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Abstract 
 

Knowing which particular characteristics of 
software are indicators for defects is very valuable for 
testers in order to allocate testing resources 
appropriately. In this paper, we present the results of 
an empirical study exploring the relationship between 
history characteristics of files and their defect count. 
We analyzed nine open source java projects across 
different versions in order to answer the following 
questions: 1) Do past defects correlate with a file�s 
current defect count? 2) Do late changes correlate 
with a file�s defect count? 3) Is the file's age a good 
indicator for its defect count? The results are partly 
surprising. Only 4 of 9 programs show moderate 
correlation between a file's defects in previous and in 
current releases in more than the half of analysed 
releases. In contrast to our expectations, the oldest 
files represent the most fault-prone files. Additionally, 
late changes influence file�s defect count only partly. 
 
1. Introduction 
 

The knowledge about particular characteristics of 
software that are indicators for defects is very valuable 
for testers because it helps them to focus the testing 
effort and to allocate their limited resources 
appropriately. Information about the software project 
can be collected from versioning control and bug 
tracking systems. These systems contain a large 
amount of information documenting the evolution of a 
software project.  

In practice, this information is often not deeply 
analysed in order to gain information which facilitates 
decisions in the present and permits reliable 
predictions for the future. Based on history 
characteristics extracted from versioning control 
systems, e.g. the number of defects in previous 
versions of a file, estimates for the future evolution can 

be made. Thus, for example, the expected defects can 
be predicted which allows to perform accurate testing 
effort estimates. Similarly, knowing defect detection 
rates over time of former releases, one can make 
predictions on remaining defects at the current point of 
time. This facilitates the decision whether the software 
can be released or not. Information contained in 
versioning control and defect tracking systems can also 
be combined. For example, the relationship between 
history characteristics (e.g. a file�s age) and software 
quality (e.g. measured by the defect count) can be 
explored. It is very valuable to know particular history 
characteristics of a file indicating its fault proneness 
because it helps testers to focus their testing effort on 
these specific files [5], [6], [7], [8], [9], [10], [11]. 

In this paper, we present the results of an empirical 
study exploring the relationship between history 
characteristics and quality in open source programs. 
For this purpose, we analysed 9 open source java 
products during their whole lifetime. We use the defect 
count of a file as an indicator for its software quality 
and relate this measure to history characteristics of that 
file. Particularly, we analyse the following questions: 
(1) Do past defects influence a file�s current defect 
count? (2) Do late changes influence a file�s defect 
count? (3) Does the file's age influence its defect 
count? 

The remainder of this paper is organized as follows. 
Section 2 introduces basic definitions and concepts. 
Section 3 presents history characteristics analysed in 
this study. The design of our study is described in 
Section 4. In Section 5, the data collection and analysis 
procedures are reported, whereas the Sections 6 to 8 
contain the results of our empirical study. In Section 9, 
we discuss the threats to validity and in Section 10 an 
overview of related work is given. Finally, Section 11 
concludes the paper and describes our future work. 
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2. Basic terms and definitions 
 
In this section, basic concepts and terms used in this 

paper are introduced. 
Versioning Control Systems (VCS) are useful for 

recording the history of documents edited by several 
developers. In order to edit a file, a developer has to 
checkout this file, edit it and commit this file back into 
the repository. Each time a developer commits a file, a 
message, describing what has been changed, can be 
optionally added. CVS1, ClearCase2, SourceSafe3 and 
SVN4 are examples for such systems.  

History Touch (HT). We define a history touch 
(HT) to be one of the commit actions where changes 
made by developers are submitted and include 
modifying, adding or removing files.  

Birth of a file denotes the point of time of its first 
occurrence in the VCS, i.e. the date, the file has been 
added to the VCS.  

Death of a file denotes the point of time of its 
removal from the VCS.  

Present denotes the point in time where our 
empirical study started.  

The system age is computed as Present � 
Birth of the �oldest� file. 

History. The history of a file subsumes all HTs that 
occurred to that file from its birth until present or until 
its death. 

Release denotes a point in time in the history of a 
project which denotes that a new or upgraded version 
is available. In this study, we considered only final 
releases of the open source projects. 

In this paper, we use the definition of defects and 
failures provided in [1]: A defect is �a flaw in a 
component or system that can cause the component or 
system to fail to perform its required function. A 
defect, if encountered during execution, may cause a 
failure of the component or system�. Thus, a failure is 
the observable �deviation of the component or system 
from its expected delivery, service or result�.  

Defect count is the number of defects identified in 
a software entity. In this paper, we count the number of 
defects of a file. The file a is more fault-prone than 
the file b if the defect count of the file a is higher than 
the defect count of the file b. 
 
3. History Characteristics 

 

                                                           
1 http://www.nongnu.org/cvs/ 
2 http://www-306.ibm.com/software/awdtools/clearcase/ 
3 http://www.microsoft.com/ssafe/ 
4 http://subversion.tigris.org/ 

In this paper, we distinguish three categories of 
history characteristics: defect history characteristics, 
release history characteristics as well as file age 
characteristics and analyse to what extent these 
characteristics influence the defect count of a file. 

 
Defect history characteristics subsume all 

characteristics of a file concerning previously found 
defects. 

 
Release history characteristics subsume all 

characteristics of a file concerning the point of time 
between two releases when a HT occurs. For a detailed 
analysis, we divide the period between two releases in 
5 phases. 

hotFix: denotes the first 5% of time of the total 
period between two releases.  

postRelease: this phase follows the hotFix 
phase and denotes the next 10% of the total period 
between two releases. 

preRelease: this phase is followed by the 
lastMinuteFix phase and denotes 10% of the total 
period before the lastMinuteFix phase. 

lastMinuteFix: this phase denotes the last 5% of 
time before release. 

moderation: this phase denotes the period 
between the postRelease and preRelease phase 
and makes up 70% of the total period between two 
releases. 

Figure 1 illustrates the release history 
characteristics. 

 
File age characteristics subsume all file 

characteristics related to its age. According to its age, 
we classify files in one of the following categories5: 

 
Newborn: A file is newborn at its birthday. 
Young: < 0.5 * SystemAge AND not 

Newborn (all files that are not older than the half of a 
system�s age and that are not classified as Newborn) 

                                                           
5 We adopted the classification of class hierarchy histories 

presented in [17] 
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Old: >= 0.5 * SystemAge (all files that are 
older than or equal to the half of a system�s age). 

 
4. Study design 

 
In this Section details on the experiment are 

described. 
 
4.1. Goal and research questions 
 

The main goal of this empirical study is to analyse 
the influence of a file�s history on its defect count. 
These are our research hypotheses and their rationale: 

H1: The number of defects found in the previous 
release of a file correlates with its current defect count. 
The rationale behind this hypothesis is that files that 
tend to be complex, not well understood and fault-
prone remain not well understood and fault-prone. 

H2: Release characteristics of a file correlate with 
its defect count. Particularly, the following sub-
hypotheses can be formulated: 

H2.1: The defect count of a file increases with the 
number of HTs in the hotFix and in the 
postRelease phase. The rationale behind this 
hypothesis is that changes that occur shortly after a 
software release are quickly implemented and 
represent not well tested patches which lead to further 
defects in the corresponding file. 

H2.2: The defect count of a file increases with the 
number of HTs in the preRelease and in the 
lastMinuteFix phase. The rationale behind this 
hypothesis is that last minute changes and features are 
not well tested and also increase a file�s defect count. 

H3: A file�s age is an indicator for its defect count. 
Particularly, the following sub-hypotheses can be 
formulated: 

H3.1: Newborn and young files are the most fault-
prone files. The rationale behind this hypothesis is that 
Newborn and Young files represent new features that 
might be not well understood and consequently more 
fault-prone than old files. 

H3.2: Old files have the lowest defect count. The 
rationale behind this hypothesis is that old files 
represent stable functionality which matured over 
years so that most of the defects have already been 
removed. 

 
4.2. Independent Variables 

 
The independent variables� definitions are based on 

the history characteristics described in Section 3 and 
are summarized in Table 1. 

Table 1. Independent variables 

ID Description 
DPREi Number of defects reported for a file 

between release i-1 and release i.  
HF Number of HTs performed on a file in the 

phase hotFix. 
PreR Number of HTs performed on a file in the 

phase preRelease. 
PostR Number of HTs performed on a file in the 

phase postRelease. 
LM Number of HTs performed on a file in the 

phase lastMinuteFix. 
Mod Number of HTs performed on a file in the 

phase moderation. 
F-N NewBorn file 
F-Y Young file 
F-O Old file 

 
4.3. Dependent Variable  
 

The dependent variable of our study is the defect 
count of a file that occurred between two consecutive 
releases during its history. Thus, DCURRi denotes the 
number of defects reported for a file after release i and 
before release i+1. 

We relate a characteristic j in release n of a file to 
the defect count reported to that file between release n 
and release n+1. Figure 3 illustrates how file 
characteristics are related to corresponding defect 
densities for particular releases. 
 

4.4. Subject projects 
 

In this study, we analysed 9 open source projects. 
We applied the following criteria when selecting the 
projects: (1) A bug tracking system is available. (2) 
Number of HTs > 50.000. (3) The project is written in 
Java. We included OSCache, a project that does not 
fulfil the criteria defined above, in order to compare 
the results obtained for all other projects with a smaller 
but mature project. 

time
Release n 
Rn

Release n+1
Rn+1

Characteristic j (f)

Release n-1
Rn-1

n

DCURRn (f)
# Defects reported after
Rn and before Rn+1

Figure 2. Defect count and characteristics 
of a file 
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Apache Ant (Ant)6 is a Java application for 
automating the build process. Apache Formatting 
Objects Processor (Apache FOP)7 reads a formatting 
object (FO) tree and renders the resulting pages to a 
specified output, e.g. PDF. Chemistry Development 
Kit (CDK)8 is a Java library for bio- and chemo-
informatics and computational chemistry. Freenet9 is a 
distributed anonymous information storage and 
retrieval system. Jetspeed210 is an open portal 
platform and enterprise information portal. Jmol11 is a 
�Java molecular viewer for three-dimensional chemical 
structures. OSCache12 is a Java application which 
allows performing fine grained dynamic caching of 
JSP content, servlet responses or arbitrary objects. 
Pentaho13 is a Java based business intelligence 
platform. TV-Browser 14 is a Java based TV guide. 

Table 2 summarizes the attributes of the analyzed 
projects. A * behind the data in the column �Project 
since� denotes the date of the registration of the project 
in SourceForge15. For the rest, the year of the first 
commit in the versioning system is indicated. The 
column �OS-Project� contains the name of the project 
followed by the project�s latest version for which the 
metrics �LOC� (Lines of Code) and the number of files 
have been computed. The 3rd and the 4th columns 
contain the number of defects registered in the defect 
database and the number of HTs extracted from the 
VCS. 

Table 2. Subject Programs 
OS-Project Project since # Defects # HTs LOC # Files

1. Ant (1.7.0 ) 2000 4804 62763 234253 1550
2. FOP (0.94 ) 2002* 1478 30772 192792 1020
3. CDK (1.0.1 ) 2001* 602 55757 227037 1038
4. Freenet (0.7 ) 1999* 1598 53887 68238 464
5. Jetspeed2 (2.1.2 ) 2005 630 36235 236254 1410
6. Jmol (11.2 ) 2001* 421 39981 117732 332
7. Oscache (2.4.1 ) 2000 2365 1433 19702 113
8. Pentaho (1.6.0 ) 2005* 856 58673 209540 570
9. TV-Browser (2.6 ) 2003 190 38431 170981 1868  
 
5. Data collection and analysis 

 
In order to analyse the relationship between defect 

count and history characteristics of files, the defect 

                                                           
6 http://ant.apache.org/ 
7 http://xmlgraphics.apache.org/fop/index.html 
8 http://sourceforge.net/projects/cdk/ 
9 http://freenetproject.org/whatis.html 
10 http://portals.apache.org/jetspeed-2/ 
11 http://jmol.sourceforge.net/ 
12 http://www.opensymphony.com/oscache/ 
13 http://sourceforge.net/projects/pentaho/ 
14 http://www.tvbrowser.org/ 
15 http://sourceforge.net/ 

count per file has to be computed. Defect tracking 
systems contain information on the defects recorded 
during the lifetime of a project, amongst others the 
defect ID and additional, detailed information on the 
defect. But the defect tracking systems usually do not 
give any information on which files are affected by the 
defect. Therefore, information contained in VCS has to 
be analysed. For this purpose, we extract the 
information contained in the VCS into a history table 
in a data base. Additionally, we extract the defects of 
the corresponding project into a defect table in the 
same data base. Then, we use a 3-level algorithm to 
determine the defect count per file.  

Direct search: First, we search for messages in the 
history table containing the defect-IDs contained in the 
defect table. Messages containing the defect-ID and a 
text pattern, e.g. �fixed� or �removed�, are indicators 
for defects that have been removed. In this case, the 
number of defects of the corresponding file has to be 
increased. Keyword search: In the second step, we 
search for keywords, e.g. �defect fixed�, �problem 
fixed�, within the messages which have not been 
investigated in the step before. We use about 50 
keywords. Multi-defects keyword search: In the last 
step, we search for keywords which give some hints 
that more than one defect has been removed (e.g. �two 
defects fixed�). In this case, we increase the number of 
defects accordingly. We used SPSS16, version 11.5, for 
all statistical analyses. 

 
6. Do past defects influence a file�s current 
defect count? 
 

In order to analyse H1, we first computed the 
correlation between the defect count of each two 
consecutive releases, DPREi and DCURRi. The results are 
listed in Table 3. For each open source program, we 
computed the Spearman rank-order correlation 
coefficient. This coefficient [2] is a measure for the 
dependency between two variables, in this case the 
dependency between DPREi and DCURRi. The coefficient 
can take values between -1 and 1, whereas 0 represents 
no linear correlation. The first and second columns 
indicate the releases for which the correlation 
coefficient between DPREi and DCURRi have been 
computed. The third column indicates the Spearman 
rank correlation coefficient. For instance, in the open 
source project Ant a moderate correlation (0.353, 
0.338 respectively 0.334) between DPREi and DCURRi 
can be determined for all analysed releases. These 
correlations are significant at 0.01 level (**). For the 

                                                           
16 SPSS, http://www.spss.com/ 
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sake of completeness, the last column contains the 
Pearson correlation coefficient. The Pearson 
correlation coefficient is also a measure of the 
association between two variables but it is not as 
robust as the Spearman rank correlation coefficient 
beacause it assumes a normal distribution and is not 
robust in case of atypical values (e.g. outliers) [3].  

Only for the project Ant, a significant correlation 
with a Spearman coefficient above 0.3 between DPREi 
and DCURRi can be determined in all releases. In 3 of 
the projects (CDK, Jmol and OSCache), at least the 
half of the analysed releases show a significant 
correlation with a Spearman coefficient above 0.3 
between past and current defects in files. 3 of the 
projects, Freenet, Pentaho and TVBrowser show 
significant correlations in 25% - 33% of the analysed 
releases. For two projects (ApacheFOP and Jetspeed2), 
none of the analysed releases show significant 
correlations with a Spearman coefficient above 0.3 
between DPREi and DCURRi. These results are 
summarized in Figure 2. 

Based on the results of the correlation analysis, our 
research hypothesis H1 cannot be confirmed. The 
number of defects found in the previous release of a 
file does not influence its current defect count.  
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Figure 2. Correlation results for defect 

characteristics 

7. Does the release history of a file 
influence its defect count? 
 

In order to explore the relationship between the 
defect count and release history characteristics of a 
file, the Spearman rank-order correlation coefficient 
measuring the relationship between the dependent 
variable (DCURRi) and the independent variables (HF, 
PreR, PostR, LM) was computed. The Spearman rank-
order correlation coefficient measures the extent to 
which the number of changes performed on a file 
during a phase (e.g. hotFix) correlates with the later 

defect count of a file. In this case, it is a measure for 
the correlation between DCURRi and HF. 

Table 3. Correlation analysis for the influence 
of past defect characteristics on the current 
defect count. Correlations significant at 0.01 level 

(**), and at 0.05 level (*) 

Release i-1 Release i Spearman Pearson
1.5.3.1 1.6.0 0.353 ** 0.454 **
1.6.0 1.6.1 0.338 ** 0.461 **
1.6.1 1.7.0 0.334 ** 0.476 **

Release i-1 Release i Spearman Pearson
pre 0.2 0.103 ** 0.12 **
0.2 0.93 0.148 ** 0.25 **
0.93 0.91 0.111 0.012

Release i-1 Release i Spearman Pearson
CDK-2001 CDK-2002 0.473 ** 0.429 **
CDK-2002 CDK-2004 0.349 ** 0.389 **
CDK-2004 CDK-2005 0.3 ** 0.328 **
CDK-2005 CDK-2006 0.063 * 0.216 **
CDK-2006 1.0 0.123 ** 0.179 **

Release i-1 Release i Spearman Pearson
0.4 0.5.0 0.176 ** 0.708 **
0.5.0 0.5.1 -0.017 0.527 **
0.5.1 0.5.2 0.112 0.213 *
0.5.2 0.7 0.605 ** 0.956 **

Release i-1 Release i Spearman Pearson
pre 2.0 0.201 ** 0.187 **
2.0 2.1 0.1 ** 0.115 **

Release i-1 Release i Spearman Pearson
1 2 0.42 ** 0.69 **
2 6 0.178 * 0.068
6 9 0.025 -0.032
9 10.0 0.053 -0.014
10.0 10.2 0.485 ** 0.71 **
10.2 11 0.481 ** 0.837 **
11 11.2 0.512 ** 0.905 **

Release i-1 Release i Spearman Pearson
pre 2.1 0.429 ** 0.214
2.1 2.4 0.202 0.326 *

Release i-1 Release i Spearman Pearson
pre 1.2.0 0.068 ** 0.203 **
1.2.0 1.2.1 0.089 0.092 *
1.2.1 1.2.6 0.218 ** 0.307 **

Release i-1 Release i Spearman Pearson
0.9 1.0 0.225 ** 0.281 **
1.0 2.0 0.184 ** 0.091
2.0 2.2 0.265 ** 0.217 **
2.2 2.6 0.399 ** 0.38 **

Jetspeed2

Jmol

OSCache

Pentaho

Apache FOP

Ant

CDK

Freenet

TVBrowser

 
 
Table 4 shows the results of the correlation 

analysis. For each phase, the table shows the ID and 
name of the analysed program. We computed the 
Spearman rank correlation coefficient for each release 
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of the analysed programs. In the columns �MAX 
(Spearman)� and �MIN (Spearman)� the maximum 
respectively the minimum computed Spearman 
coefficient is indicated. The next two columns indicate 
the percentage of releases with a significant correlation 
coefficient above 0.3 and the percentage of releases 
with a significant correlation (that can be below 0.3). 
The last column indicates the percentage of the 
analysed projects that do not show any significant 
correlation. 

Do hotfixes that occur shortly after a program�s 
release induce more defects? Looking at the 
correlation coefficients for the phases �hotFix� and 
�postRelease� we can derive the following 
conclusions: 

(1) Most of the projects show high correlation 
coefficients between the number of changes performed 
in the hotFix, respectively in the postRelease 
phase and the defect count in at least one release. In 
the case of the hotFix phase, 6 of 9 and in the case of 
the postRelease phase 8 of 9 programs show a 
correlation coefficient above 0.3 at least in one of the 
analysed releases. (2) But there is only one single 
project that shows a correlations coefficient above 0.3 
in all analysed versions (Apache FOP, in the hotFix 
phase). 4 of the 9 projects show signigicant 
correlations in fewer than half of the analysed releases. 
This is true for both, the hotFix and the 
postRelease phase. Thus, we have to reject H2.1.  

The defect count of a file does not increase with the 
number of HTs performed in the hotFix and in the 
preRelease phase. 

Do late changes that occur shortly before a 
program�s release induce more defects? When we 
analyse the correlations coefficients for the phases 
�preRelease� and �lastMinuteFix� we can derive 
the following conclusions: 

(3) Most of the projects (8 of 9) show high 
correlation coefficients between the number of changes 
performed in the preRelease phase in at least one 
release. (4) In the case of the lastMinuteFix phase, 
only 5 of 9 projects show high correlation coefficients 
in at least one release. In case of the pre-release 
phase, 2 projects (Freenet and OSCache) show high 
correlation coefficients in all analysed releases. 7 of 
the 9 projects show signigicant correlations in at least 
the half of the analysed releases. (5) In case of the 
lastMinuteFix phase, only 2 projects show 
significant correlations above 0.3 in more than the half 
of the analysed releases. 

Based on the conclusions stated before, we can 
partly reject the research hypothesis H2.2. The defect 
count of a file increases with the number of HTs in the 

preRelease phase. This is not true for the 
lastMinuteFix phase. Finally, we can conclude, 
that release history characteristics have only little 
influence on a file�s defect count. 

Table 4. Correlation analysis for release 
characteristics and defect count 

ID OS-Program
MAX 
(Spearman)

MIN 
(Spearman)

% releases 
with 
significant 
corr. Above 
0.3

% releases with 
significant corr. 

% releases 
without 
significant corr. 

1 Ant 0.572 * 0.021 25 25 75
2 Apache-FOP 0.458 ** 0.335 * 100 100 0
3 CDK 0.284 ** 0.098 0 40 60
4 Freenet 0.457 ** 0.248 60 60 40
5 Jetspeed2 0.181 ** 0.106 ** 0 67 33
6 Jmol 0.707 ** 0.016 50 50 50
7 Oscache 0.091 0.091 0 0 100
8 Pentaho 0.696 ** 0.001 50 50 50
9 TV-Browser 0.584 ** -0.087 80 60 40

ID OS-Program
MAX 
(Spearman)

MIN 
(Spearman)

% releases 
with 
significant 
corr. Above 
0.3

% releases with 
significant corr. 

% releases 
without 
significant corr. 

1 Ant 0.259 * 0.051 0 25 75
2 Apache-FOP 0.501 ** 0.045 67 67 33
3 CDK 0.571 ** 0.032 20 40 60
4 Freenet 0.588 ** 0.396 ** 60 60 40
5 Jetspeed2 0.366 ** 0.065 33 33 67
6 Jmol 0.646 ** 0.093 25 63 38
7 Oscache 0.494 ** 0.033 67 33 67
8 Pentaho 0.781 ** 0.188 ** 50 100 0
9 TV-Browser 0.648 ** -0.026 40 40 60

ID OS-Program
MAX 
(Spearman)

MIN 
(Spearman)

% releases 
with 
significant 
corr. Above 
0.3

% releases with 
significant corr. 

% releases 
without 
significant corr. 

1 Ant 0.455 ** 0.277 * 75 100 0
2 Apache-FOP 0.405 ** 0.097 67 67 33
3 CDK 0.629 ** 0.004 20 40 60
4 Freenet 0.552 ** 0.322 ** 100 100 0
5 Jetspeed2 0.249 * 0.153 * 0 67 33
6 Jmol 0.659 ** 0.087 50 75 25
7 Oscache 0.943 0.378 100 0 100
8 Pentaho 0.531 ** -0.121 50 50 50
9 TV-Browser 0.384 ** 0.292 ** 80 100 0

ID OS-Program
MAX 
(Spearman)

MIN 
(Spearman)

% releases 
with 
significant 
corr. Above 
0.3

% releases with 
significant corr. 

% releases 
without 
significant corr. 

1 Ant 0.293 ** -0.017 0 50 50
2 Apache-FOP 0.132 0.074 0 0 100
3 CDK 0.425 ** 0.069 20 40 60
4 Freenet 0.679 ** -0.003 60 60 40
5 Jetspeed2 0.27 ** 0.118 * 0 67 33
6 Jmol 0.596 ** -0.074 25 38 63
7 Oscache 0.559 0.559 33 0 100
8 Pentaho 0.361 ** -0.274 ** 50 75 25
9 TV-Browser 0.618 ** -0.026 60 40 60

Hotfix

Postrelease

Prerelease

LastMinuteFix

 
 
8. Does the file�s age influence its defect 
count? 
 

In order to analyse the relationship between a file�s 
age and its defect count, we grouped the data into three 
categories: Newborn, Young and Old files and 
analysed visually the defect densities in each of these 
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categories: Have Newborn and Young files on average 
a higher defect count than Old files? Figure 3 shows 
for the program �Ant� the mean defect count in each 
category: Newborn (F-N), Young (F-Y), Old (F-O). 
The mean defect count is the arithmetic mean, 
computed as the sum of the defect counts of the files in 
each group (Newborn, Young and Old) divided by the 
number of files in each group. 

Ant
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Figure 3. Mean defect count vs. file age for ANT 

The mean defect count for Newborn files is 0.612, 
for Young files 0.842 and for Old files 0.993. The 
difference of the mean defect count in the categories 
Newborn, Young and Old is in all analysed programs 
statistically significant at any chosen significance 
level.17 In nearly all projects (7 of 9) the mean defect 
count for Old files is the highest and that for Newborn 
files the lowest. In 2 of 9 projects, the Young files 
have the highes defect count.  

Because these results were surprising, we 
performed a more detailed analysis. For this purpose, 
we refined our categories and analysed to what extent 
the defect count of a file depends on its age AND on 
its stability. Stable files subsume all files that have 
been changed below average; unstable files have been 
changed above average. Thus, we analyse, for 
example, to what extent Old files, that have been 
frequently changed (these are Old + unstable files) are 
more fault prone than Old files that have not been 

                                                           
17To obtain statistical evidence, we performed the Kruskal-Wallis [2] 
non-parametric test. A non-parametric test does not make any 
assumptions concerning the distribution of parameters (in contrast to 
parametric tests). Differences between several populations can be 
analyzed with the help of the Kruskal-Wallis test (in our case, 
differences between Newborn, Young and Old Files). The null 
hypothesis is that the defect count is the same in both groups; the 
alternative hypothesis is that it is not. Based on this test, it can be 
concluded that there is strong evidence from the data that Newborn 
files have fewer defects than Young files that have fewer defects 
than Old files. 
 

frequently changed (Old + stable files). The refined 
categories are the following ones: N-unst (all 
Newborn and unstable files), Y-unst (all Young and 
unstable files), O-unst (all Old and unstable files), N-
stab (all Newborn and stable files), Y-stab (all 
Young and stable files), O-stab (all Old and stable 
files). 

We performed again a visual analysis which related 
the mean defect count to each of the refined categories. 
The x-axis contains the refined category: On the y-
axis, the mean defect count in each of these categories 
is indicated. For example, for the project Ant (Figure 
4), the mean defect count of Young and unstable files 
(Y-unst) is 1.745. The highest defect count have 
Newborn and unstable files (defect count is 1.808). 
Stable files have on average lower defect counts than 
unstable files.  
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Figure 4. Mean defect count vs. file age and 

stability for ANT 

Figure 5 shows the visual analysis for all projects. For 
6 of 9 projects (CDK, Freenet, Jmol, Oscache, 
Pentaho, TVBrowser), the highest defect count is 
found in files that are Old and frequently changed. In 
three projects (Ant, Jetspeed2 and Pentaho), the defect 
count for unstable files does not differ very much in 
any of the Newborn, Young and Old files. In only one 
single case (Apache-FOP), Newborn and Young files 
that are unstable show a significantly higher defect 
count than Old unstable files. In nearly all projects 
(except Pentaho), Newborn stable files have the lowest 
defect count. In 6 of 9 projects, Newborn unstable files 
are less error-prone than unstable Young and Old files. 
Independent of the file age, stable files are less error-
prone than unstable files. 

We can conclude that in 6 of the 9 projects the file�s 
age influences its defect count. In the other cases, the 
stability of a file is a better indicator for a file�s defect 
count. In this case the following holds: the more 
changes have been performed on a file, the higher is its 
defect count.  
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Figure 5. Mean defect count vs. file age and stability 
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Our research hypothesis H3 can be largely 
confirmed. In addition, we must reject the research 
hypotheses H3.1 and H3.2. Newborn and Young files 
are not the most fault-prone files. Based on our 
analyses, Old and unstable files are the most error-
prone files. 
 
9. Threats to validity 
 

Internal validity is concerned with the degree to 
which conclusions about the causal effect of the 
independent variables on the dependent variable can be 
drawn [2]. One threat to validity is that not all 
developers deliver meaningful messages when they 
check-in files. Developers, for example, can also check 
in files without specifying any reason, even though 
they had corrected a defect. Thus, the defect count of a 
file can be higher than the defect count computed by 
our algorithm. This concern is alleviated by the size of 
the analysed OSPs.  

External validity is concerned with the degree to 
which results can be generalized [2]. This issue is 
alleviated by the number and diversity of the analysed 
OSPs. The more OSP programs show the same 
characteristics, the higher the probability that other 
OSP programs would also show these characteristics. 
Additionally, we choose programs from different 
application domains in order to increase the 
representativeness of the study results. However, 
history characteristics of OSP programs and of 
commercially produced software may differ from each 
other. Furthermore, analyses of additional programs 
that are intended in our future work would increase the 
external validity. 

 
10. Related work 
 

To our knowledge, this is the first study that 
analyses the influence of a file�s history on its defect 
count deeply.  

There are several other studies that focus on 
predicting the defect count of a software entity by 
combining product metrics and history metrics ([4], 
[5], [6], [7], [8], [9], [10], [11]). One of the main 
features  that distinguishes our study from these studies 
is its magnitude. While most of the studies considered 
only one program, we have analysed 9 open source 
projects. Additionally, in contrast to our study, the aim 
of these studies is defect prediction. Our main goal is 
to analyse to what extend history characteristics 
influence software�s defect count without selecting the 
best prediction model. Another difference to these 

studies, except of the study reported in [9], is that all 
other studies analyse commercial software.  

In [4], [6], [7], [8], [10], and [11] age is used as 
independent variable but the definitions used in these 
studies differ from our classification. For example in 
[10] and [11] only two file categories are defined: 
�new� and �pre-existing in a previous release�. In [7], 
the age of a file is measured by the number of previous 
releases in which that file appeared, whereas in [8]the 
age is measured in months. All these studies confirm 
our hypothesis that age is an indicator for a file�s 
defect count. But in contrast to our study, they report 
contrary results. Independent of the measures used for 
a software entity�s age, the studies report that the 
younger a file the higher its defect count. One cause 
for such different results can be that that the 
architecture in open source projects is not as stable as 
in commercial development. Old files are and must be 
(as a result of bad design) frequently changed and 
these changes induce more defects. 

Previous defects are considered in the studies [4], 
[5], [6], [7], [8], [9], [10], and [11]. In [4], [6] and [11] 
all defects (that occurred in all previous releases) are 
considered. In [3], [9] and [10], pre-release defects are 
analysed. In [7] and [8], the number of defects 
identified in the prior release are considered. The 
results are contradictory. The results in [4], [8], [9] and 
[10] confirm our results that previous defects influence 
the current defect count only partly. The other studies 
lead to contrary results. We can conclude that the 
number of past defects may be an indicator for the 
number of current defects but there are other more 
reliable indicators. 

To our knowledge, the relationship between release 
history characteristics and defect count has not been 
analysed empirically yet. 

A huge amount of research papers analyse the 
influence of other metrics of a software entity and its 
defect count, amongst others in [12], [13], [14], [15] 
and in [16]. 
 
11. Conclusion and future work 
 

In this paper, we investigated the correlation 
between a file�s history and its defect count. Contrary 
to our expectation, the defect count of a previous 
release of a file does not influence its current defect 
count in most of the analysed projects. Additionally, 
the defect count does not increase with the number of 
changes (HTs) performed shortly after release. 
Stronger statistical evidence can be derived for the 
relationship between the number of changes performed 
shortly before a file�s release and its defect count. The 
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defect count of a file increases with the number of HTs 
performed in the period between 85 � 95 % of the time 
before release. Very late changes (in the last 5% of the 
time before release) do not correlate with a file�s defect 
count. 

A file�s age is a good indicator for its defect count. 
In almost all cases, the mean defect count differs 
significantly depending on a file�s category (newborn, 
young and old). In other cases, a file�s stability is a 
better indicator for the defect count. The stability of a 
file classifies a file according to the number of changes 
(HTs) performed on that file. Files that have been 
changed below average are less fault-prone than files 
that have been changed above average.  

The most fault-prone files are old files that have 
been changed above average. One reason is that 
unstable old files are indicators for bad design. Every 
time a change occurs, old files are also affected, which 
causes defects in each release. Additionally, in nearly 
all projects, the youngest files � the newborn files � 
have the lowest defect count.  

This knowledge is useful for different roles in the 
development process. Testers can focus their testing 
activities on particularly fault-prone files, e.g. on old 
unstable files. Quality engineers can monitor 
development activities and initiate reviews for often 
changed old files in order to prevent a high defect 
count. Additionally, old files changed too often and 
causing high defect densities can be indicators for bad 
design. Thus, maintainers can identify candidates for 
refactorings.  

Our future work will focus on analysing other 
measures for a file�s age and its previous defects, as 
reported in related work, in order to get more precise 
comparison between our results and the results 
reported in literature. Additionally, we will focus on 
analysing to what extent history characteristics 
combined with code characteristics, e.g. code 
complexity metrics, can be considered as good 
indicators for a file�s defect count. We expect that 
history characteristics improve the quality of the 
indicators that are based on code characteristics only. 
For example, we expect that old, often changed and 
complex files are more fault-prone than old and 
complex files that have not been changed frequently. 
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