

Electronic version of an article published in Eberlein, A. (Hrsg): International Workshop on Time
Constrained Requirements Engineering, (TCRE '02). Proceedings, Rio de Janeiro; Papel
Virtual; pp. 57-64

Copyright © [2002] Papel Virtual

Requirement Documents that Win the Race:
Not Overweight or Emaciated but Powerful and in Shape

Kirstin Kohler, Barbara Paech

Fraunhofer IESE
Sauerwiesen 6, 67657 Kaiserslautern, Germany

kohler, paech@iese.fhg.de

Abstract

Time-constrained projects ask for requirements
approaches that are agile, i.e. adapted to the project
needs and without comprehensive documentation. But
how can this be achieved? Our approach provides the
steps toward the solution of this question. It supports the
identification of the essential content of the
requirements document as well as the selection of the
appropriate modeling technique. The essential content
is determined by conducting a systematic risk analysis,
which allows identifying the most important elements of
the requirements documentation. For the requirement
document to be useful it must be precise and
understandable for all project participants. The
appropriate modeling technique is selected by taking
the identified content and the context of the project into
account. This paper reports work in progress. It
describes the motivation, related work and first ideas.

1. Introduction

In the meantime it is well known and widely accepted,
that a lot of problems in software development are
caused by deficiencies in the requirements phase [20].
Never the less a lot of companies lack requirements
engineering activities [17]. Especially in projects where
„time-to-market“ is critical for the success, there is
usually „not enough time“ for investments in the RE-
process [16]. In order to overcome this resistance
against RE in industrial settings, it is not necessary to
invent a new and hopefully better RE method. Instead
one should focus on making existing methods more
attractive [22]. The goal of our work is to make
documentation of requirements more attractive for time-
to-market projects.
Creating and maintaining requirements documents
requires substantial effort [19]. This is why it is often
neglected, especially if schedule is tight. Whereas XP
puts the “onsite customer” into a project and thereby
declines any kind of documentation [5], our experience
in industrial project shows that documentation of
requirements is crucial for the transfer of knowledge
between stakeholders of the actual project as well as to
subsequent development projects. Thus, it cannot be

completely disregarded. With our approach, we want to
balance the diverse goals of creating good
documentation and keeping a tight schedule. Our slogan
is: “keep the documentation as small as possible but as
substantial and useful as needed for the project”. Our
approach gives advice how to put this slogan into
practice. It supports the following two steps: (1) identify
the essential part of the documentation and (2) choose
the appropriate modeling technique to document them.
We consider the project context1 in both of these steps,
especially in the definition of “essential” and
“appropriate”. With our work, we do not invent a new
RE-method but provide guidance on how to use existing
methods efficiently. So far we limited the framework
according to two dimensions: (1) it supports only
documentation of requirements and (2) it considers only
GUI-intensive systems.
The paper shows “work in progress”. Section 2 explains
the two basic steps of our approach. By explaining them
in more detail in section 3 and 4 we refer to related
research work and show how we extend or plan to
extend it. Finally, section 5 summarizes our approach
and elaborates on future work.

2. Basic steps of the approach

In order to document requirements for time to market
projects it is important to make a trade off between
quality and schedule. Gaps or faults in the requirements
phase as a consequence of missing documentation lead
to dissatisfied customers due to quality problems in the
end product. In contrast, “high quality” software
development including comprehensive documentation
takes longer and therefore customers choose
competitors products. The product is of less value due to
an unsatisfying market penetration. Narrowing these
conflicting dependencies to the scope of requirements
documentation means making the tradeoff between no
documentation leading to bad quality and complete
documentation leading to delayed product delivery. The
solution is to keep the documentation as small as

1 With context we mean important factors influencing
the software project. They are listed in more detail in
section 4.

possible but as substantial and useful as needed for the
project. We accomplish this by supporting the two steps
“Identify essential content” (ensures small and
substantial) and “Choose appropriate modeling
technique” (ensures useful). Figure 1 shows the two
basic steps of our framework in relationship to the basic
ingredients: the project risk, conceptual information
model, the project context and the modeling technique.
How these ingredients are integrated in our approach is
described in the following subsections, where the steps
are elaborated in more detail:

All Requirements

Identify
Essential Content

Choose
Modelling Technique

Conceptual
Information Modell

Project Context

Requirements
Document

Project Risk

Modeling Techniques

Essential Requirements

All Requirements

Identify
Essential Content

Choose
Modelling Technique

Conceptual
Information Modell

Project Context

Requirements
Document

Project Risk

Modeling Techniques

Essential Requirements

Identify
Essential Content

Choose
Modelling Technique

Conceptual
Information Modell

Project Context

Requirements
Document

Project Risk

Modeling Techniques

Essential Requirements

Figure 1: Steps and concepts of the approach

(1) Identify essential content: The basic idea is not to
document the complete requirements, but instead
concentrate on the most important or essential parts.
Finding and separating these essential parts poses a
classical filtering problem: Separating the requirements
that are “worth” being documented from those that are
uncritical and therefore need not be documented. In
general a filter separates material or waves according to
specific characteristics like grain size or frequency. The
materials in our case are the requirements and we use a
conceptual information model to classify the
requirements. The filter in our approach separates
requirements according to risk. It separates those
requirements that are accompanied with a high risk from
those that are accompanied with a low risk. The size of
the risk (comparable to the size of grains passing the
filter) is influenced by the project context. We provide
an approach for how to assess the risk by considering
the risk of different types of requirements in section 3.
The next step is to document the requirements and
therefore one has to choose a representation technique.
 (2) Choose the appropriate modeling technique:
Requirement documents are a medium of

communication and knowledge transfer. In order to gain
the most benefit out of them, they have to be precise and
understandable for project participants and involved
stakeholders (besides other qualities like correctness,
consistency and so on). Thus, choosing the appropriate
modeling technique is essential. The modeling
technique has to fit to the content that is documented as
well as to the people, which read the document. For
example the navigation of dialogues can be documented
by using Constantine’s abstract prototypes [9], whereas
the interaction between system and users in terms of
function calls might be documented by use cases [7].
Depending on the project members, who might include
e.g. graphic designers, specification languages like
UML might not be suitable. This means when deciding
about the appropriate modeling language the content as
well as the project context have to be considered in
order to make the documentation valuable. Section 4
will elaborate in more detail how the project context
guides the selection of the modeling technique.
The dashed line in figure 1 indicates that our approach
is not limited to classical waterfall projects, where all
requirements are known at the beginning. It should be
applied in iterative projects. It can be applied
independent of the process model of the project and fits
at that point where one has roughly understood the
requirements (or a subset of them) and has to document
them in more detail. Our approach helps to decide
which part of these requirements to document and how
to document them.

3. Identify the essential documentation
content

We elaborate on the step of identifying the essential
documentation content by explaining the three concepts
we built on: the conceptual information model, the
project risk and the project context.
Before filtering the essential requirements, we have to
make explicit what we are filtering. What is the totality
of requirements we are choosing from? To improve the
understanding of a complex subject, in physics or
chemistry scientists usually introduce models to
represent these subject. We needed similar a model that
allows us to think and argue about requirements
especially in the context of the filtering process. But
unfortunately there is not a standard model for GUI
intensive applications (at least we are not aware of one
after an extensive literature search), comparable to the
Parnas’ model for embedded systems [19]. Thus, we
developed a conceptual information model for GUI
intensive applications.

User Interface

navigation

rough
structure

tasks

interaction datafunctions

will-beas-is

internal
data

internal
steps dialogUI-data

Tasks

Functions

Application Kernel User Interface

navigation

rough
structure

tasks

interaction datafunctions

will-beas-is

internal
data

internal
steps dialogUI-data

Tasks

Functions

Application Kernel
Figure 2: Conceptual information model consisting of
12 types of design decisions

(1) The conceptual information model describes the
various elements and abstraction levels for requirements
of interactive applications (excluding non-functional
requirements). The model is based on Kovitz’ [13]
understanding that requirements activities lead to design
decisions. During the requirements phase decisions
about the effect generated by the software to be
developed are made. For interactive applications we
identified 12 types of these “design decisions” (see
figure 2).

Tasks

Dec
isi

on
 T

yp
es

Tasks

Dec
isi

on
 T

yp
es

Figure 3: Set of task trees. Dots indicate the design
decisions of figure 2

They can be categorized into 4 groups (decisions about
tasks to be supported by the software, decisions about
functions implemented by the software, decisions about
the application kernel and decisions about the user
interface). Each of these groups is on a different
abstraction level. For the sake of brevity we will not go
in the details of this model but refer the reader to Kohler
and Paech [11]. The elements of the model allow us to
argue on a conceptual level about different types of
requirements. Therefore one can explicitly name, which
type of the requirements should or need not be
documented. As a simple example, if a new interface for
an existing legacy system has to be implemented, it is
important to specify the dialogs and navigation of the

user interface, whereas the documentation of the
application kernel requirements is less important.

The 12 identified elements of this model build a tree in
the sense that the elements of lower levels depend on
the decisions made before. The decision to support “the
task of book ordering” leads to specific dialogs and
functions like a “dialog to confirm selection” and “a
function to calculate invoice”. The tasks span a tree of
dependent decisions. The set of all “tasks” to be
supported builds a set of trees as illustrated in figure 3.
Each triangle in the picture represents one “task tree”.
This does not mean that the decision to document a
lower level requirement implies that the corresponding
higher-level requirement must be documented. It must
only be clear which tasks a specific functional
requirement belongs to.
It is so far an open question of how to identify the
essential tasks, which should be documented (at any
level) at all.
Now we come back to the filtering process. Similar to
testing of time-constrained projects [3], we use the
concept of risk analysis to guide the selection of the
essential requirements.

Influences

the probability of

Results in

Results in

Risk Faktor

Risk Event

Risk Outcome

Risk Effect
Set

Influences

the probability of

Results in

Results in

Utility Loss

Valued through

Distributed or
inhomogeneous

team

Missing
part of

user interface
requirements

Problems with
navigation and

dialogs

Missed window
of opportunity,

unsatisfied
customers, ...

Lost market
shares

Valued through

D
ef

in
ed

 b
y

th
e

pr
oj

ec
t c

on
te

xt

Influences

the probability of

Results in

Results in

Risk Faktor

Risk Event

Risk Outcome

Risk Effect
Set

Influences

the probability of

Results in

Results in

Utility Loss

Valued through

Distributed or
inhomogeneous

team

Missing
part of

user interface
requirements

Problems with
navigation and

dialogs

Missed window
of opportunity,

unsatisfied
customers, ...

Lost market
shares

Risk Faktor

Risk Event

Risk Outcome

Risk Effect
Set

Influences

the probability of

Results in

Results in

Utility Loss

Valued through

Distributed or
inhomogeneous

team

Missing
part of

user interface
requirements

Problems with
navigation and

dialogs

Missed window
of opportunity,

unsatisfied
customers, ...

Lost market
shares

Valued through

D
ef

in
ed

 b
y

th
e

pr
oj

ec
t c

on
te

xt

Figure 4: Kontios' risk effect chain instantiated for the
requirements documentation

(2) Risk is the possibility of suffering loss [10]. This
means that to asses the risk we have to know the
probability and the loss linked with the risk. We base
our risk analysis on a method introduced by Kontio [12]
who defined an effect chain consisting of risk factor,
risk event, risk outcome, risk effect and utility loss (see

figure 4, left hand). Without going into the details of
Kontios’ method we explain the elements in the context
of the requirements documentation (see figure 4, right
hand):

The risk event in our example is the missing
documentation of requirements concerning the user
interface (the design decisions we explicitly decide not
to document). Missing documentation of user interface
requirements can cause misunderstandings, which lead
to wrong, superfluous or missing navigation and dialogs
in the software (risk outcome). To judge the extent of
the risk event and outcome one has to investigate which
risk factors make the event likely (e.g. for a distributed
team the probability2 to cause a misunderstanding due to
missing documentation is high) and which risk effects
cause a high damage (e.g. a late product delivery due to
superfluous functionality might result in a loss of
market share due to a missed window of opportunity).
The project context is essential for both of these
questions. The project context defines the risk factors
and therefore the probability that the risk event happens.
And the project goals that are also defined through the
context define the risk effects caused by the risk (the
utility loss). Therefore the risk analysis can be reduced
to the questions:

 What factors of the project context increase the
probability of a misunderstanding?

 What project goals increase the utility loss caused
by a misunderstanding?

The reflections about risk can be transferred to our
conceptual information model. For each of the 12
elements of the model one has to consider which context
factors enlarge the risk that a missing requirement of
this type leads to a misunderstanding. But before this
can be done, we have to define how to describe the
context. How can one be sure to consider all relevant
factors?
(3) Project context: The problem of context description
gained especially importance within the last years in the
domain of knowledge engineering and experience
factory for software projects [4]. But due to the fact that
this is a young research community and the relevant
factors pretty much depend on the usage of the
packaged experience, there is no silver bullet of context
description. We used a scheme proposed by Birk [6] and
adapted it to our needs in requirement engineering.
Table 1 contains all factors to consider for a project
characterization.
With the information model, the risk analysis and the
attributes of a project context description we have now

2 Note that for now we do not propose to denote
probabilities by number

all tools at hand to support filtering of essential
requirements. A risk analysis of a given project can be
conducted by combining the elements of our
information model with the various attributes of the
project context. For each project attribute one has to
determine the effect and the probability of a
misunderstanding caused by missing documentation.

Attribute Example
Stakeholders

 Number Number of people in the
development team

 Experience Experience in OO technologies
 Roles Requirements engineers, user

interface developer, graphic
designer, …

 Customer Development for customer X
 Suppliers Usage of COTS products
 Distribution of

stakeholder
Requirements engineers and
developers at the same location
or distributed development

 Availability of
stakeholders

People that developed the
former product version left the
company, user access

Product
 Application Domain Web system, embedded system
 Lifecycle & History Reimplementation of an

existing product, maintenance
 Type of Product Consumer Product
 System Size 20 components, 100 TLOC
 Lifetime of the Product The product has to be

supported until end of 2010
 Architecture Client/Server architecture

Goals
 Product Quality Goal Reliability is more important

than usability
 Business Goals Time-to-market is more

important than quality
Process/Technology

 Development Process Iterative development, RUP
 Techniques Onsite customer interviews for

elicitation of requirements,
Prototyping of User Interfaces

 Tools DOORS to manage
requirements

 Standards Documentation of requirements
according to standard IEEE
1233-1998

 Weighting of activities 30% of the total development
effort are spent for the
requirements phase

 Duration of the project The development of the project
will be finished within one year

 Workproducts Test-cases have to be
documented

Table 1: Attributes for the context description

But our approach supports practitioners not only by
guiding them to the risk analysis. In addition we provide
a set of heuristics. By conducting the risk analysis on a
generic level (without considering a specific project
context) and limited to the four main groups of elements
in our information model (tasks, system functions,
application kernel, user interface) we identified generic
heuristics for the selection of documentation content.
They are listed in table 2.
Risk event Risk factor that

enlarge the
probability

Risk effect that
enlarges the
damage

Missing
documentation of
tasks

- Lifecycle and
History: Big
changes from “as
is” to “will-be”
tasks
- Type of Product:
Consumer product
with a large variety
of different users,
complex user tasks
to be supported by
the software

- Business Goals:
Tasks to be
supported by the
software are
critical for the
business success

Missing
documentation of
functions

- Suppliers: Parts
of the system have
to be built by COTs
products.
Evaluation of
COTs product is
based on system
functions

- Business Goal:
Time-to-market is
important and
forces to buy COTs
products to hit
window of
opportunity

Missing
documentation of
application
kernel

- Experience:
developers are not
experienced in
algorithms

- Product quality
goal: The accuracy
of the product has
to be improved to
increase market
shares.

Missing
documentation of
user interface

- Lifecycle and
history: No
experience of users
in usage due to new
development

- Product quality
goal: Usability of
the product is
required due to
mass production
with high support
costs otherwise
- Business goal:
Usability is
important to reduce
costs for training
and support

Table 2: Heuristics for the risk effect chain

The left hand column lists the risk event. We listed one
risk event for each decision type: tasks, function,
application kernel, user interface. The second column
contains context attributes (risk factors) that enlarge the
probability of the risk event. E.g. for a big change from

“as-is” to “will-be” tasks (risk factor) the probability
that a missing documentation of tasks causes damage is
high. The right column contains risk effects and their
related product and business goals (given by the project
context). They define the size of the damage caused by
the risk. E.g. if time is critical for the business success
of the company (risk effect) damage caused by the risk
event “missing documentation of tasks” is high. If for a
given project, more than one attribute in a row matches,
the risk of omitting this type of requirements in the
documentation is high. If only one, either the risk factor
or the risk effect, is high, it has to be judged
individually. In that case the table gives a hint for a
potential risk.
Our tables help in executing the risk analysis, but, of
course, this risk analysis still requires some extra effort.
However, the identification of essential requirements is
also necessary for the project managers to focus
development efforts. We strongly believe that an
explicit risk analysis is the best compromise between
“all or nothing”.

4. Choose the appropriate modeling
technique

After having decided what to document it’s now the
question of how to document. There is a large variety of
modeling techniques ranging from natural language to
formal languages like Z [18]. One has to choose the
modeling technique, which fits best for representing the
requirements. It has to fit to the content that is
documented as well as to the people that read the
document.
During the last years a variety of methodologies have
emerged that aim to guide the selection of technologies
or methods:

 ACRE [15] is a framework containing 12 methods
for requirements acquisition, which are judged by
the authors according to their suitability in different
projects. But the framework is limited to the 12
methods and does not cover modeling techniques
for documentation. Furthermore there is a limited
number of project characteristics covered by the
framework, that do for example not consider the
needs of specific applications like interactive or
embedded systems

 As part of the PROFES project [6] the concept of
PPDs (Product-Process-Dependency-Models) was
developed. PPDs describe the impact of a specific
technology, like inspections, on a specific product
quality goal, like reliability, when applied in a
certain process. PPDs also contain a description of
the context. Although this approach seems to be
very promising, it is very generic because it is

suitable for all kind of software engineering
techniques and not especially tailored for our
purpose of requirements documentation.

 In Agile Software Development Cockburn brought
up the concept of the Crystal Family [8]. He
proposes to choose the appropriate development
approach dependent on the three characteristics:
number of people, criticality of the software and
project priority. We believe that this approach does
not consider enough project characteristics.

modelling technique

Repository of
RE-Modelling
Techniques

Softwareproject

(2) project context

(1) decision types

modelling techniquemodelling technique

Repository of
RE-Modelling
Techniques

Softwareproject

(2) project context

(1) decision types

(2) project context

(1) decision types

Figure 5: A repository of RE-techniques for the
selection of the appropriate modeling technique.

We propose a two-folded approach for the selection of
the appropriate modeling language. As illustrated in
figure 5, we assume the existence of a repository
containing a characterization and description of all
available RE modeling techniques. By specifying the
essential content in terms of its design decision types
and by specifying the project context the appropriate
modeling technique is determined. We will elaborate on
this by referring to the underlying concepts: the decision
types and the project context description:
(1) By defining the essential content, one already
selected a subset of decision types as defined in the
conceptual information model. The type of decisions
determines a subset of suitable modeling techniques,
because not every modeling technique is suitable to
describe all types of design decisions. Kohler and Paech
[11] provide a tabular overview of models used in
common processes, like RUP [2] or Usage Centered
Design [9], to document design decision types.
Typically, after this selection process there is still more
than one modeling technique left to choose from. Figure
6 illustrates this with an example. Based on the decision
type “user interface”, three techniques use-cases,
storyboard and abstract prototypes are selected by
function S1, which represents the selection based on the
decision type.
(2) To further narrow down the appropriate modeling
technique the project context is considered. Therefore
the output of function S1 together with the project
context are input for a second selection function S2. In
S2 for each of the specified techniques the project
context attributes are compared to the attributes of the
technique description. The technique with the best
match is the result of this final selection mechanism. In

the example of figure 6, the project is characterized by a
distributed team consisting of software engineers.
Therefore use cases are selected as appropriate
modeling technique. Storyboards require special
drawing skills and are more difficult to exchange and
discuss between different development sites.
Especially the context attributes describing the
stakeholders and the process and technology (compare
table 1) support this part of the selection process. Most
important are the stakeholders. Their experience with
special modeling technique and their roles (testers,
graphic designers, …) have a very high impact on the
acceptance of the modeling technique by the
stakeholders. This is supported by empirical findings
from McPhee and Eberlein [14] who showed that the
usefulness of a RE techniques is correlated to the
familiarity of stakeholders with that technique. In
addition other “non RE” tools and techniques that are
already established in the process may influence the
selection process. E.g. if UML class diagram are in use
to document the systems design, one should also use
them to document the input/output data of the user
interface.
So far our approach of choosing the appropriate
modeling technique consists of very first ideas.
Especially the relationship between context attributes
and the selection of the modeling technique needs
further investigation.

(S1) Selection based on decision type (S2) Selection based on context

S1(decision type)->{technique1..x} S2(context, technique)->{technique1..x}

....

Abstract Prototype

Storyboard

....

....

....

Use CasesUser Interface

….Applikation Kernel

Distribution of
Stakeholders

Roles

Storyboard

ExperienceUse Cases

(S1) Selection based on decision type (S2) Selection based on context

S1(decision type)->{technique1..x} S2(context, technique)->{technique1..x}

....

Abstract Prototype

Storyboard

....

....

....

Use CasesUser Interface

….Applikation Kernel

Distribution of
Stakeholders

Roles

Storyboard

ExperienceUse Cases

Figure 6: Selection of the modeling technique based on
decision type and context.

5. Summary and Future Work

Our approach fits the recommendations for
documentation of agile software development given by
Cockburn [8] who states: “… don’t ask for
requirements to be perfect …” and ”… capture just
enough”. But whereas Cockburn does not give any
advice for how to find out what is “enough”, we give
concrete guidance on the selection process of critical
elements. In addition it substantiates the demand for
adaptiveness as postulated by the agile community [1].
In that sense we make the “agile requirements process”
more concrete. Therefore we built our approach on two

sockets: the systematic consideration of risk and project
context to drive the documentation in time-constraint
projects.
So far we provided the skeleton which is now ready to
be filled with more details to guide practitioners in their
RE process. Our future work will concentrate on the
following topics:

 We want to validate the context attributes through
expert interviews, similarly to Vegas [21] who
validated a characterization schema for testing
techniques By doing this we will further adapt our
characterization scheme for the needs of RE.

 We want to provide more heuristics similar to those
listed in table 2. They should not only support the
risk analysis for the selection of decision types, but
also for the selection of a subset of task trees as
illustrated in figure 3 to determine which tasks must
be documented and which can be omitted.

 During future projects, by collecting empirical data
we want to investigate the dependency between
project context characterization and the selection of
the content and the modeling language. We want to
better understand the relationship between context
attributes and the choices that have to be made
based on these attributes. Knowing these
dependencies would be a first step to automatically
support the selection process.

 And of course we want to evaluate the complete
approach to empirically prove, that our approach is
beneficial for the requirements phase of time-
constrained projects.

Literature

[1] www.agilealliance.org

[2] Armour, F., Miller, G., Advanced Use Case

Modelling, Addison Wesley, 2000

[3] Bach, J., Heuristic Risk-Based Testing, Software

Testing and Quality Engineering Magazine, 11,
1999

[4] Basili, V., Caldiera, G., Rombach, H., Experience

Factory. In John J. Marciniak, Encyclopaedia of
Software Engineering, volume 1, pp. 469-476, John
Wiley & Sons, 1994

[5] Beck, K. Extreme Programming Explained:

Embrace Change, Addison Wesley, Boston, 2000

[6] Birk, A, PhD Theses in Experimental Software
Engineering, Vol. 3, A Knowledge Management
Infrastructure for Systematic Improvements in
Software Engineering, Fraunhofer IRB Verlag, 2001

[7] Cockburn, A., Writing Effective Use Cases, Addison
Wesley, 2001

[8] Cockburn, A., Agile Software Development,

Addison Wesley, 2002

[9] Constantine, L., Lockwood, L., Software For Use,
Addison Wesley, 1999

[10] Dorofee, A. J., Walker, J., Alberts, Ch., Williams, R.

et al., Continuous Risk Management Guidebook,
Software Engineering Institute, Pittsburgh, August
1996

[11] Kohler, K., Paech, B. Anforderungsspezifikation für

interaktive Anwendungen, IESE-Report No.
016.02/D, 2002

[12] Kontio, J., The Riskit Method for Software Risk

Management, version 1.00, CS-TR-3782. Computer
Science Technical Reports. University of Maryland,
College Park, MD, 1997

[13] Kovitz, B.L., Practical Software Requirements. A

Manual of Content and Style, Greenwich: Manning
Publications Co., 1998

[14] McPhee, Ch., Eberlein, A., Requirements

Engineering for Time-to-Market Projects,
Proceedings of the 9th Conference and Workshop on
the Engineering of Computer-based Systems, ECBS,
Sweden, 2002

[15] Maiden, N., Rugg, G., ACRE: Selecting Methods

For Requirements Acquisition, Software
Engineering Journal, May, 1996

[16] Mead, N. R., Why Is It so Difficult to Introduce

Requirements Engineering Research Results into
Mainstream Requirements Engineering Practice?,
Proceedings of the Fourth International Conference
on Requirements Engineering, Illinois, June 2000

[17] Morris, P., Masera, M., Wilikens, M., Requirements

Engineering and Industrial Uptake, Requirements
Engineering, 3, 1998

[18] Potter, B., Sinclair, J., Formal Specification and Z,

Prentice Hall, London, 1996

[19] van Schouwen A.J., Parnas, D. L., Madey J.
Documentation of Requirements for Computer
Systems, Proceedings of IEEE International
Symposium On Requirements Engineering, San
Diego, California, 1993, S.198-207

[20] van Lamsweerde, A., Requirements Engineering in

the Year 00: A Research Perspective, Proceedings
of the 22nd International Conference on Software
Engineering, Ireland, June 2000

[21] Vegas, S., PhD Thesis, Characterization Schema for
Selecting Software Testing Techniques, Universidad
Prolitecnica de Madrid, February 2002

[22] Wiegers, K.E: Read My Lips: No New Models!

IEEE Software, September/October 1998

