

Electronic version of an article published as Requirements Engineering Journal,

Vol. 7, Issue 1, 2002, pp. 3-19

[doi: 10.1007/s007660200001]

© [2002] Springer London

Die Originalpublikation ist unter folgendem Link verfügbar:

http://www.springerlink.com/content/nce11hacb6ex5ta8/?p=62a093cb0098474386dd

3f61e3d13fba&pi=0

Rationale-based Use Case Specification

Allen H. Dutoit* and Barbara Paech˚

*Technische Universität München, Institut für Informatik, Munich, Germany
dutoit@in.tum.de

˚Fraunhofer Institute for Experimental Software Engineering, Kaiserslautern, Germany
paech@iese.fhg.de

Abstract. The requirements specification – as outcome of the requirements
engineering process – falls short of capturing other useful information generated
during this process, such as the justification for selected requirements, trade-offs
negotiated by stakeholders, and alternative requirements that were discarded. In
the context of evolving systems and distributed development, this information is
essential. Rationale methods focus on capturing and structuring this missing
information. In this paper, we propose an integrated process with dedicated
guidance for capturing requirements and their rationale, discuss its tool support,
and describe the experiences we made during several case studies with students.
Although the idea of integrating rationale methods with requirements
engineering is not new, few research projects so far have focused on smooth
integration, dedicated tool support, and detailed guidance for such methods.

Introduction

There is a wide variety of techniques for the elicitation, specification, validation, and
management of requirements, but only few of them are used in industry. For example,
at a recent seminar given to around 100 developers in the car industries (suppliers and
procurers), 90% of the participants used natural language text edited in MS Word for
the requirements specification [1]. Also, the experience from several industry
projects, in which the authors were involved, shows that even the quality of
requirements documents that adhere to some standard is often fundamentally flawed,
because:
• they do not contain the information needed by the people who have to rely on

them,
• this information is often inconsistent, ill-structured, and imprecise,
• the authors of the specification did not find an adequate level of abstraction that

enables them to avoid design decisions while capturing all relevant requirements
details.

The reasons for these flaws are manifold and typically depend on the context.
However, in general, three issues seem to be essential for a successful requirements
engineering process:
• Smooth integration among the techniques applied. The lack of integration among

techniques is the most critical of these three issues. For example, there is no
integrated method established for the simultaneous usage of use cases and class
models.

• Dedicated tool support. Although there exist modeling and requirements
management tools, these tools are general purpose and do not support specific
tasks. Again, this holds true, for example, for use cases, where there is no
established tool support for the capture and management of use cases.

• Detailed guidance for participants. Most techniques suggested from academia are
not sufficiently well explained to be usable by persons other than their inventors.
Similarly, this holds true for established techniques like use cases, where, for
example, there is almost no guidance regarding the right level of abstraction
adequate for certain project contexts.

In this paper, we describe the integration into a single process of two techniques, use
case specification and rationale capture, along with their associated tool support and
guidance. Use case specification enables developers to specify a system in terms of
sequences of interactions between users and the system. Rationale methods enable
developers to capture the justification of their decisions and the related decision
making elements. Hence, integrating both techniques should yield a method that
captures all information appropriate for all stakeholders, that supports stakeholders for
negotiating and refining the level of detail of this information, and that enables
stakeholders to evolve this information as a response to change. We have
incrementally developed this process and its associated tool support and guidance, by
continuously evaluating and improving them in the context of case studies with
students. Student case studies are clearly insufficient for demonstrating the usefulness
of this process for industry. However, the use of novice subjects has enabled us to
develop guidance and supporting material that, in our view, will make this process
more easily transferable to clients and practitioners during field trials and, later, wide-
spread use.
The rest of the paper is structured as follows: First, we describe our process for use
case specification and rationale capture. Then we provide an overview of the tool
support. The fourth section summarizes the lessons learned so far. In the fifth section
we discuss related work. We conclude in the sixth section. Throughout the paper we
use the well-known meeting scheduler example [2].

Process Overview

Use cases are a popular addition to object-oriented software development. They have
first been proposed by Jacobson [3] and are now part of the (Rational) Unified
Software Development Process [4]. One of the main difficulties with writing use cases
is their granularity [5], that is, the partitioning of system functionality into individual
use cases and the level of detail for writing each use case. Ideally, the partitioning of
the specification into a set of use cases and the level of detail should be such that the
resulting specification accurately reflects the customer’s and users’ goals. This can
usually only be attained through an iterative process of negotiation and refinement
with the customer.

Rationale methods aim at capturing, representing, and maintaining records about
why developers have made the decisions they have [6]. Rationale includes the
problems developers encountered, the options they investigated, the criteria they

selected to evaluate options, and, most important, the debate that lead to making
decisions. Rationale can be used to support negotiation (increasing the quality of the
decisions made) and to capture contextual information (facilitating future changes to
system requirements) [7]. Rationale methods are currently not widespread because of
their low acceptance among developers and their cost: Under time pressure, it is
difficult to justify the capture and documentation of additional information that will
only be useful downstream to other, unknown project participants.

Our ultimate research goal is to support the evolution of software by providing an
integrated process for use case specification and rationale capture [8]. By providing
templates and guidance for use case writing, we hope to address common issues about
granularity and facilitate the communication between customers and developers. By
providing an explicit rationale process supporting the negotiation among customers,
users, and developers, we aim to facilitate decisions about system requirements and
use case granularity. By creating a short-term incentive for this rationale process, we
also aim to opportunistically capture rationale information that is useful for the longer
term (i.e., evolution). Finally, to further decrease the overhead of capturing rationale
for the developer, we introduce a new role, the rationale maintainer, whose task is to
augment, filter, and structure the rationale for longer-term use.

However, before we can focus on the support for evolution, we first need to
understand the details of applying use case specification and rationale capture to a
realistic problem. We have done this by incrementally refining and evaluating our
process, together with its guidance and tool support, in the context of case studies. In
the remainder of this section, we describe in more detail the products and activities of
our process aimed at writing use cases and capturing rationale.

Table 1 An example of user task.

User Task Name Manage Interaction Among Participants
Initiating Actor Meeting Facilitator
Participating Actors Meeting Participant
Task Description The Meeting Facilitator is responsible for getting replies

from participants who have not reacted promptly, for
notifying participants of changes of date or location, and for
keeping participants aware of current unresolved conflicts or
delays in the scheduling process.

Realized in Use
Cases

Handle Replies, Remind Participant, React to Replan
Request

Table 2 An example of a use case.

Name Handle Replies
Realized User Task Manage Interaction Among Participants
Initiating Actor Meeting Facilitator
Participating Actors Meeting Participant

Actors System
1. The Meeting Facilitator selects
“Handle Replies” for a meeting
and a question.

 2. The system checks if all participants
replied [Exception: Slow participant].

Flow of events

 3. The system starts the "Close
Question Service" and notifies the
Meeting Initiator accordingly.

Exceptions [Slow participant] The meeting facilitator decides whether to
remind the participants or to close the question. In the first
case s/he selects the "Remind Participant Service". In the
second case s/he selects the "Close Question Service".

Precondition The meeting Initiator has initiated the meeting and asked
some question.

Postcondition The participants have been reminded or the question is
closed.

Includes Use Cases -
Used Services Check Participant Replies, Remind Participant, Close

Question
Non-functional
Requirements

Response Time, Minimize Amount of Messages, Flexibility

Products

We describe the functional aspects of a requirements specification using five types of
elements: actors, user tasks, use cases, system services, and glossary entries:

� Actors are external entities that interact with the system. Examples of actors

include a user role (e.g., a bank customer) or another system (e.g., a central
database).

� A User Task is a unit of work that is meaningful to the user. It includes the
environment in which the system operates and is often a step in an encompassing
business process. Thus, user tasks are similar to Cockburn’s Summary Goal Use
Cases [9]. We use the term user task because we rely on techniques from task
analysis for their identification [10]. Only by knowing the user tasks in detail a

system with maximal support to the user can be designed [11]. Table 1 depicts as
an example the user task “Manage Interaction Among Participants”.

� A Use Case describes how a user task can be achieved with a sequence of
interactions with the system. This corresponds to Cockburn’s User Goal Use Case
[9]. We use the essential use cases of [5], where each use case step has a number,
and actor and system steps alternate. Table 2 shows as an example the “Handle
Replies” use case.

� A System Service describes the input and output of individual system functions.
While use cases put system functions into context, system services describe system
functions independently of the user task. This corresponds to Cockburn’s
Subfunction Goal Use Cases [9]. While user tasks and use cases are important to
communicate with the customer, the service description is the important input for
the system designers. Table 33 shows as an example the “Remind Participant”
service. The service template looks similar to the use case template. The main
difference is that no context information (e.g., actors) is provided. Instead input and
output are described explicitly and the flow of event may include user interface
details. Non-functional requirements are inherited from the use case and additional
non-functional requirements are added which apply only to this service.

� A Glossary Entry defines an important concept relevant to the user tasks or the
system services. There are two reasons for maintaining a glossary in the
specification. First, it allows requirements engineers to document accurately the
terms of art used by the client. Second, it enables requirements engineers to reduce
redundancies and inconsistencies in terms used to describe the system.

Figure 1Figure 11 depicts the relationship between user task, use case, and system
service.

Environment specific System specific

User Task Use Case System Service
1 * * *

Figure 1: Relationship between User Task, Use Case, and System Service

(UML class diagram).

A major feature of our process is that it not only covers functional requirements,
but also non-functional requirements (NFR)1. NFRs are essential for rationale capture,
since they provide criteria for assessing different options for use cases and services.
This is similar to the NFR-framework [12], where softgoals are refined into several
different operationalizations. As discussed in [12], there are different taxonomies of
NFR. We distinguish between three types of NFR as explained in Table 44. Domain
properties describe facts of the domain and therefore have to be satisfied through user
tasks and use cases. Global functional requirements are high-level functional
requirements and therefore have to be satisfied through use cases and system services.
Quality requirements are additional constraints on the characteristics of the

1 Often, NFR encompass product and process or project requirements. Here we concentrate on

product requirements.

requirements elements. Domain properties play a special role in that they describe
facts that are not changeable during the requirements engineering process. Jackson
calls these NFRs indicative properties [13]. Global functional requirements and
quality requirements are subjects of the requirements engineering process. Jackson
calls these optative properties.

Table 3 An example of a service

Name Remind Participant
Used by Use Cases Handle Replies

Actors System
1. The Meeting Facilitator selects
the “Remind Participant Service”
for a meeting and a question and a
Meeting Participant.

 2. The system shows a default text for
a message to remind the participant.

3. The Meeting Facilitator edits the
text and triggers the sending.

 Flow of events

 4. The systems sends the message to
the Meeting Participant [Exception:
Problem with Email address]
[Exception: Problem with message
system]

Exceptions [Problem with Email address]: The system displays an error
message asking for another address. <continue with 3.> or
The Meeting Facilitator aborts the service call.
[Problem with message system]: The system displays an
error message and stops service execution.

Precondition -
Postcondition The participant has been reminded to answer the question for

the meeting.
Input Meeting Identifier, Question Identifier, Participant Identifier
Output Email addressed to the Participant
Non-functional
Requirements

Minimize length of message

Our types are only used as a rough guidance to check for three basic types of NFR.
They are much simpler than goal types in goal-oriented approaches to requirements
engineering (e.g. GBRAM[35] or KAOS[2]) which drive the requirements elicitation.
In contrast to these approaches we use user tasks instead of goals to drive the
requirements elicitation and specification process. We only use the NFR as criteria for
the evaluation of the adequacy of use case or service design with respect to user tasks
and use cases, respectively.

Table 4 Types of NFRs.

Property type Explanation
Domain property Facts of the domain to be adhered to by the software system

(e.g. “a person may not be at two different places”)
Global functional
requirements

High-level functional requirements that cannot be attributed to
single use cases, but affect several use cases (e.g. “the meeting
scheduler must in general handle several meetings in parallel”).

Quality
requirements

Requirements on characteristics of user tasks, use cases or
system services, e.g. “the elapsed time between the
determination of a meeting date and location and the
communication of this information to all participants concerned
should be smaller than 5 sec.”.

To represent rationale we use an issue model as proposed by argumentation-based
rationale approaches [6]. Issue models represent the individual decision making
elements that lead to a decision as individual nodes and their relationships with edges.
Many different models have been proposed, including IBIS (Issue Based Information
System, [14]) and QOC (Questions, Options, Criteria, [15]), to name the principal
ones. We use a refinement of QOC that includes the following elements (see the
concept model in Figure 233):

� Questions represent needs to be solved for the requirements process to proceed.

Questions can indicate a design issue, a request for clarification, or a possible
defect.

� Options are possible solutions that could address the question under consideration.
These include options that were explored but discarded because they did not satisfy
one or more criteria.

� Criteria are desirable qualities that the selected option should satisfy. In our model,
criteria are NFRs.

� Assessments represent the evaluation of a single option against a criterion. An
assessment indicates whether an option satisfies, helps, hurts, or violates a
criterion. Assessments are used to establish the fitness of options within a question.

� Arguments represent the opinions of individual stakeholders, in particular, about
the relevance of a question or the accuracy of an assessment. By arguing about
relative merits of options, stakeholders can build consensus and converge towards
a solution.

� A Decision is the resolution of a question representing the selected option.
Decisions are already implicitly captured in the use cases during requirements
engineering. We only need to capture the relationship between decisions and their
corresponding rationale.

Table 5: An example of rationale

Justification What is the best Option for the system boundary within in the
“Handle Replies Use Case” satisfying the non-functional
requirements?

Criteria: Response
Time

Minimize
Amount of
Messages

Flexibility

Option 1: The system collects replies and
reminds slow participants automatically
during a given time within a given
interval. The system then closes the
question and informs the Meeting
Facilitator.

+ - -

Option 2: The system collects replies and
informs the Meeting Facilitator about the
status automatically after a given interval.
The Meeting Facilitator decides whether
to close the question or to remind
participants.

O O +

Decision: The system collects replies.
The Meeting Facilitator chooses when
to handle replies and accordingly
checks the status and decides whether
to close the question or to remind
participants .

- + +

As an example for a rationale consider the justification of the “Handle Replies” use
case given in Table 556. The question is the optimal system boundary. Three options
are sketched and evaluated against the criteria. The assessments +, O, - indicate good,
sufficient, and insufficient satisfaction. An argument for the good satisfaction of the
“Response Time” criterion of the first option is that in any case the question is closed
within the given time. However, this system behavior impacts negatively on the
flexibility of the Meeting Facilitator, because there is no way s/he can extend the time
for participants to reply before closing the question. The chosen option is marked by
boldface-letters. If the criteria are of different priority, the option with the highest
score of “+” need not be the optimal one.

During review, use cases and services are challenged. This way new issues are
created, for example: Can the remind message in the “Remind Participant Service”
be created and send without editing through the Meeting Facilitator in order to
reduce the “Response Time criterion”? During the discussion options, assessments
and possibly new criteria will be generated and the decision for this question together
with its rationale will be consolidated in a table similar to Table 556.

The concept model in Figure 233 shows the relationships among requirements
elements and rationale elements that are created and maintained in our process and
tool.

is challenged by

is_realized_by is_realized_by

satisfies

Functional
Requirements Element

Domain
Property

Quality
Requirement

Global Functional
Property

User Task Use Case Service

Rationale

Requirements
responds_ to

assesses

Issue

DecisionArgument

Criterion / NFR Assessment

supports
objects to

is_used_in

Question

Justification

Option

resolves

selects

satisfies satisfies

supports
objects to

Figure 2: Concept model

As shown in Figure 345, the input of our requirements engineering process is a
Problem Statement, written by the client and the requirements engineers, describing
the user tasks that the system should support. The problem statement serves two
purposes: First, it provides an initial description of the environment of the system
(e.g., a set of actors and user tasks). Second, it establishes the scope of the work
supported by the system (i.e., which user tasks should be supported and which should
not). We are well aware that producing an adequate problem statement requires an
elicitation process in itself. However, here, we concentrate on the specification of re-
quirements to be used as input to software development.

Based on the problem statement, the requirements engineers write the specification
in terms of use cases, services, glossary entries, and NFRs. The specification process
is iterative and incremental. The requirements engineers may decide to write and
refine only a limited set of use cases, services or NFRs at the time (i.e., a depth first
approach), or, conversely, work concurrently on all use cases, services, and NFRs
(i.e., a breadth first approach). In parallel, parts of the specification are reviewed
which triggers further refinements of the specification.

Process activities

 Problem Statement
(UT)

Requirements Specification
(UC, Glossary, Services)

Rationale
(issues, options, criteria, assessments)

Describe
Specification

Reviews
Specification

Justify
Specification

Addresse
Challenge

criteria
questions, options,
criteria,assessments

justifications, options,
criteria, assessments

Maintain
Rationale

Legend: Activity Product

Figure 3: Process Model

As shown in Figure 345, the rationale of requirements is captured during four

activities. The Justify Specification activity, executed by a requirements engineer or a
reviewer, focuses on capturing rationale through explicit justification. The Review
Specification activity focuses on capturing rationale through requests for clarification
and challenges on requirements. The Review Specification activity is followed by the
Address Challenge activity, during which developers and reviewers discuss solutions
to address challenges. Finally, the Maintain Rationale activity focuses on
consolidating and restructuring the rationale for long-term use. Similar to the
specification activity, rationale capture is iterative and incremental. Each activity is
intertwined with specification.

Next, we describe each activity in more detail.

Describe Specification
 The Describe Specification activity is executed by the requirements engineer and is
composed of the following steps:

� Describe Use Cases & Services. This step develops an initial draft of one use case
for each user task which determines which parts of the user tasks are realized by
the system and which are realized by the user. Each use case is then refined into a
number of further use cases and system services. The result of this step is a
description of the interactions between the users and the system (in terms of use
cases) and a description of the features offered by the system (in terms of system
services).

� Define NFRs. This step identifies and describes NFRs for each use case and
service. These NFRs describe properties that the system must have in order to be
useful to the user. This step may also result in NFRs that are applicable to the
complete system.

� Describe Exceptional Cases. This step describes the response of the system under
error conditions, such as wrong user input or component failure. Exceptional cases
are also described as flow of events but are separated from common cases for
clarity.

� Create Glossary. All terminology specific to the use case is captured in a glossary.
This includes terminology specific to the user tasks as well as terminology specific
to the system services described in the use cases

Justify Specification
The Justify Specification activity is executed by the requirements engineer.
Requirements engineers explicitly capture rationale by justifying each use case and
system services by documenting alternatives that were discarded as options and
assessing them against the NFRs to show how the current option is the best (wrt. the
NFRs). A justification takes the same form as any other question in the system, except
that it is usually created by a single author and that it is closed.

Review Specification
The Review Specification activity is executed by a reviewer and is composed of the
following steps:
� Request Clarification. A reviewer reads some part of the specification and finds it

unclear, and requests a clarification regarding a term or the phrasing of a
paragraph.

� Challenge Specification. A reviewer reads some part of the requirements
specification and challenges problem areas with questions. The difference between
a challenge and a clarification is that the former points out a definite problem in the
specification whereas the latter often results from a misunderstanding from the
reviewer. Note that the reviewer can also challenge the specification by reading
and reopening the justification associated with a use case or a system.

Address Challenge
The Address Challenge activity is composed of the following steps:
� Propose and Assess Options. Questions can result in the discussion of possible

changes in the requirements specification. A possible option that is always
available is the status quo, that is, not to change the requirements. Clarification
questions are addressed with options to improve the requirements specification

without necessarily resulting in changes to the system. Once a sufficient number of
options have been proposed, requirements engineers need to evaluate them and
refine them to satisfy the NFRs. The resulting QOC models are similar to those
resulting from justification. The difference is that a justification is systematically
written by a single author (the requirements engineer responsible for the use
case/service) whereas a challenge and resulting discussion is incrementally written
and refined by a number of authors (the reviewer and the stakeholders interested in
the use case/service).

� Discuss Options. During this step, requirements engineers create arguments
supporting and opposing options. While the previous steps focus on the objective
evaluation of options against well-defined criteria, this step focuses on the
arguments and negotiation among requirements engineers to validate these
assessments and to prioritize criteria.

� Decide. Once requirements engineers have evaluated and refined (most or) all
options, requirements engineers create a decision by selecting an option which can
result in minor or substantial change in the requirements specification. Note that a
clarification question can be resolved without any changes. Note also that
addressing a question may invalidate previous decisions.

During rationale capture, requirements engineers may skip any of the above steps.

Options can be generated and evaluated without an explicit question. Decisions can be
taken and changes implemented without explicit discussion. It is desirable, however,
that at least some of the components of the decision are recorded so that the rationale
maintenance process can recover the missing parts.

Maintain Rationale
The Maintain Rationale activity is executed by the rationale maintainer whose
responsibility is to keep the content and structure of the rationale up to date. The
Maintain Rationale activity is composed of the following steps:
� Identify Missing Questions. Given that requirements engineers and the reviewers

may skip steps in capturing rationale, there can be options that were captured
without their corresponding question. In most cases, the implicit question can be
made explicit using the options.

� Identify Missing Decisions. Most decisions occur during meetings or face-to-face
conversations. Consequently, they may be implemented in the requirements
specification but not captured in the issue model. The rationale maintainer can
identify these decisions by ensuring each change is associated with a decision.

� Consolidate Options. When discussing a question, the requirements engineers may
propose similar options. The rationale maintainer consolidates identical options
into single nodes and restructures similar options.

� Consolidate Questions. When reviewing requirements elements, reviewers may
raise similar questions. The rationale maintainer consolidates identical questions
into single nodes and restructures similar options.

The task of the rationale maintainer can be quite cumbersome if requirements

engineers and reviewers capture too much rationale that does not have much value for
long-term rationale. In particular, questions requesting clarification or challenging the

form of the specification are resolved quickly and are not worth remembering.
However, during rationale maintenance, if the rationale maintainer were to read all
these questions and filter them out manually, the rationale maintenance activity would
be excessively time consuming and error prone. To address this issue, we use a type
attribute for the question node, as shown in Table 667. The authors of questions
indicate the type of question they are raising, which makes the post-processing task of
the rationale maintainer much easier when filtering out questions without long-term
value.

Table 6 Types of questions.

Question
type

Relationship to
requirements

Available actions Value for
rationale

Challenge on
form

Linked to one or more
elements that do not comply
with the structure supported
by the tool (e.g., confusion
between user tasks and use
cases).

� Close question by
revising related
elements

None

Challenge on
content

Linked to one or more
elements the author of the
question disagrees with.

� Propose options
� Select criteria
� Revise

assessments
� Close question

once consensus is
reached

High

Clarification Linked to statement in a
requirements element that is
not clear.

� Close question by
clarifying unclear
requirement. (No
criteria or options
are associated with
this question)

None

Inconsistency Linked to two or more
elements that are inconsistent.

� Propose option
� Close question by

revising related
elements.

Low

Justification Linked to requirements
element that is being justified.

� Reopen question
(in which case this
question behaves
the same way as a
challenge on the
content)

High

Omission Linked to one or more
elements and describes
statements that have not been
written down.

� Propose option.
� Close question by

filling gaps.

Low

A side effect of typing questions is that the issue model becomes much more
specific. The types in Table 667 effectively correspond to a taxonomy of defects.
Consequently, these question types makes it easier to develop tool and process
guidance, by providing, for example, different actions and views for each question
depending on its type. The second column of Table 667 lists the relationships between
the questions and their related requirements elements and the third column of Table
667 lists the restricted set of actions available for each type of question.

Integrating Specification and Rationale

Capturing and maintaining rationale will yield benefits only if both requirements and
rationale capture and their corresponding tool support are integrated. Indeed, the
integration of rationale methods and tools with various aspects of development is a
fundamental issue that has received little attention in rationale research [16].

A novelty of our approach is that NFRs are used as the integrating concept between
the specification and its rationale (see the concept model in Figure 233). On the one
hand, NFRs represent domain properties, global functional requirements, and quality
requirements that must be satisfied. On the other hand, NFRs represent criteria that
can be used when assessing options in justifications or in responses to challenges.
The two following examples illustrate the integration and interaction between
requirements elements and rationale elements:

Example 1. A reviewer identifies a defect in the “Remind Participant” service

because the service does not seem to satisfy the “Response Time” NFR. He indicates
this by:
� Creating a challenge on content
� Describing the current option, including a negative assessment linked to the given

criterion explaining the source of the challenge
� Describing an improved option, including a positive assessment wrt. the given

criterion and to other relevant NFRs.
The original author of the faulty use case can then either select the proposed option or
propose a different option.

Example 2. A requirements engineer describes the reasoning behind the “Handle

Replies” use case (see Table 556) by:
� Creating the justification question,
� Describing the current option and the alternatives that were discarded,
� Entering the assessments between each of these options and the relevant NFRs,

hence, explaining how the current option satisfies these requirements better than
the alternatives,

� Creating new NFRs and corresponding assessments, as needed, to better justify the
current option, and

� Closing the question with the current option.

In the first example, we observe how a reviewer can point out inconsistencies between
requirements elements and NFRs with negative assessments. In example 2, we
observe how a developer can justify the current solution (thus clarifying the
specification) and discover NFRs that were left implicit until then (thus improving the
completeness of the specification). Such interactions between functional requirements
elements, NFRs, challenges, and justifications results from the tight integration
between requirements and rationale and enables developers and reviewers to improve
the specification.

Tool Support

In the previous section, we described products and activities for developing a use case
specification along with its associated rationale, through collaboration, justification,
and review. In the following, we give an overview of REQuest, our tool for
supporting these processes.

The design goals of the tool were to provide a simple and integrated solution to
manipulate use case and rationale models, embedding only minimal process specific
knowledge. The tool is a Web application that can be accessed via standard Web
browsers. This enables users to access the tool remotely from a variety of
environments (e.g., lab, home, office) without the installation of additional software.
The main view of the tool presents the user with three frames: a title, a requirements
specification view and a rationale view (see Figure 456).

Figure 4 Tool overview: requirements specification (left column) and rationale
(right column) are allocated the same amount of screen real estate.

The requirements view displays the requirements specification as a hypertext
document, structured into actors, user tasks, use cases, services, glossary entries, and
NFRs. The tool provides templates, text boxes, and selection menus for each
requirements element. The tool recognizes known terms (e.g., glossary entries, the
name of user tasks, use cases, and system services) and highlights them automatically
in text fields where the terms appear. For example, if the name of an actor appears in
the flow of events of a use case, the name of the actor is highlighted. The user can
then click on the highlighted name to examine the attributes of the actor.

In the rationale view, information is structured according to the QOC model
presented in the previous section and displayed as tables and hyperlinks, thus
maximizing the density of information that the user can read in a single screen.
Displaying rationale as text is a different approach than other well-known rationale-
based tools (e.g., gIBIS [17], SYBIL [18], QuestMap [19]), which display rationale as
a graph. In addition to the QOC structured information, users can annotate questions
with informal comments or arguments to provide reference information or negotiate
various aspects of the question.

In the following subsections, we focus in more detail on three aspects of the tool
that are specific to our process: linking requirements and rationale elements,
supporting justification, and supporting rationale maintenance.

Linking requirements and rationale elements

When viewing any requirements element, the user has the opportunity to create
questions associated with the viewed element. By clicking on a question button, the
user creates a question of a specified type and content (Figure 56). The user may
choose to continue the question process and associate more rationale elements with
the question, such as options, relevant criteria, and assessments. As the question is
created incrementally, the user can choose to enter as little or as much information as
necessary. For inconsistency questions, the user is prompted for references to other
parts of the specification that are involved in the inconsistency questions.

Since the user must first view a requirements element before asking a question, all
questions are automatically associated with at least one requirements element. The
relationships between requirements elements and questions is a many-to-many and
bidirectional relationship. When viewing an element in the requirements view, the
titles of the questions associated with the element appear as a list of hyperlinks. When
clicking on the title of a question, the user can examine the content of the question
(operations, criteria, assessments, decision) in the rationale view. Similarly, when
viewing a question in the rationale view, the list of elements related to the question
appear as hyperlinks that the user can use to display a related requirements element in
the requirements view. Hence, the user can quickly examine the relationship between
two or more seemingly independent requirements elements that participate in related
questions.

Question link

Question button

Figure 5: Creating questions and following question links

Supporting justification

The REQuest tool supports the justification of use cases and services. When viewing a
use case in the requirements view (i.e., in the left column), the developer uses the
[Justify] feature to initiate the justification process, which includes completing several
forms in the rationale view (i.e., in the right column). Keeping the justified element
and its justification in separate columns enables the developer to examine any part of
the requirements specification without disturbing the forms associated with
justification. The justification process consists of the following steps:
� The tool presents the developer with a summary of the justification process,

explaining what forms will appear.
� The tool checks if the use case or the service is well formed. A well-formed use

case has an initiating actor and is associated with the user task that it realizes. A
well-formed service is attached to at least one system step in a use case. The tool
also issues warnings if no quality requirements are associated with the use case or
service.

� The tool computes the set of NFRs that are applicable to the use case or service.
This includes the quality requirements attached to the element and any NFR
inherited through associations (e.g., domain properties attached to an associated
user task). The set of applicable NFRs are used as criteria in the justification
question. The developer can extend or reduce the set of criteria if necessary.

� The developer summarizes the alternatives that could have been considered.
� The developer describes how the selected solution differs from the alternatives.
� The developer assesses the alternatives and the current solutions against the

selected set of criteria.

� In the final step, the tool displays the QOC matrix representing the justification and
marks the element as justified.

A reviewer or a developer may reopen the justification at any point to revise it or to
challenge it. Once a justification question is reopened, it can be manipulated in the
same way as a challenge on content.

 Supporting rationale maintenance

The REQuest tool supports the maintenance of rationale by providing several features
for viewing rationale elements and their relationships with the requirements elements:
� View questions by status enables the rationale maintainer to identify questions that

have not yet been resolved. In most cases, such questions indicate issues that have
been resolved in the requirements specification, but whose resolution has not been
documented. In the case of challenge questions, the rationale maintainer elicits
more information from the developers and enters the decisions that have already
been taken.

� View questions by type enables the rationale maintainer to access questions that are
interesting for long term rationale (e.g., justifications and challenges on content)
and to review them. If a documented decision is not consistent with the
assessments, the rationale maintainer can either attach comments to the question to
clarify the decision, add missing criteria in the assessment matrix, or reopen the
question and require a developer to enter the missing information.

� View unjustified elements enables the rationale maintainer to identify specification
elements without justifications or without rationale. For elements with questions
but without justification, the rationale maintainer creates a justification and
consolidates the information from the other questions into the justification. For
elements without questions, the rationale maintainer can request the author of the
element to complete the justification process (see Figure 67).

Rationale
indicator

Figure 6:View unjustified elements. Rationale indicators next to elements in

the overview indicate the status of each element wrt. captured rationale

While these features are designed to support the rationale maintainer, reviewers and
developers may also use these features to access the rationale when accomplishing
their own tasks.

Tool architecture

The current REQuest prototype tool is implemented as Java servlets [20] that store
their persistent objects (e.g., requirements and rationale products) into an SQL
database. Users access the tool with a standard Web browser that supports Javascript
and tables. The requirements specification can be exported as an HTML document,
which can then be imported into a word processor for final formatting. The tool has
scaled up to the situations we face in the project course and the seminars (e.g., 15
concurrent users, specifications of ~30 use cases, rationale of ~60 questions) and
could scale up to much larger situations. The current version of the tool, however, is
missing several critical features for use in an industrial environment, including
supporting interchange formats with other CASE tools (e.g., XMI [21]) and version
control.

We also built a prototype of our concept model in the requirements management
tool DOORS [22] to evaluate how our process could be supported by a tool developed
and applied in industry. We found no major conceptual problem in using DOORS to
store our requirements and rationale elements. However, the effort to develop a
sufficiently usable adaptation is high. Moreover, we found that the learning curve
faced by students when learning to use DOORS is steep as DOORS provides many
features that are not always relevant to our process. Thus, we decided not to burden
our students with this prototype.

Lessons Learned: Experiences with Process and Tool

We evaluated and incrementally refined the process described in the previous sections
in case studies with students. So far, we conducted four case studies with three
versions of the process, tool, and guidance. The goal of these case studies was to
evaluate qualitatively if the guidance associated with the process was sufficient for
novice participants. In particular, we were interested in the following points:
� the distinction (granularity, context, purpose) between user tasks, use cases, and

services,
� the representation of rationale as a QOC model displayed as a textual matrix,
� the relationship between NFRs and criteria, and
� the process for asking and resolving questions.
While these case studies were not designed to compare our process against others, we
were able to gain qualitative insights into the strengths and weaknesses of our process.
We plan future work that will include an in depth evaluation of the process with
professional subjects.

In this section, we first describe the experimental context of the case studies. We
then summarize the lessons we learned with the first four main activities of our
process, namely, specification, justification, review, and addressing challenges. We

have not yet evaluated the maintenance activity with students, as our focus has been
initially on the activities capturing rationale.

Experimental context

In each case study, we provided a 45 minute tutorial to the process and the tool, an
online help document, and written guidance. We surveyed the students during and
after the case study with a structured questionnaire, examined the delivered
specification and the issue model, took notes of our observations and of informal
discussions with the students. The exploratory nature of the case studies, the number
of subjects (4–22 per case study), and variables (background of participants, system
under specification, process and tool variations) did not allow for a rigorous
quantitative study.

Our primary evaluation context is the software engineering project course offered
at Technische Universität München (TUM) [23]. This project provides students with a
realistic software engineering experience during which students build and
demonstrate a system for a real client. During our first case study in winter 2000/01,
22 students divided into four teams developed a prototype augmented reality
application for nuclear powerplant technicians. 15 students were involved in the
requirements engineering of the system, which lasted 5 weeks.

Following the project course, we evaluated an improved version of the process and
tool in a requirements engineering seminar at TUM. Four students spent four weeks
developing a requirements specification for the meeting scheduler problem [2]. This
smaller and more focused setting enabled us to investigate in more detail the explicit
capture of rationale. One week in this exercise was dedicated only to consolidating
existing use cases and entering justifications. Moreover, since the students of the
seminar had more experience and were more motivated than the students in the
project course, we were able to better distinguish problems with the guidance from
problems with the process itself.

During the summer semester of 2001, we evaluated a third version of the process
and tool during the summer in a design rationale seminar at TUM (4 students, 6
weeks) and a requirements engineering lecture at the University of Kaiserslautern (8
students, 10 weeks). Both the seminar and the lecture used the same meeting
scheduler problem statement as in the winter seminar.

Table 7. Number of requirements and rationale elements by case study.

 Participants Use Cases Services Questions (Justifications)
Project
course

15 29 0 62(0)

Seminar 1 4 17 13 40(13)
Seminar 2 4 13 6 43(9)
Lecture 8 7 12 37(12)

Specifying functional requirements

We found that the templates for uses cases and services supported by the tool and the
writing guidelines helped avoid several typical problems encountered when training
novices [24]:
� The use cases were written from the actor’s point of view, as the first step of every

use case was usually an actor step.
� The causality between steps was clear most of the time, as the writing guidelines

encouraged students to write flow of events as an alternating sequence of actor
actions and system responses.

� The naming of actors, user tasks, use cases, and services was consistent (noun
phrases for actors, verb phrases for the others).

� Most exceptions were identified and handled as alternate flow of events.
While the distinction between user tasks and use cases is now clear to participants,
there are still open questions about the granularity of use cases and services. Both
templates are still similar (both use cases and services have flow of events), and often,
participants model services as short low-level use cases. We will address these
remaining issues by improving our use cases writing guidelines and by providing
more detailed examples in our tutorial.

Specifying NFRs

We found that the three types of NFRs and guidance in the form of examples of NFRs
made it easier to train novices to correctly identify and attach NFRs to the correct
element in the specification. Moreover, the tool support for automatically relevant
NFRs during justification increased the number of criteria taken into account during
the assessment of options.

However, the set of NFRs that the participants identify is still incomplete. The
organization of NFRs into a refinement graph as in the NFR Framework [12] would
help better address the completeness issue.

Justifying use cases and services

Usually, justifications do not come naturally as a side effect of development. This is
consistent with other studies and is a well-known obstacle to the wide spread use of
rationale [6]. By explicitly adding the justification activity in the process,
differentiating justification questions from other questions, and training developers to
enter justifications as part of the deliverables, we were able to capture quite a large
rationale (e.g., all use cases justified after the second iteration, all justifications
including 2 or more options). While justifications cost additional overhead, we found
that there are concrete incentives for including justifications on use cases.

For example, the question associated with use case justifications was phrased as
explaining how a use case satisfies better the NFRs than other possible use cases.
When assessing the current use case with alternate options, the assessments did not
clearly indicate why the current solution was better. One of two things would then

occurred: either the author revised the use case to improve it or identified missing
NFRs, adding columns to the assessment matrix in the justification, and thus making
clearer the selection of the current solution. In both cases, the specification was
improved.

In the last two case studies, we added tool support for selecting the initial set of
criteria that are included in a justification. For example, when justifying a use case,
the domain properties associated with the realized user task and the quality
requirements associated with the use case were automatically included in the
specification. The users were offered to expand or restrict the set of NFRs in the
matrix. In general, we observed that this helped minimizing the occurrences of
missing criteria in justifications.

Reviewing specification

In our case studies, more than half of the questions was generated during review by
the instructors, the coaches, and the authors. Of these questions, half were request for
clarifications and reports of omissions, which, once the specification is revised to
resolve these questions, did not contain much useful rationale. We found that novices
were able to correctly classify their questions, which in turn made it easier for us to
find the questions that contain the most useful rationale. The type associated with
questions also made it easier for reviewers to correctly phrase their questions and
subsequently for developers to revise the requirements specification or the
justifications accordingly.

However, the elaboration of complex questions by a single reviewer can be
laborious. For example, if a reviewer enters an inconsistency question referring to two
different use cases, enters several different alternatives for addressing the
inconsistency, and assesses the alternatives against all relevant criteria, the reviewer
will have to go through a series of five different forms. While a developer familiar
with the process can specify the question efficiently, the length of the process may
discourage a novice. We believe, however, that the reviewer can see early the benefit
of investing the time in documenting complex questions, as it makes it easier for the
developer to revise the requirements specification (and hence, minimize the number
of review cycles).

Addressing challenges and clarifications

We found that attaching challenges and clarifications provided an effective way to
track defects in the specification and their resolution by the responsible authors. The
rationale side of the tool effectively acted as a long to do list that could be viewed by
status, author, and relevant requirements element. In all four case studies, however,
developers collaborated among themselves mostly outside the tool, that is, they did
not request clarifications or challenge each others’ use cases when defects were
identified. Instead, those were addressed in meetings and subsequent changes were
made to the use cases.

We believe this lack of collaboration through the tool was due, in part, to the lack
of features typically offered by newsgroups or E-mail. Once a question was posted, it
was not always obvious who the target of the question was and what actions were
expected. Some developers attempted to indicate this with comments, but this was not
a common case. While our focus does not directly include supporting distributed
collaboration, we plan to improve collaboration or management support to increase
the opportunities to capture critical rationale in the form of requests for clarification
and challenges on content. Such rationale could then be restructured and formalized
by use case authors and rationale maintainers into consolidated justification questions.

Lessons learned summary

We observed that the use case writing guidelines and the incremental teaching of the
processs concepts helped participants write better use cases and better rationale. We
found that adopting an incremental training enabled participants to master the process
more quickly. For example, the process in the last study was composed of the
following sequential steps:
� Students develop a first version of the use cases.
� Instructors review of the form of the use cases.
� Students justify the use cases.
� Instructors review of the content of the use cases and the justifications,
� Students specify and justify services.
� Students review and consolidate of the complete specification

By the end of this process, students mastered both the use case specification and
the justification tasks. By alternating the focus on each technique, we were able to
emphasize and illustrate the benefits of each guideline and process feature. Moreover,
once the participants mastered the process, the use of the tool did not incur any
problem.

However, we also found lost opportunities for developing NFRs and for capturing
rationale. We hope to address the first set of issues by revising our model of NFRs
and the second set of issues by providing better collaboration support in the tool.

Related work

The integration of rationale and requirements specification is not new. Several
proposals from the requirements literature have included the capture and use of
rationale information for addressing a variety of goals, such as improving traceability
[25,26,27], driving elicitation [28,29,30,31], supporting negotiation [32], and
supporting process improvement [33,34]. While many aspects in these proposals
appear similar to REQuest, each differs fundamentally either in the goal they achieve
or their approach. In this section, we examine how our work complements and
extends these proposals.

REMAP was one of the first rationale approaches focusing on requirements [25].
The goal of REMAP was to support the traceability of requirements to design objects.

Researchers studied how individuals and teams of information systems professionals
make requirements decisions. They initially used the IBIS model, including the issue,
position, and argument nodes, and extended it with nodes for representing constraints,
assumptions, decisions, requirements, and design objects. The prototype REMAP tool
enables developers to represent requirements and their rationale as evolving graphs
and replay decisions. In addition, the REMAP tool includes a truth maintenance
system, which propagates the belief status of each node based on new changes. For
example, invalidating an assumption modifies the validity of positions that rely on the
assumption, and may prompt developers to reopen closed issues. The REMAP tool
has since been extended to better support collaboration among developers and link
external material, such as email, video, documents, and so forth [26,27]. While the
goals of REMAP and REQuest are similar (capturing rationale for long term use),
there are two essential differences between REMAP and REQuest: the representation
of rationale and the relationship between rationale and requirements models. REMAP
uses IBIS [14] to represent rationale while REQuest uses QOC [15]. IBIS follows the
natural flow of argumentation during which participants express arguments for or
against individual alternatives. QOC, on the other hand, focuses on the systematic
evaluation alternatives against a set of criteria that is relevant to a question. QOC is a
consolidated representation for long-term rationale, as it makes explicit the criteria
that were considered during assessments. The second difference is the use of NFRs in
the requirements model as criteria in the rationale model. The result is that REQuest
puts a greater emphasis on NFRs and their relationship with functional requirements.

The Inquiry Cycle [28] is a class of methods for incrementally refining and
reviewing requirements, using scenarios and rationale during elicitation. The goal of
the Inquiry Cycle is to improve the quality of the requirements for evolving systems.
The Inquiry Cycle includes the cyclical application of three steps: expression of
semantic or episodic ideas (i.e., scenarios), criticism (i.e., raising and resolving
issues), and refinement (e.g., addition of detail, decomposition, and corrections).
Scenarios are derived from the current requirements as concrete material to provoke
discussion and raise issues. The discussion of issues leads to changes in the
requirements. ScenIC [29] is an instance of the Inquiry Cycle that provides detailed
guidelines for each step. The Inquiry Cycle and ScenIC use rationale as a short-term
working memory for discussing and keeping track of open issues and decisions to be
implemented. Requirements and rationale in terms of objectives, tasks and obstacles
are identified and elaborated supported by scenario analysis. Although researchers
point out that it is possible to structure and archive the working memory as rationale,
the details on how to achieve this restructuring have not been explored (and are not
within the goals of the method). Our approach attempts to address the issue of
converting the short-term working memory into a longer-term rationale record, and,
hence, support the longer-term goal of supporting changes in later phases of
development.

SCRAM [30,31] is an elicitation method that presents stakeholders with a
combination of scenarios, conceptual demonstrators, and the rationale of specific
issues. The goal of SCRAM is to improve stakeholder participation during elicitation
sessions by exposing the stakeholders with rationale information. For selected issues,
developers present the stakeholder with a complete rationale represented in the form
of a QOC model. Different alternatives (in addition to the one illustrated by the

concept demonstrator) are documented together with their evaluation against a set of
criteria relevant to the issue. The reason for presenting explicit rationale to
stakeholders is to check if the selected set of criteria reflects their position and if the
evaluation of different alternatives was done correctly. Sutcliffe [30] observed that,
with trained facilitators, the availability of rationale lead stakeholders to ask more
questions and more open-ended questions during sessions. Although SCRAM appears
similar to REQuest (use of QOC to represent rationale, representation of NFRs as
criteria), SCRAM and REQuest address different goals. Hence, SCRAM builds
focused QOC graphs for selected decisions to be validated by the user, while REQuest
systematically builds justifications for all use cases in the specification. However, by
attempting to generalize the results from SCRAM, we propose that the review of use
cases and system services can be improved by the availability of justifications. As a
side effect, this also results in more extensive documentation for later phases of
development.

WinWin [32] is a spiral approach to software development based on Boehm’s
spiral model. The goal of WinWin is the early identification and resolution of
conflicts among stakeholders. Stakeholders post their “win” conditions (i.e.,
conditions that must be satisfied by the system in their view) using the WinWin
groupware tool. A facilitator, with the help of the tool, identifies conflicts, which are
then resolved by negotiation among stakeholders. The negotiation and its resolution
are captured as an issue model listing issues, alternatives, and decisions. REQuest is
similar than WinWin in its inclusion of NFRs in the rationale model (win conditions
include NFRs). REQuest, however, differs from WinWin in that WinWin focuses on
the higher level task of identifying a set of win conditions that all stakeholders can
agree with. REQuest focuses on the detailed development of a requirements
specification and its evaluation and justification against this set of win conditions
(represented as criteria).

FOOM is a formal object-oriented method for specification that was recently
complemented with the use of IBIS and QOC for capturing rationale [33,34]. During
a series of case studies, researchers observed that the requirements engineering
process can be thought as a series of refinement steps, during which the requirements
increase in complexity, punctuated by crisis points, during which the requirements are
drastically simplified and restructured as a consequence of new insights. In FOOM,
IBIS was used to capture ad hoc rationale during the refinement steps, while QOC
was used during crisis points to consolidate this rationale. While this study did not
address cost and acceptance issues introduced by the systematic capture and
consolidation of rationale, it provides evidence of the potential benefits of making
rationale available to developers (e.g., better support during drastic restructuring) and
managers (e.g., process monitoring and process improvement). REQuest is similar to
FOOM in that - using QOC - it consolidates rationale that has been captured during
the requirements engineering process. However, the FOOM effort concentrated on
understanding the requirements engineering process and the potential uses for
rationale information, while REQuest has also focused on guidance, acceptance, and
tool support issues related with capturing and consolidating rationale information.
Also, since REQuest is based on use cases, we hope that it is more immune to the
drastic restructuring observed in FOOM (which is based on object models), enabling
users to incrementally formulate and consolidate rationale on a use case basis as

opposed to a system wide basis. However, we will have to evaluate this hypothesis
empirically on longer running studies.

The NFR Framework [12] is a method for systematically refining and elaborating
NFRs. From a set of high-level NFRs (called softgoals) requirements engineers
develop more detailed NFRs organized into an AND-OR graph. Requirements
engineers then evaluate different options (called operationalizations) for their level of
satisfaction against the NFRs and examine the interactions between conflicting NFRs.
Since most high-level NFRs are rarely qualities that are either met or not, links in the
NFR graph represent the degree an NFR contributes to or hinders another NFR. An
NFR is satisficed (as opposed to satisfied) when the selected option meet the NFR
within acceptable limits. REQuest is similar to the NFR Framework in its emphasis of
criteria. However, in the NFR Framework, the NFR drive the requirements elicitation.
Therefore, it has a much richer representation and set of techniques for
operationalizations and for dealing with dependencies among NFRs. In addition, it
focuses on the automatic evaluation of the NFR-graphs to determine the impact of
decisions. Again, we complement this approach by an emphasis on functional
requirement elicitation in terms of user tasks, use cases, and services and by an
emphasis on a simpler rationale representation suitable for use in subsequent
development tasks.

Conclusion

In this paper, we described guidance and tool support for integrated use case
specification and rationale capture as well as four case studies where we have
evaluated the tool and the guidance.

We hope to have completed the guidance on use case specification and rationale
capture. So we will focus on rationale usage during the winter software engineering
project course at TUM. In particular, we are setting up an experiment where two
groups of students are required to do some changes on the specification, one group
with rationale, the other without. To further study collaboration during requirements
engineering, we also plan a distributed case study where students from Kaiserslautern
and TUM collaborate for the specification, only by way of the tool. Finally, to
evaluate the rationale maintenance part of the process, we plan a case study where we
first ask students to produce a first version of the specification, perform rationale
maintenance, and then introduce a change in the problem statement. This would give
us preliminary results indicating whether or not the rationale maintenance process as
currently defined is feasible and produces rationale that can be used during
requirements changes.

It is generally recognized that case studies and experiments with students are
limited when testing the effectiveness of a process or a tool and for generalizing
results to the population of software developers. However, to our experience
qualitative case studies using novices as subjects can lead to improvements in both
tool support and guidance. To support the claim of the practical usefulness of the

process and tool, we plan to do experiments with practitioners after we have
confirmed the usefulness of the rationale.

Acknowledgement

We thank our students for their interest, time, and effort during the case studies. We
thank Daniela Ahlisch and Kagan Aksit for their contributions to the REQuest
prototype. We thank the anonymous reviewers of REFSQ’2001 and of the
Requirements Engineering Journal for their numerous constructive comments and
suggestions, which have helped us improve this paper. Finally, we thank the
Fraunhofer Institute of Experimental Software Engineering and Prof. Bruegge at the
Chair of Applied Software Engineering at TUM who have continuously supported
this work over the past two years.

References

1. Seminar “Steuergeräte-Design im Automobilbau und in der Industrieautomation”, Haus der
Technik, Essen, 24.-25.5.2000.

2. A. van Lamsweerde, R. Darimont & Ph. Massonet. “Goal-directed Elaboration of
Requirements for a Meeting Scheduler: Problems and Lessons Learnt”, Int. Symp. on
Requirements Engineering, pp. 194-203, 1995.

3. I. Jacobson, M. Christerson, P. Jonsson, & G. Overgaard, Object-Oriented Software
Engineering—A Use Case Driven Approach. Addison-Wesley, Reading, MA, 1992.

4. I. Jacobson, G. Booch, & J. Rumbaugh, The Unified Software Development Process.
Addison-Wesley, Reading, MA, 1999.

5. L.L. Constantine & L.A.D. Lockwood, “Structure and Style in Use Cases for User Interface
Design”, to appear in M. van Harmelen (ed.), Object-Oriented User Interface Design, 2001

6. S. Buckingham Shum & N. Hammond, “Argumentation-based design rationale: what use at
what cost?” International Journal of Human-Computer Studies, vol. 40, pp. 603–652, 1994.

7. A. H. Dutoit & B. Paech, Rationale Management in Software Engineering, in X.Chung (ed.),
Handbook of Software Engineering and Knowledge Engineering, World Scientific
Publishing, 2001

8. A. H. Dutoit & B. Paech, “Supporting Evolution: Rationale in Use Case Driven Software
Development,” in International Workshop on Requirements Engineering: Foundations of
Software Quality (REFSQ’2000), Stockholm, June, 2000.

9. A. Cockburn, “Writing Effective Use Cases”, Addison Wesley, 2001
10. D. Diaper (ed.) , “Task Analysis for Human-Computer Interaction”, Ellis Horwood, 1989
11. “Benutzer-orientierte Gestaltung interaktiver Systeme,” Normentwurf, DIN EN ISO 13407,

1998.
12. L. Chung, B.A. Nixon, E. Yu, & J. Mylopoulos. „Non-Functional Requirements in Software

Engineering”. Kluwer Academic, Boston, 1999.
13. M. Jackson, "Software Requirements & Specifications", Addison-Wesley, 1995
14. W. Kunz & H. Rittel, “Issues as elements of information systems,” Working Paper No. 131,

Institut für Grundlagen der Plannung, Universität Stuttgart, Germany, 1970.
15. A. MacLean, R. M. Young, V. Bellotti, & T. Moran, “Questions, options, and criteria:

Elements of design space analysis,” Human-Computer Interaction, vol. 6, pp. 201–250,
1991.

16. J. Lee, “Design Rationale Systems: Understanding the Issues,” in IEEE Expert, pp. 78–85,
May/June 1997.

17. J. Conklin & K. C. Burgess-Yakemovic, “A process-oriented approach to design rationale,”
Human-Computer Interaction, vol. 6, pp. 357–391, 1991.

18. J. Lee, “A qualitative decision management system,” Artificial Intelligence at MIT:
Expanding Frontiers. P.H Winston & S. Shellard (eds.) (MIT Press, Cambridge, MA,) Vol.
1, pp. 104–133, 1990.

19. The Softbicycle Company. QuestMap: The Wicked Problem Solver.
http://www.softbicycle.com/.

20. Javasoft. Java Servlet Specification. Javasoft. http://www.javasoft.com/
21. Object Management Group (OMG), XML Meta Interchange (XMI). OMG, November

2000. http://www.omg.org/
22. DOORS, Telelogic, http://www.telelogic.com/index.cfm
23. B. Bruegge, A.H. Dutoit, R. Kobylinski, & G. Teubner. “Transatlantic Project Courses in a

University Environment,” Asian Pacific Software Engineering Conference, Singapore,
December 2000.

24. S. Lilly, “Use Case Pitfalls: Top 10 Problems from real Projects using Use Cases,
Technology of object-oriented languages and systems, pp. 174-183, 1999.

25. B. Ramesh & V. Dhar, Representing and Maintaining Process Knowledge for Large-Scale
Systems Development, IEEE Expert, pp. 54-59, April 1994.

26. B. Ramesh, & K. Sengupta. “Multimedia in a design rationale decision support system.”
Decision Support Systems, 19, 1995.

27. B. Ramesh, & A. Tiwana. “Supporting Collaborative Process Knowledge Management in
New Product Development Teams.” Decision Support Systems, 27, pp. 213–235, 1999.

28. C. Potts, K. Takahashi, & A. I. Anton, Inquiry-based requirements analysis, IEEE Software,
vol. 11, no. 2, pp. 21–32, 1994.

29. C. Potts, ScenIC: A Strategy for Inquiry-Driven Requirements Determination, International
Symposium on Requirements Engineering, RE’99, pp. 58–65,1999.

30. A. Sutcliffe, Requirements Rationales: Integrating Approaches to Requirement Analysis, In
Olson G.M., Schuon S, (eds.) Proc. of Designing Interactive Systems, DIS’ 95, pp. 33–42,
ACM Press, New York, 1995.

31. A. Sutcliffe & M. Ryan, Experience with SCRAM, a SCenario Requirements Analysis
Method, In Proc. of the 3rd International Conference on Requirements Engineering, pp.
164–171, April 1998.

32. B.Boehm, A. Egyed, J. Kwan, D. Port, A. Shah, & R. Madachy, “Using the WinWin Spiral
Model: A Case Study,” IEEE Computer, pp. 33–44, July 1998.

33. L. Nguyen, P.A. Swatman & G. Shanks, Using Design Explanation within the Formal
Object-oriented Method, Requirements Engineering, no. 4, pp.152-164, 1999.

34. L. Nguyen, & P.A. Swatman. Managing the Requirements Engineering Process, 7th
International Workshop on Requirements Engineering: Foundation for Software Quality.
Interlaken, Switzerland. 2001.

35. A. Anton & C. Potts. ”The Use of Goals to Surface Requirements for Evolving Systems,”
International Conference on Software Engineering, pp.157-166, Kyoto, 1998.

