conflict
with each other. Thus, it is important

• to make these conflicts explicit. This should include derived dependencies.
• to make decisions based on the rank of priorities. The rationale for these decisions

should be explicit. Prioritization is enhanced through good overview of the de-
pendencies.

The WinWin-approach offers NFR-specific support for the latter [8][29] in terms of a

tool which alleviates group decisions. As described in [19][30] the resolution of such
conflicts typically involves the reflection of architectural options and other means. This is
discussed in the following sections. To make the conflicts explicit, dependencies need to
be made explicit and evaluated. The NFR-framework uses specialized goal graphs, called
softgoal interdependence graph, to describe dependencies. They capture positive and
negative influences between NFR together with the corresponding argumentation. Again
to ensure completeness, knowledge on typical influences between QA should be collected.
This approach has been enhanced with conceptual models which capture the terminology
common to the different softgoals [12]. The conceptual model helps to detect dependen-
cies.

Aspect-oriented approaches also try to analyze the dependencies between FR and so
called concerns in more detail [44][50]. They use matrices to make the dependencies be-
tween NFR and from NFR to FR and AR explicit. In addition they present a detailed cata-
logue of types of interdependencies.

Based on the explicit description of dependencies between a few NFR, one can use al-
gorithms and tools such as QARCC [8] or the evaluation procedure of the NFR-
framework to detect more dependencies.

4.3. Documentation

Because of complexity and longevity, requirements need to be documented. This is par-
ticularly true for NFR. The main issues here are

• to integrate NFR into requirements documents as used in industry
• to state NFR precisely.

The first can be dealt with by providing templates and rules on where to capture NFR.

An example for this is [16] and [36] which describe how to elicit and document precise
NFR together with use cases and architectural descriptions. The goal graphs proposed by
the NFR framework support the documentation of dependencies, but do not give advice on
how to integrate the NFR in a full-fledged requirements documentation. Furthermore, no
advice for the respective wording is given. To the formulation of specific NFR the usual
quality criteria on requirements documents (see IEEE-830 [28]) apply. To achieve preci-
sion, metrics should be used for different QA. The EMPRESS-project has collected the
available knowledge on metrics in [15]. These can also be used as checklists during in-
spection. In the context of architecture evaluation the formulation of NFR as scenarios has

been advocated [34]. These scenarios, however, are only one-sentence descriptions, and
thus correspond to usual textual requirements. In addition preliminary approaches to a
formal specification of NFR exist [51].

4.4. Identification and Evaluation of Means

A major step in the understanding of NFR is the distinction between the NFR and means
to achieving it. A means describes how to achieve a specific NFR. So e.g. performance
can be enhanced through better hardware or better software structures. This distinction is
called phenotype vs. genotype in [14]. The means can either be further FR (e.g. authoriza-
tion as a means to achieve security) or AR (e.g. a second data storage for reliability), and
they can also relate to the development process (e.g. maintainability can be supported by
regular code reviews). It is important to bring in means as late as possible because other-
wise specific solutions are introduced too early. This typically leads to a suboptimal solu-
tion where only few NFR, FR and AR can be satisfied. Typical means can only be de-
scribed on the basis of a high-level software architecture. There are three major issues in
handling means:

• identification of possible means
• evaluating the NFR compared to the means
• discussing and deciding the trade-offs between several means. This should include

cost considerations.

The identification requires considerable amount of creativity, but can also be supported

by experience. As means often refer to architecture, patterns are a good way to describe
them [23]. One problem is that there is little agreement on the description of architecture.
General approaches are collected in [52][1][5][6]. Further possibilities are, e.g., use case
maps [429, agent-oriented goal graphs [24], the CBSP approach [19], or social organiza-
tions [38]. Thus, there is no general scheme of describing architectural means.

Similarly, there is no standardized approach to evaluate an architecture against NFR.
The most advanced method is from SEI: The Architecture Tradeoff Analysis Method
(ATAM) captures criteria (quality attributes, business goals), issues (risks), options (archi-
tectural views), and assessments (utility tree) [35]. The Cost Benefit Analysis Method
(CBAM) is used to refine the ATAM results with cost, benefit (criteria, options) [30] .

The patterns, in particular, should include the positive and negative influences of the
means on different QA. In the NFR framework this is handled similarly to the overall
dependencies between NFR. Both are captured in the goal graphs together with their ar-
guments. While this is effective for a machine-based evaluation, we believe that humans
need better visualizations for the discussion and evaluation of different means. In [47] we
propose to use general matrices for questions, option and criteria. This is adapted from
general rational management methods [17]. Other approaches advocate the use of general
multi-criteria decision methods such as AHP for finding a set of means best suited to sat-
isfy a given set of NFR [55].

As for dependencies, tools can be used to compute aggregations based on explicitly de-
scribed evaluations. Again, iteration is very important, as the decision for a specific (archi-
tectural) means might induce further NFR and FR.

4.5. Change and project management

As discussed above the specification of NFR is inherently iterative. Therefore, the identi-
fied NFR, FR and AR may change in the process. Especially, if a change is triggered by a
major change in the system context, it is important that the impact of a change on a current
set of requirements can be specified explicitly. For project and change management of
NFR the usual methods can be used. There are almost no change approaches specific to
NFR. In the NFR framework changes are captured with special labels in the goal graphs
[10]. While these changes are simple to perform, we again feel that this is not adequate for
human reasoning as the graphs get very complicated.

4.6. Summary

The discussion above has shown that many approaches exist to deal with the many aspects
of NFR. All issues have been approached at least in some way. Still, it is the fact that these
approaches have not yet been established as standards, e.g. in RE textbooks. In particular,
we see the following open questions:

Identification. It seems to be inherent to human requirements negotiation that it is eas-
ier to state requirements in terms of concrete FR and AR than in terms of QA. Thus, it is
important to better understand and cope with this phenomenon. Furthermore, we have to
take into account the diversity of quality concepts and the necessity to understand the
context of a specific quality concept. Quality is relative to the person expecting it and to
the possibilities to implement it.

Negotiation. We need to deal with complex dependencies (not only bilateral ones). The
current algorithms treat the definition of a consistent set of NFR as a configuration prob-
lem, similar to feature-oriented approaches in the area of product-lines. However, because
of their subjective nature, this is not so easy for NFR as the priority and even the defini-
tion of a specific NFR might change when confronted with several other NFR. So it seems
important to provide support for exploration of the consequences of the combination of
different NFR.

Documentation and wording. Existing approaches are often not yet suitable for appli-
cation in industry as they require very specific notations and tools not integrated into the
mainstream RE-tools. This is particular true for the notation of goal graphs and the evalua-
tion tools. [18] and [32] describe in detail how NFR are handled at Alcatel Telecom and
Ericsson. These companies mainly apply general methods for requirements and quality
management and in particular make use of knowledge from earlier projects. They do not
apply any specific notation or tool. Furthermore, we need a systematic approach and a
standardized vocabulary for quality issues. The standards are not detailed enough. In par-
ticular, the different levels of quality have to be made more precise. In addition, specific
documentation styles for different QA are needed which are best suited for the communi-
cation with the users. Sub-communities, such as security, came up with specific styles
such as mis-use-cases [3][20]. For usability, prototypes are very helpful.

Means and trade-off-decisions. There is still no specific support to evaluate how well
a given means satisfies a set of NFR. The algorithms such as [55] proposed for aggregat-
ing and propagating individual evaluations during decision-making are only as good as the
initial evaluations. For the initial evaluation (i.e. how well a specific means satisfies a
specific NFR), experience (personal or organizational in terms of e.g. patterns) is very
important. We also feel that it is necessary to better visualize architectural options and

their relevance to specific NFR. This requires to visualize different aspects of an architec-
ture and to break down a specific measurable NFR into smaller parts belonging to differ-
ent parts of the architecture. This would in particular, help the designers, because they get
more specific guidelines on how to choose the right means.

Change and project management. The great disadvantage of the traceability ap-
proaches is their need for a complete conceptual model of all specification elements. In
NFR research we are far away from knowing every type of NFR and the relationships
between these types. Another challenge is the intertwined nature of NFR. The current
traceability approaches are based on a set of discrete elements that are related to each
other. NFR, are rather crosscutting aspects that have an interweaving impact on different
requirements.

5 How to fill the gap

Looking at the summary of the last section it is evident that future NFR research should
not so much focus on methods for systematic treatment of NFR (as important parts already
have been provided, e.g. through the NFR-framework). It seems to be much more urgent
to get hold of the notion of quality. This would provide a common ground to talk about
quality in different contexts. And then the systematic treatment can help to manage this
common ground within different projects.

To focus on quality as such we see different research directions:

Perform more empirical research.
Empirical studies on how NFR impact the performance of projects could help to better

understand how NFR evolve during projects. How are the schedules impacted by wrong or
imprecise NFR? How is the satisfaction of all process participants impacted by wrong or
imprecise NFR? This data could also be used to collect experiences on how well specific
NFR combine, which development costs are induced by specific NFR and so on.

Understand subjective vs. objective quality
As a starting point, speech-psychology and its methods (card sorting, cluster analysis or

semantic differentials[22][33][56][9]) can be applied to create common ground and to
standardize semantic spaces. Furthermore, one can apply systematic construct operation-
alization as for example GQM (goal/question/metric).

Apply ethnographical methods
Ethnographic methods have been successfully used to understand different contexts of

IT-technology-development [7][21]. They could specifically be used to explore the under-
standing of quality in these contexts. These methods could on the one hand produce gen-
eral insights on quality. On the other hand these methods could be packaged for require-
ments engineers so that they can use them for elicitation in a particular project.

Apply graphical design methods
Visualization of NFR, means and their dependencies have so far concentrated on typi-

cal computer science structures such as graphs. They are well-suited for tools, but do not

support humans very well in thinking creatively. It would be interesting to investigate
graphic design methods which take into account human characteristics such as cognition.

Acknowledgements

We thank our colleagues for fruitful discussion within the IESE-EMPRESS-Team. We
acknowledge the ITEA project EMPRESS for partly funding our research.

References

1. Abowd, G., Bass, L., Clements, P., Kazman, R., Northrop, L. & Zaremski, A.. “Recom-
mended Best Industrial Practice for Software Architecture Evaluation”. CMU/SEI-96-TR-
025, Software Engineering Institute, Carnegie Mellon University, 1997

2. Andreou, A.S., “Promoting software quality through a human, social and organizational
requirements elicitation process”, Requirements Engineering Journal, no.8, pp85-101,
2003

3. Alexander, I., “Misuse Case Help To Elicit Nonfunctional Requirements”, Institution of
Electrical Engineers (IEE) Computing & Control Engineering Journal (CCEJ), 2001

4. Barbacci, M., Klein, M.H., Longstaff, Th.A., Weinstock, Ch.B., “Quality attributes”,
CMU/SEI report CMU/SEI-95-TR-021, 1995

5. Barbacci, M. R., Klein, M. H. & Weinstock, C. B. “Principles for Evaluating the Quality
Attributes of a Software Architecture”. CMU/SEI-96-TR-036, Software Engineering Insti-
tute, Carnegie Mellon University, 1997

6. Bass, L., Clements, P. & Kazman, R. “Software Architecture in Practice”. Addison-
Wesley, 1998

7. Blomberg, J. et al., Ethnographic Field Methods and Their Relation to Design, Participa-
tory Design: Principles and Practices, from CPSR First Participatory Design Conference
1990, pp. 123-155, 1993.

8. Boehm, B., In, H., “Identifying quality requirements conflicts”, IEEE Software, March
1996

9. Bowker, G.C., and Star, S.L. (1999). Sorting things out: Classification and practice. Cam-
bridge MA USA: MIT Press.

10. Chung, L., Nixon, B.A., Ye, E., „Using non-functional requirements to systematically
support change“, ISRE’95, pp. 132-139, 1995

11. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.,“Non-Functional Requirements in Soft-
ware Engineering”, Kluwer Academic Publishers, 2000

12. Cysneiros, L.N., Leite, J.C.S.P, “A Framework for Integrating Non-Functional Require-
ments into conceptual models”, Requirements Engineering Journal, no. 6, pp. 97-115,
2001

13. Cysneiros, L.N., Leite, J.C.S.P, “Driving Non-Functional Requirements to Use Cases and
Scenarios”, XV Brazilian Symposium on Software Engineering, 2001

14. Davis, A.,M., “System phenotypes”, IEEE software, july/august 2003, pp. 54-56, 2003
15. Dörr, J., Punter, T., Bayer, J., Kerkow, D., Kolb R., König, T., Olsson, Th., Trendowicz,

A., „Quality Models for Non-functional Requirements“, IESE_Report, Nr. 010-04/E, 2004
16. Dörr, J., Kerkow, D., von Knethen, A., Paech, B., „Eliciting efficiency requirements with

use cases“, REFSQ’03, Essener Informatik Beiträge,, Band 8, pp.37-46, 2003
17. Dutoit, A. H., B. Paech, P., “Rationale Management in Software Engineering. In: S.K.

Chang (Ed.), “Handbook of Software Engineering and Knowledge Engineering. World
Scientific, December 2001.

18. Ebert, Ch. “Putting requirements management into praxis: dealing with non-functional re-
quirements”, Information and Software technology, no. 40, pp. 175-185, 1998

19. Egyed, A., Grünbacher, P., Medvidovic, N., “Refinement and evolution issues in bridging
requirements and architecture – the CBSP approach”, From Software Requirements to Ar-
chitectures (STRAW) Workshop held at ICSE 2001

20. Firesmith, D., “Security Use Cases”, in Journal of Object Technology, vol. 2, no. 3, May-
June 2003, pp. 53-64.

21. Goguen J.A. & Linde, C., Techniques for Requirements Elicitation, Proceedings of IEEE
International Symposium on Requirements Engineering, p. 152-64, January 1993.

22. Gordon, A.D., "Classification, Second Edition", Chapman & Hall/CRC, 1999
23. Gross, D., Yu, E., “From non-functional requirements to design through patterns”,

REFSQ’00, Essener Informatik Beiträge,, Band 5, pp.86-98, 2000
24. Gross, D., Yu, E., “Evolving system architecture to meet changing business goals: an

agent and goal-oriented approach”, From Software Requirements to Architectures
(STRAW) Workshop held at ICSE 2001

25. He, Qu., Anton, A.I., „A framework for modeling privacy requirements in role engineer-
ing”, REFSQ’03, Essener Informatik Beiträge,, Band 8, pp.137-146, 2003

26. E. Hochmüller, “Requirements Classification as a first step to grasp quality requirements”,
REFSQ’97, Presses universitaeires de Namur, pp. 133-144, 1997

27. Hofmann, H., F., Holbein, R., „Seven Ways to quality: a framework for specifying secu-
rity requirements“, REFSQ’94, ,Aachener Beiträge zur Informatik, Band 6, pp. 45-54,
1994

28. IEEE Recommended Practice for Software Requirements Specifications, IEEE Std. 830-
1998

29. In, H., Boehm, B.W., Rodgers, T., Deutsch, W., "Applying WinWin to Quality Require-
ments: A Case Study", ICSE 2001, pp. 555-564, 2001

30. In, H., Kazman, R., Olson, D., “From requirements negotiation to software architectural
decisions”, From Software Requirements to Architectures (STRAW) Workshop held at
ICSE 2001

31. ISO/IEC 9126-1:2001(E), “Software Engineering - Product Quality - Part 1: Quality
Model”, 2001

32. Jacobs, St., “Introducing measurable quality requirements: a case study”, RE’99, pp. 172-
179, 1999

33. Kahneman, D., "The semantic differential and the structure of inferences among attrib-
utes". American Journal of Psychology, 76, 554-567, 1963.

34. Kazman, R., Abowd, G., Bass, L. & Clements, P. “Scenario-Based Analysis of Software
Architecture”. IEEE Software, November , pp.47-55, 1999

35. Kazman, R., Klein, M. & Clements, P. “ATAM: Method for Architecture Evaluation”.
CMU/SEI-2000-TR-004, Software Eng. Inst., Carnegie Mellon University, 2000

36. Kerkow, D., Dörr, J., Paech, B., Olsson, Th., König, T., “Elicitation and documentation of
non-functional requirements for socio-technical systems”, in Silva, A., Mate, J.L., (eds.)
Requirements Engineering for Socio-Technical Systems, to appear 2004

37. Kirner, T.G., Davis, A.M., „Timing-Constraints for requirements specification of hard
real-time systems“, REFSQ’94, Aachener Beiträge zur Informatik, Band 6, pp. 33-45,
1994

38. Kolp, M., Castro, J., Mylopoulos, J., “A social organization perspective to soft-
ware architectures”, From Software Requirements to Architectures (STRAW) Workshop
held at ICSE 2001

39. Landes, D., “Requirements Engineering for quality requirements”, REFSQ’98, Presses
universitaeires de Namur, pp. 185-186, 1998

40. Lauesen, S., Younessi, H., “Six styles for usability requirements”, REFSQ’98, Presses
universitaeires de Namur, pp. 155-166, 1998

41. Lawrence, B., Wiegers, K, Ch. Ebert, “The top ten risks of requirements engineering”,
IEEE Software, November/December, pp. 62-63, 2001

42. Liu, L., Yu, E., “From requirements to architectural design – using goals and scenarios”,
From Software Requirements to Architectures (STRAW) Workshop held at ICSE 2001

43. Maiden, N., Gizikis, A., “Where do requirements come from?”, IEEE Software, Septem-
ber/October, pp.10-12, 2001

44. Moreira, A., Brito, I., Araújo, J., "A Requirements Model for Quality Attributes", Early
Aspects: Aspect-Oriented Requirements Engineering and Architecture Design, workshop
at AOSD 2002

45. Opdahl, A, “Requirements Engineering for Software performance”, REFSQ’94, Aachener
Beiträge zur Informatik, Band 6, pp. 16-32, 1994

46. Paech, B., Dutoit, A., Kerkow, D., von Knethen, A.: „Functional requirements, non-
functional requirements and architecture specification cannot be separated – A position
paper”, REFSQ’2002

47. Paech, B., von Knethen, A., Doerr, J., Bayer, J., Kerkow, D., Kolb, R., Trendowicz, A.,
Punter, T., Dutoit, A., „An experience based approach for integrating archiecture and re-
quirements engineering “,From Software Requirements to Architectures (STRAW) Work-
shop held at ICSE, May 2003

48. Paech, B & Kohler, K “Task-driven Requirements in object-oriented Development.” Leite,
J. & Doorn, J. (eds.). Perspectives on RE. Kluwer Academic Publishers, 2003

49. Pasternak, T., “Using Trade-Off Analysis to uncover links between functional and non-
functional requirements in use-case analysis”, Int. con. On software-science, technology
and engineering, IEEE, 2003

50. Rashid, A., Moreira, A., Araujo, J., “Modularisation and composition of aspectual re-
quirements”, Int. Conf. on aspect-oriented software development, pp. 11-20, IEEE2003

51. Rosa, N.S., Cunha, P.R.F. “Process-NFL: a language for describing non-functional proper-
ties”, Int. conf. HICSS, IEEE; 2002

52. Shaw, M., Garlan, D., “Software Architecture – Perspectives on an emerging discipline”,
ISBN: 0131829572, Prentice Hall, 1996

53. Sindre, G., Firesmith, D., Opdahl, A., “A reuse-based approach to determining security re-
quirements”, REFSQ’03, Essener Informatik Beiträge,, Band 8, pp.127-136, 2003

54. Sutcliffe, A. & Minocha, S. “Scenario-based Analysis of Non-Functional Requirements”,
REFSQ’98, Presses universitaeires de Namur, pp. 219-234, 1998

55. Svahnberg, M., Wohlin, C., Lundberg, L., Mattson, M., „A method for understanding
quality attributes in software architecture structures“, SEKE’02, pp.819-826, 2002

56. Tudor, L.G., Muller, M.J., Dayton, T., and Root, R.W. (1993). A participatory design
technique for high-level task analysis, critique, and redesign: The CARD method. In Pro-
ceedings of HFES’93. Seattle WA USA.

57. VOLERE-Template, Atlantic System Guild, http://www.atlsysguild.com

