
Design and Rationale of a Quality Assurance Process
for a Scientific Framework

Hanna Remmel and Barbara Paech
Institute for Computer Science

University of Heidelberg
Heidelberg, Germany

{remmel, paech}@informatik.uni-heidelberg.de

Christian Engwer
Institute for Computational and Applied Mathematics

University of Münster
Münster, Germany

christian.engwer@uni-muenster.de

Peter Bastian
Interdisciplinary Centre for Scientific Computing (IWR)

University of Heidelberg
Heidelberg, Germany

peter.bastian@iwr.uni-heidelberg.de

Abstract—The testing of scientific frameworks is a challenging
task. The special characteristics of scientific software e.g. missing
test oracle, the need for high performance parallel computing,
and high priority of non-functional requirements, need to be
accounted for as well as the large variability in a framework. In
our previous research, we have shown how software product line
engineering can be applied to support the testing of scientific
frameworks. We developed a process for handling the variability
of a framework using software product line (SPL) variability
modeling. From the variability models, we derive test
applications and use them for system tests for the framework. In
this paper we examine the overall quality assurance for a
scientific framework. First, we propose a SPL test strategy for
scientific frameworks called Variable test Application strategy
for Frameworks (VAF). This test strategy tests both,
commonality and variability, of the framework and supports the
framework’s users in testing their applications by creating
reusable test artifacts. We operationalize VAF with test activities
that are combined with other quality assurance activities to form
the design of a quality assurance process for scientific
frameworks. We introduce a list of special characteristics for
scientific software that we use as rationale for the design of this
process.

Index Terms—scientific software development, software
product line engineering, quality assurance process, test strategy.

I. INTRODUCTION

In our research, we concentrate on the testing of scientific
frameworks. A framework consists of common code that
provides solutions for several similar applications for specific
types of problems [1]. DUNE1, the software we deal with, is a
complex scientific framework for solving partial differential
equations supporting a large variety of applications (e.g. fluid
mechanics or transport in porous media), mathematical models

1 http://www.dune-project.org/

and numerical algorithms. DUNE is introduced in more detail
in [2] and [3].

The testing of scientific software is a challenging task, since
it has to deal with special challenges like missing test oracle,
the need for high performance parallel computing, and high
priority of non-functional requirements over functional
requirements [4]. When testing a scientific framework, we
additionally need to find a way to deal with the large variability
in a framework. A special challenge of a scientific framework
like DUNE is that the variability is hidden in the mathematics
the framework implements. The variability is expressed
precisely, but not in a form that could be understood as a model
by a human or a computer.

Our approach to meet this challenge is to apply software
product line engineering (SPLE) to handle the framework’s
variability. In SPLE, the idea is to develop a software platform
during domain engineering and then, in application
engineering, use mass customization for the creation of a group
of similar applications that differ from each other in specific
predetermined characteristics [5].

Similar to the division of the SPLE process into two
development processes, SPL testing is broken down into
domain testing and application testing. In domain testing, the
goal is to ensure the quality of the reusable platform, including
the commonality (common characteristics for every application
in the product line) and the variability, defined for the product
line in the domain engineering process. This includes the
testing of those artifacts that can be tested as early and often as
possible and the creation of reusable test artifacts that can then
be reused in application testing. Variable artifacts that are only
used in one or few applications are tested in application testing.
In application testing, the applications derived from the SPL
platform are tested. The test activities in application testing
concern parts of the application that are developed during

978-1-4673-6261-0/13 c© 2013 IEEE SE-CSE 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

58

application engineering but also reuse test artifacts from
domain testing [6].

For developers of a scientific framework the importance of
domain testing is high, since they need to test the functionality
of the scientific framework without knowing exactly what kind
of applications the users are going to develop. They have a lot
less impact on application testing, which is performed by the
users of the scientific framework. In other words, the
definitions of the roles developer and user in our context are
different from the traditional SPLE, where the developers carry
out both, domain and application engineering processes. In the
context of scientific frameworks, the developers only deal with
domain engineering. The application engineering, meaning the
development of specific applications, is done by the users of
the framework. In scientific frameworks, the users are at the
same time the developers in the application engineering process
[7].

In scientific software development, the source code is often
tested with unit testing. Also in SPLE, unit and integration
testing are typically performed in domain testing. During unit
and integration testing, most functional failures should already
have been found, but in scientific software system testing this
is still the only testing level where the interaction between the
mathematical model, the numerical model, and its
implementation can thoroughly be tested [8]. At system testing
level also non-functional requirements like correctness and
performance can be tested [9]. This is why we have developed
a regression test environment executing system tests for DUNE
(introduced in detail in [8]). For the systematical creation of
system tests, we use SPL variability modeling.

Those software characteristics, that can vary, are called
variation points and the possible values for a variation point are
called variants. A variability model is described by variation
points and their variants. It also includes the constraints
between the variation points and the variants. A special
challenge for domain testing is absent variants. These are
variants that are only created in application engineering and not
available in domain engineering [5].

In [7], we discuss a process for creating variability models
for DUNE based on the mathematical requirements (the
mathematical problems that the framework should solve). Each
variability model is associated with a system test application,
which implements the corresponding mathematical problem.
We use each variability model for a system test application as a
basis for systematically selecting the set of test cases for this
test application.

In this paper, we examine the overall quality assurance for a
scientific framework. First, we propose a SPL test strategy for
scientific frameworks. In a SPL test strategy, the partition of
responsibilities between domain testing and application testing
is defined. The used test strategy strongly influences the
activities performed in domain testing and application testing
[10]. Second, we introduce the design for a quality assurance
process for a scientific framework using SPLE. We explain the
quality assurance activities harmonized with the proposed SPL
test strategy in detail. As a basis, we choose the RiSE Product
Line Engineering TEsting project (RiPLE-TE), a quality

assurance process introduced for software product lines by
Machado et al. in [11]. We introduce a list of special
characteristics for scientific software that we use as rationale
for the design of a quality assurance process to suit the needs of
the scientific framework.

In Section II, we describe the proposed SPL test strategy.
This is followed by the description of the designed quality
assurance process for a scientific framework in Section III.
After the discussion of related work in Section IV, we
summarize our findings and present our future work in Section
V.

II. SPL TEST STRATEGY FOR SCIENTIFIC FRAMEWORKS

As described in Section I, a SPL test strategy describes,
how the testing responsibility is partitioned between domain
testing and application testing. In this section, we first shortly
introduce SPL test strategies found in the literature and discuss
why they are not suitable for scientific frameworks. Then, we
propose a SPL test strategy for scientific frameworks and
assess it using the criteria for SPL test strategies introduced by
Pohl et al. in [10].

A. Software Product Line Test Strategies

The following SPL test strategies can be found in the
literature:

A. Brute Force Strategy (test only in domain engineering)
[10]

B. Pure Application Strategy or Testing Product by
Product (test only in application engineering) [10], [12]

C. Incremental Testing of Product Lines (test the first
application individually and the following applications
using regression testing techniques; a special case for
B) [12]

D. Sample Application Strategy (SAS) (one or few sample
applications are created and used to test domain
artifacts; testing for the specific applications in
application engineering is still needed) [6]

E. Commonality and Reuse Strategy (CRS) or Design
Test Assets for Reuse (test common parts in domain
engineering and for the variable parts create reusable
test artifacts for the testing in application engineering)
[10],[12]

F. Combination of strategies SAS and CRS (use
fragments of a sample application in domain testing
and create reusable test artifacts for application testing)
[10]

G. Opportunistic Reuse of Test Assets (create test artifacts
for one application in application testing and use these
artifacts for further product line applications) [13]

H. Division of Responsibilities(select testing levels to be
applied in both, domain and application engineering,
for example, test common parts with unit testing in
domain engineering and execute integration, system,
and acceptance testing in application engineering) [12]

In a previous paper [7], we mentioned that SAS would be
the SPL test strategy we want to use for scientific frameworks.
At that time, we were not aware of the exact criteria for a SPL

59

test strategy a scientific framework needs to fulfill. That is why
we need to revise this decision.

Considering the special case of a framework where the
framework developers only deal with domain testing and the
application testing is accomplished by the framework’s users, a
SPL test strategy for a framework needs to fulfill the following
criteria:

1. Both, commonality and the variability of the
framework are tested in domain testing.

2. Application testing is supported with reusable test
artifacts created in domain testing.

3. Product line applications still need to be tested,
especially parts developed in application testing.

In most SPL strategies, only the common parts of the
platform are tested in domain testing. The variability of the
platform, meaning possible applications that can be derived
from the platform, is tested only in application testing, where
concrete applications exist. Since we need to test the whole
platform, i.e. the framework’s functionality, we also need to
test the framework’s variability using reference applications in
domain engineering already (Criterion 1). Still, the
framework’s users need to test their applications, because these
always include some own functionality and may use the
framework in a way the framework’s developers could not
expect. The users should not assume that since the framework
is tested, they do not need to test their own applications
(Criterion 3).

In domain engineering, a SPL test strategy for a framework
should include the creation of reusable test artifacts, like test
applications including variability. These test artifacts can be
reused by the framework’s users when they are testing their
own applications (Criterion 2).

Table I demonstrates which SPL test strategy criteria for a
framework are fulfilled by the existing test strategies. Criterion
1 is only fulfilled by the Brute Force Strategy (A), but this test
strategy firstly does not fulfill the other criteria and secondly is
not recommended by the authors in [10]. Test strategies
Incremental Testing of Product Lines (C) and Opportunistic
Reuse of Test Assets (G) create reusable test artifacts merely in
application testing and therefore only partly fulfill Criterion 2.
The most suitable test strategies are CRS (E) and the
Combination of strategies SAS und CRS (F). However, these
strategies do not test the whole variability in domain testing
and therefore do not fulfill Criterion 1.

Since none of the existing SPL test strategies fulfills the
criteria for a framework, in the next subsection we propose a
new SPL test strategy for frameworks fulfilling all criteria.

TABLE I. FULFILLMENT OF CRITERIA FOR A SPL TEST STRATEGY FOR A
FRAMEWORK

Criteria SPL Test Strategy

 A B C D E F G H

1. X

2. (X) X X (X)

3 X X X X X X X

Legend: ‘X’ = fulfills criterion, ‘(X)’ = partly fulfills criterion

B. Variable Test Application Strategy for Frameworks

What we need is a SPL test strategy similar to CRS, but the
strategy also needs to test the variability of the product line in
domain engineering. For this purpose, we first take a short look
at the variability modeling for a framework. If we had a
variability model for the whole framework, we could derive the
test applications and test cases thereof as illustrated in Fig. 1.
Since it is not feasible to create such a variability model for the
whole framework covering a wide range of functionality (as
discussed in Section I), we start with the mathematical
requirements for the framework (the mathematical problems,
which the framework should solve) and create several
variability models based on those mathematical requirements
(detailed description of the variability model creation for a
scientific framework can be found in [7]). Each variability
model is associated with a test application, as shown in Fig. 2.
For example, one mathematical problem the DUNE framework
should support is solving the Poisson equation, an elliptic
partial differential equation. A variability model for this
problem covers among others the different possible grid
configurations and used discretization methods (for details, see
[8]). The fulfillment of this mathematical requirement can be
tested with the associated test application.

In our SPL test strategy called Variable test Application
strategy for Frameworks (VAF), we not only create a few
sample test applications in domain testing. Moreover, we
attempt to create a set of test applications that cover the range
of mathematical requirements of the framework. The
commonality of the framework is tested with unit and
integration testing, which fulfills Criterion 1. The domain test
applications include variability themselves and can be reused
by the framework’s users to test in application engineering
their specific applications created on the basis of the
framework (Criterion 2). Testing their own applications in

Fig. 2. Derivation of Variability Models (VM) and the Associated
Test Applications from the Frameworks Requirements

Fig. 1. Derivation of Test Applications and Test Cases for a
Framework with Variability Model (VM)

Mathematical
Requirements

Framework
Test Application / Test Case 1
Test Application / Test Case 2
…
Test Application / Test Case N

VM

Framework

VM

VM

VM

Mathematical
Requirements

Test Application-1

Test Application-2

Test Application-N

…

Test Case 1.1
Test Case 1.2
…
Test Case 1.N

60

application testing is still the users’ responsibility (Criterion 3).
The framework’s developers support this with the reusable test
applications.

In the next subsection, we will assess VAF and compare it
with CRS, which is one of the test strategies most often applied
in practice.

C. Assessment

Pohl et al. [10] introduce five essential criteria for a SPL
test strategy:

1. Time to Create Test Artifacts (overall time needed for
creating test artifacts in domain and application testing;
influenced by the amount of test artifacts and by the
difficulty to create them)

2. Absent Variants (how well does a test strategy deal
with absent variants; for definition see Section I)

3. Early Validation (the time between the finalization of
an artifact and its validation should be low to help
keeping the costs for repairing defects low)

4. Learning Effort (time it takes for a tester to be able to
perform the test activities associated with the test
strategy)

5. Overhead (amount of unnecessarily performed
activities and/or produced artifacts when the same
result could be achieved with lower effort)

In Table II we compare VAF with CRS using these criteria.
In our assessment of VAF, we take into account our context
with a scientific software development.

In VAF, the required test artifacts are the variability models
and test applications. Their creation is time-consuming and
mathematical expert knowledge is required. Additionally, the
framework’s users need to create new test artifacts or extend
the reusable artifacts to suit their specific scientific
environment. Therefore, we rate the time to create criterion
with “-”. As for CRS, the handling of absent variants is
excellent, since the test applications created in domain testing
cover the variability of the framework. If the users of the
framework introduce new variants in application engineering,
they can extend the reusable test applications to test them.

The assessment of the early validation criterion is better
than for CRS, since the test applications created in domain
testing can also already be executed in domain testing. The
learning effort is high in both cases, since scientists developing
the framework are not familiar with SPLE methods, like
creating a variability model. On the other hand, this part of the
test strategy needs to be created only once at the beginning and
does not need to be changed very often afterwards, since the
mathematical requirements do not change a lot. As for CRS,
the overhead for VAF is low, since the created test artifacts can
be reused in application testing.

TABLE II. COMPARING VAF AND CRS TEST STRATEGIES

 Time to
create

Absent
variants

Early
validation

Learning
effort

Overhead

VAF - + + - +

CRS [10] + + 0 - +

Legend: ‘+’ = positive, ‘-’ = negative, ‘0’ = neutral

III. QUALITY ASSURANCE PROCESS FOR A SCIENTIFIC

FRAMEWORK

In this section, we operationalize the domain testing part of
VAF (Criteria 1 and 2) with test activities (unit, integration,
and system testing). Together with other quality assurance
activities (e.g. review, scientific validation) they form a quality
assurance process. The use of SPLE is not the only aspect we
need to consider for an overall quality assurance process. The
fact that we are dealing with scientific software has a major
influence on it.

In the following subsections, we first discuss characteristics
in scientific software development that need to be considered,
when we are designing a quality assurance process for a
scientific framework. This includes the most important quality
goals for scientific software in general and for the DUNE
framework in particular: correctness, performance, portability,
and maintainability. After that, we present RiPLE-TE, a quality
assurance process for SPL introduced by Machado et al. in
[11]. We will show how this quality assurance process needs to
be adapted to take into account VAF and the characteristics for
scientific software development.

A. Characteristics of Scientific Software Development
Relevant for the Design of a Quality Assurance Process

In the literature on scientific software development, several
special characteristics compared to traditional software
development are mentioned. In a manual literature review, we
collected such special characteristics that need to be taken into
account when designing a quality assurance process for
scientific software. The papers we reviewed were collected
between April 2010 and October 2012 using the IEEE and
ACM digital libraries. Search strings with most hits were
“scientific software engineering”, “scientific software
development” and “scientific computing software”.
Furthermore, we collected papers from the previous
Workshops on Software Engineering for Computational
Science and Engineering and Software Engineering for High
Performance Systems Applications. Altogether, we found 201
papers. We looked through the papers to find out if they
mentioned any special characteristics for scientific software
development relevant for the design of a quality assurance
process. We found eight papers describing such characteristics.

The characteristics are presented in Table III. These are
used as rationale in the following description of the quality
assurance process.

C1: There are different possible sources of a problem in
scientific software: the underlying science, the translation of
the mathematical model of the field of application to an
algorithm and the translation of this algorithm into program
code. Each of these should be handled separately: first check
the source code for bugs with code verification methods and
then verify the mathematical algorithm with numerical
algorithm verification methods. Only after these two steps,
knowing that errors in code and mathematical algorithm have
already been excluded, the scientists are able to perform the
scientific validation (evaluate whether the output of the
software is a reasonable proximity to the real world).

61

TABLE III. CHARACTERISTICS OF SCIENTIFIC SOFTWARE

 Characteristic Reference
Considered

in

C1

Different possible sources for a
software problem. Need support for
Code Verification, Algorithm
Verification and Scientific
Validation.

[14],[15],
[16]

Rev, U&I,
Sys, SV

C2 Lack of test oracles. [17]
U&I, Sys,

SV

C3

Most software requirements, except
for high-level ones, are not known
at the beginning of a software
project. Requirements stem from
science.

[18]

Pla

C4
The cognitive complexity, the
difficulty in understanding a
concept, thought, or system, is high.

[19] TR, Pla,
Rev, SV

C5

Need for shared, centralized
computing resources; high
performance computing,
parallelism.

[20] U&I, Sys

C6
Calculations include rounding
errors and machine accuracy.

[16] Sys, SV

C7
Most developers are domain
scientists or engineers, not software
engineers.

[15],[21],
[20],[18]

TR, Rev

C8
There is a high turnover in the
development team.

[15] Pla, Rev,
Rep

C9
The most highly ranked project
goals: 1. Correctness

[18] Sys, Val

C10
The most highly ranked project
goals: 2. Performance

[18] Sys

C11
The most highly ranked project
goals: 3. Portability

[18] Sys

C12
The most highly ranked project
goals: 4. Maintainability

[18] Rev, Rep

a. Legend: TR = Test Roles, Pla = Planning, Rev = Review, U&I = Unit and Integration Testing, Sya =
System Testing, SV = Scientific Validation, Rep = Reporting

C2: Scientific software is used for gaining research results
or solving problems that cannot be solved by other means. The
outcome is therefore often not known in advance. This is a
problem for testing, since most testing techniques in software
engineering assume accurate test oracles.

C3: At the beginning of a scientific software project, the
known requirements are often the laws of nature, or, like in our
case, stem from mathematics. In most cases, further
requirements for the software have not been defined in advance
but emerge during software development.

C4: The context of scientific software is usually very
complex. Only scientists familiar with the scientific domain in
question have the ability to entirely understand the software.
This is a problem for testing, since the tester should understand
what the software is supposed to do.

C5: Solving complex scientific problems with scientific
software often requires special resources like high performance
computing. At the same time, a special programming paradigm
like the use of parallel computing is applied. This must be
taken into account when testing the software.

C6: Scientific calculations use floating-point values, which
cannot be represented exactly by a computer. This leads to
rounding errors and machine accuracy in the calculations.
Testing scientific software must support floating-point
arithmetic.

C7: The fact that the developers of scientific software
mostly are domain scientists and not software engineers has to
be considered in the design of a quality assurance process. An
important goal is to keep the process as straightforward and
understandable as possible. The process should not include too
many technical software engineering terms or structures. There
is also a difference in the objective: a software engineer’s goal
is to produce high quality software, whereas the goal of a
scientist is to produce high quality science. The scientists
developing the software must be convinced that each step is
important and has a real value for the scientific results.

C8: Many developers of scientific software are doctorate
students or postdocs who only stay in the team for a few years.
Because of this, the overhead of the process should be as low
as possible and the method should be easy to learn and quick to
adopt.

C9 - C12. In scientific software development, the priority of
non-functional requirements is high compared to functional
requirements. In a series of case studies, Carver et al. [18]
found out, that the most highly ranked scientific software
project goals are correctness, performance, portability and
maintainability.

We use the characteristics described in this subsection as
rationale for adjustments in the quality assurance process
RiPLE-TE introduced in the next subsection.

B. RiPLE-TE Quality Assurance Process for SPL

Based on a systematic mapping study on SPL testing and
evaluated with an experimental study, Machado et al. [11]
designed a quality assurance process for product lines. The
process comprises both, domain testing and application testing.

The first activity in both, domain testing and application
testing, is the development of a master test plan defining what
and how will be tested, who will do it, the coverage criteria and
a time schedule. The planning should be continuously
performed during the other quality assurance activities and the
plan should be updated whenever necessary.

Since it is desirable that failures in the source code can be
detected as early as possible, the second step is a technical
review, where the main artifacts in SPL, such as variability
model, product map etc., are reviewed before the dynamic tests
are being started.

In domain testing, where the product line platform with
reusable artifacts is developed, the focus is on unit and
integration testing. The unit testing should ensure that the
components may be reused further. After that, integration
testing seeks to guarantee that tightly coupled components
work together.

In application testing, integration, system, and acceptance
testing is performed. In this stage, integration testing affects the
components that will comprise the application. System testing
evaluates the application as a whole against system
requirements. In acceptance testing, customer feedback on the
application is gathered. If any new artifacts have been created
in application engineering, these should first be tested with unit
testing.

62

Each of the testing activities above includes four tasks:
planning, design, execution, and reporting. After these tasks
have been performed, coverage criteria are used to decide
whether the testing activity is accomplished or not. If not, the
cycle returns to planning.

In the following subsections, we discuss how we need to
adjust this quality assurance process in order to make it suitable
for a framework. Furthermore, we need to take into account the
characteristics of scientific software development collected in
Table III. The rationale based on these characteristics is marked
in the text in brackets.

This is a plan for a quality assurance process for the DUNE
framework. Most of the steps (unit, integration and system
testing, scientific validation, regression testing and reporting)
have, with some limitations, been implemented already. Other
steps still need to be established.

C. Test Roles

In the RiPLE-TE quality assurance process, the activities
and tasks are assigned to many different test roles: test
manager, test architect, test designer, and tester. In scientific
software development, in the most cases, every team member
fulfills the role developer and the different test roles all in one
person.

The most important reason for this is that the scientist
developing a piece of code often is the only person who has the
expertise to entirely understand the code (C4). At least in
academic projects, even the colleagues in the same group
typically are working on different topics. The scientist
developing the code must be responsible for creating suitable
tests for his or her own code. Another reason not to use many
different test roles is that the developers of scientific software
normally are not software engineering professionals (C7). The
quality assurance process should be as simple as possible.

In our quality assurance process, we are using the roles
developer and user, and as the only test specific role, test
administrator. The test administrator is responsible for keeping
the (nightly executed) test environment running. This role
should ideally be fulfilled by technical staff. If this is not
possible, the role can also be carried out by a scientist. For
some activities in the quality assurance process, it is more
suitable to have a team of developers do this. This will be
mentioned in the detailed description of the process.

D. Quality Assurance Process Steps

This subsection discusses the steps in the quality assurance
process for scientific frameworks. The process is illustrated in
Fig. 3. One main difference to RiPLE-TE is that our process
only covers domain testing and not application testing, since in
the development of a framework we only deal with domain
engineering.

Shifting a major part of the quality assurance responsibility
from application testing to domain testing, as described in the
SPL test strategy for scientific frameworks in Section II, results
in introducing system tests already in domain testing. Since we
are assuring the quality of scientific software, we need to add a
new step scientific validation (C1) at the end of the quality
process.

 In the following, the implementation of VAF is also
documented.

1) Planning: The activities in this step are critical for the
success of the whole process. When a developer makes
changes in the source code or develops a new piece of code,
she or he has to pay attention to the following quality assurance
issues.

The developer is responsible for creating new unit test cases
and/or adjusting/removing existing unit tests whenever
appropriate. It is very important that the developers take time to
create suitable unit tests for their own source code at the very
time when they are developing the source code. It is advisable
to perform test driven development (TDD) meaning that the
unit test cases are created first as a kind of light weight
specification for the planned changes, since specifications
mostly do not exist in advance (C3). The developer might be
the only one to thoroughly understand the source code she or
he is developing (C4) and it is very difficult to ensure the
quality of the code later, when the developer may have already
left the team (C8).

If the mathematical requirements for the framework
change, e.g. when a new functionality is included into the
framework, it can be necessary to formulate one or more new
variability models based on the requirements together with the
associated system test applications. In other cases only existing
variability models and system test applications must be
adjusted, e.g. by including new variation points or variants.

There is no formal planning for the testing activities. As
described above, each developer is responsible for preparing
tests for his or her own source code. When major changes are
planned for the framework and the developers arrange the

Fig. 3. Quality Assurance Process for scientific frameworks

Planning

R
egression T

esting
R

eporting

Review
(desc-
check)

Failure
found?

Failure
found?

Failure
found?

Failure
found?

no

yes

yes

yes

yes

no

no

no

Unit and
Integration

Testing

System
Testing

Scientific
Validation

Scientific
Validation

Algorithm
Verification

Code
Verification

63

responsibility for the development changes, they also should
decide who is responsible for preparing the tests.

2) Review: The earlier a failure is found, the lower is the
cost of removing it. The earliest possible point for finding
failures is right after developing the code. Taking the time for
consciously reading one’s own code before checking it in (also
called desk-checking), can reveal failures before the code is
even tested. At the same time, the developer can review the
code’s readability and structure. Since the software context is
complex (C4), the developers should seek to write source code
in an understandable way with a sufficient amount of
comments. This is also a benefit for new colleagues working
with the same software (C8) and it improves the
maintainability of the code (C12).

In contrast to the technical review in the RiPLE-TE quality
assurance process, our process involves reviewing the source
code, not just SPL artifacts like the variability models.
Certainly, the developer should review all artifacts she or he
created or changed: source code, unit tests, variability models,
and system test applications. Review is one part of the code
verification needed for the verification and validation (V&V)
of scientific software (C1).

If appropriate, the developer can ask a colleague to review
her or his changes as well. The development team could also
name responsible developers for different software modules
who review the changed source code on a regular basis [22].
We do not pursue any structured inspection or review process,
since the goal is to keep the quality assurance process practical
and simple (C7).

3) Unit and Integration Testing: Together with the review
step, unit and integration testing build the code verification part
of V&V for scientific software (C1). The goal in unit testing is
to verify the functionality of single software units. Since unit
and integration testing covers the commonality of the
framework, the first part of VAF is implemented. In this step,
as in the RiPLE-TE quality assurance process, the
communication between software units working closely
together is tested with integration testing.

In some contexts of scientific software, where system tests
can only run on a high performance computer (C5), the
importance of unit testing gets even higher, since the unit tests
do not need a long time to run and still have high test coverage
[23]. In a similar way, the problem with a missing test oracle
for system tests (C2) can be alleviated by comprehensive unit
testing. A developer can execute the unit tests manually, but
they also run automatically every night in a regression test
environment.

When the test environment reports a failure, the scientists
first have to find out where the problem is: in the
implementation of the unit test or in the source code of the
framework. Depending on the situation, the developer can fix
the defect right away, if she or he is testing current
development or the developer or test administrator creates a
ticket in the ticket system, if there isn’t one already for the
specific failure.

4) System Testing: Our system test environment executes the
system test cases derived from the system test applications as
described in Section I. The system test applications implement
the second part of VAF, because they test the variability of the
framework.

If all of the test cases can run at once over night on the
available computer resources, they all can build up the test
suite for the system testing. Mostly, this is not possible and
therefore we need a way to reduce the amount of test cases
without losing the defect detection power. In the literature,
different test suite selection methods can be found to address
this problem, for example sampling (test configurations are
selected based on domain knowledge), feature interaction
(based on statistical analysis the most relevant variant
combinations are selected) or the use of regression test
techniques [24].

Combinatorial Interaction Testing is especially suitable for
us, because it is based directly on the variability model and can
be automated. This method selects a subset of all possible
variant combinations, where possibly many potential variant
interaction failures may happen. For example, in 2-wise testing
(also called pairwise testing), those test cases will be chosen,
where for every pair of two variants the combinations “both
available”, “one available” and “none available” are tested
[25]. Kuhn et al. have used the technique and found out, that
most bugs were found with 6-wise testing. 1-wise found 50%,
2-wise 70% and 3-wise 95% of the bugs. For non-critical
product lines, the authors recommend 3-wise test coverage. In
one example for 1024 possible variant combinations, 2-wise
leads to 41 and 3-wise to 119 test cases [26].

For algorithm verification (C1), the system test applications
output includes some significant mathematical quantities like
the grid convergence rate or the count of iterations, depending
on the used mathematical and numerical model. The expected
output values for the mathematical quantities are, if possible,
determined analytically. Typically, this is often not possible
(C2) and therefore the scientists set up the expected values
from a scientifically validated run of the system test application
[8]. All expected output values include a manually adjustable
tolerance range for taking rounding errors into account (C6).
Supporting algorithm verification and testing on different
platforms and with different configurations (e.g. count of
processors, compiler options) is significant for assuring
important quality goal correctness (C9) and portability (C11).
System testing is also the suitable step for executing
performance testing (C10).

The difference between our system test applications and
those used in RiPLE-TE is that our system test applications
include variability and can be reused by the framework’s users.
This implements the reuse part of VAF.

Similar to unit testing, a developer can execute the system
tests manually or rely on the nightly running system tests. The
automated nightly execution is especially beneficial for the
system test environment, because the complex mathematical
problems solved mostly take some time to run (C5). Similar to
unit tests, a failure means that there is either a problem in the

64

source code, or the system test application or the expected
output must be adjusted to suit the development changes.

5) Scientific Validation: Scientific validation is the last of
three steps in V&V for scientific software (C1). The goal is to
determine how accurate the computational model simulates the
real situation (C9). In an ideal case we can compare the
simulation with an analytical solution. Since this is mostly not
possible for the kind of simulations that are created with DUNE
(C2), our goal in scientific validation is to support the
developers in deciding, based on their domain knowledge (C4),
whether the simulation result is what they expected or not. The
DUNE system test environment supports the scientific
validation by comparison of the graphical simulation output
files. The values in these output files are compared with the
corresponding expected scientific validation output values
taking rounding errors and machine accuracy into account (C6)
[8].

E. Regression Testing

In contrast to RiPLE-TE, we integrate regression testing in
our quality assurance process. The main idea of a regression
test environment (automated test running on a regular basis,
illustrated in Fig. 3 with a dashed arrow) is to show that
modifications in the software code do not cause any unwanted
side effects. In other words, running regression tests
demonstrates to the developers that their changes did not break
anyone else’s code and that software, which previously passed
the tests, still does.

If every developer creates suitable unit and system tests for
their own source code in the planning step, the regression test
environment proves that the code still works in an evolving
framework. Without such tests, the source code could get
broken without anyone noticing it. The unit, integration and
system tests in the DUNE run every night using the current
development version.

F. Reporting

Reporting the results of the quality assurance process is
important for the developers so that they can reconstruct which
changes caused which effects, in the framework (C12). The log
files of unit, integration, and system testing include, beside
unexpected or incorrect results also, among others, the
information, which source code version and which
configuration was used for the test.

A clearly reported instruction for the use of the quality
assurance process and the automated regression test
environment is crucial so that the knowledge will not get lost,
when the developers leave the team (C8).

G. Summary

 The quality assurance process for scientific frameworks we
introduced in this section implements the SPL test strategy
VAF proposed in the section before. In unit testing and system
testing, the commonality and variability of the framework is
tested, which fulfills the first part of VAF. Since the system test
applications include variability and can be reused by the
framework’s users, the second part is also fulfilled. The third

part is fulfilled, when the framework’s users test their own
applications.

The special characteristics of scientific software are also
taken into account in the quality assurance process. The process
is straightforward and the only software engineering method
not known by most of the scientists in the DUNE team is the
creation of variability models. We want to add this activity to
the scientists’ work together with software engineers in our
future work.

The accomplishment of the important quality goals
correctness, portability, and maintainability are already tested
by the process. In future work we need to find out, which kind
of performance testing is most suitable for DUNE and then
adapt it to the system testing step of the quality assurance
process.

As in RiPLE-Te, there is no formalized acceptance testing
for DUNE. The developers of DUNE stay in close contact with
the framework’s users and get frequently feedback from the
users.

The introduced quality assurance process is suitable for
scientific frameworks. If adopted for a framework in another
domain, the process should be adjusted to suit to the
characteristics of that domain.

IV. RELATED WORK

In this subsection, we consider other quality assurance
processes proposed in the literature for scientific software or
SPLE. We are not aware of any other cases where both aspects
were regarded together.

For scientific software development, some models are
introduced in the literature, like an iterative and incremental
model by Segal in [27] and a staged delivery model, similar to
a waterfall model, used by software projects at a research
center by Baxter in [28]. For a development process in general
and for quality assurance in particular, we could find in [14],
[29], [30], and [31] several lists of recommended software
engineering practices, e.g. source control, configuration
management, issue tracking, unit testing, verification, and
regression testing, but they are not defined as a development
and quality assurance process.

In SPLE, besides RiPLE-TE, we found two testing process
descriptions. Heider et al. [32] outline existing verification and
testing approaches supporting product line evolution: model
verification techniques for verifying the variability model and
application configurations, unit testing for core assets and
application generators and integration and system testing
methods, e.g. the use of sample applications in domain testing.
They illustrate the interplay of these quality assurance methods,
but do not discuss how these steps could form a quality
assurance process. Neto et al. [33] propose a very formal
regression testing approach for the reference architecture of a
SPL, which uses extensive documentation, many detailed
process steps and plenty of test roles. Their approach
concentrates on the commonality of the SPL and does not
apply system testing.

Many key success factors for a test process in agile testing
are similar to ours: a high grade of automation that we

65

implement with the regression test environment, which also
ensures the rapid feedback to the developer about software
failures, a low management overhead, and dissolving test roles
[34]. Nevertheless, an agile testing process can only be fully
adopted in a scientific software project, if, at the same time, an
agile software development process model like Scrum is used.

V. CONCLUSIONS AND FUTURE WORK

In this paper we propose a SPL test strategy for scientific
frameworks called VAF. This test strategy tests both
commonality and variability of the framework and supports the
framework’s users in testing their applications by creating
reusable test artifacts.

We operationalize VAF with test activities. The
commonality is tested by unit testing and the variability by
creating a set of system test applications that cover the range of
mathematical requirements of the framework. These test
applications can be reused by frameworks users. Together with
other quality assurance activities (e.g. review, scientific
validation), these test activities form a quality assurance
process for scientific frameworks.

As a basis for the quality assurance process we use RiPLE-
TE, a quality assurance process for SPL introduced by
Machado et al. in [11]. We adjust RiPLE-TE so that it
implements the SPL test strategy VAF. We introduce a list of
special characteristics of scientific software that we use as
rationale for the design of the quality assurance process.

In our future work, we plan to implement those parts of the
quality assurance process for DUNE that have not been
completed yet. Then, we want to evaluate the process. After
that, we want to make the reusable test applications available
for DUNE users and evaluate the acceptance and benefit of this
solution.

REFERENCES

[1] A. Pasetti, “Software frameworks and embedded control
systems,” Springer-Verlag, 2002.

[2] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, M.
Ohlberger, and O. Sander, “A generic grid interface for parallel
and adaptive scientific computing. Part I: abstract framework,”
Computing 82, pp. 103-119, 2008.

[3] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, M.
Ohlberger, and O. Sander, “A generic grid interface for parallel
and adaptive scientific computing. Part II: implementation and
tests in DUNE,” Computing 82, pp. 121-138, 2008.

[4] J. C. Carver, “Report: The Second International Workshop on
Software Engineering for CSE,” Computing in Science &
Engineering, vol. 11, pp. 14-19, 2009.

[5] K. Pohl, G. Böckle, and F. Linden, “Software Product Line
Engineering - Foundations, Principles, and Techniques,”
Springer Berlin Heidelberg, 2005.

[6] K. Pohl, and A. Reuys, “Application Testing,” In Software
Product Line Engineering, Springer Berlin Heidelberg, pp. 355-
370, 2005.

[7] H. Remmel, B. Paech, C. Engwer, and P. Bastian, “Supporting
the testing of scientific frameworks with software product line
engineering: a proposed approach,” Proceeding of the 4th
international workshop on Software engineering for

computational science and engineering (SECSE '11), ACM, pp.
10-18, 2011.

[8] H. Remmel, B. Paech, C. Engwer, and P. Bastian, “System
Testing a Scientific Framework using a Regression-Test
Environment,” Computing in Science and Engineering, vol. 14,
no. 2, pp. 38-45, 2012.

[9] http://www.swebok.org/

[10] K. Pohl, and A. Reuys, “Domain Testing,”” In Software Product
Line Engineering, Springer Berlin Heidelberg, pp. 257-284,
2005.

[11] I. C. Machado, P. A. da M. S. Neto, E. S. Almeida, and S. R. de
Lemos Meira “RiPLE-TE: A Process for Testing Software
Product Lines,” SEKE, Knowledge Systems Institute Graduate
School, pp. 711-716, 2011.

[12] A. Tevanlinna, J. Taina, and R. Kauppinen, “Product family
testing: a survay”, ACM SIGSOFT Software Engineering Notes,
vol. 29, no. 2, pp. 1-6, 2004.

[13] A. Reuys, S. Reis, E. Kamsties, and K. Pohl, „The ScenTED
Method for Testing Software Product Lines“, in Software
Product Lines, Springer Berlin Heidelberg, pp. 479-520, 2006.

[14] P. F. Dubois, “Maintaining Correctness in Scientific Programs,”
Computing in Science & Engineering, vol. 7, no. 3, pp. 80-85,
2005.

[15] J. C. Carver, L. Hochstein, R. P. Kendall, T. Nakamura, M. V.
Zelkowitz, V. R. Basili, and D. E. Post, “Observations about
Software Development for High End Computing,” In CTWatch,
vol. 2, no. 4A, pp. 33-38, 2006.

[16] D. Hook, and D. Kelly, “Testing for trustworthiness in scientific
software,” In Proceedings of the 2009 ICSE Workshop on
Software Engineering for Computational Science and
Engineering, IEEE Computer Society, pp. 59-64, 2009.

[17] D. Kelly, S. Smith, and N. Meng, “Software Engineering for
Scientists,” Computing in Science and Engineering, vol. 13, no.
5, pp. 7-11, 2011.

[18] J. C. Carver, R. P. Kendall, S. E. Squires, and D. E. Post,
“Software Development Environments for Scientific and
Engineering Software: A Series of Case Studies,” ICSE 2007,
29th International Conference on Software Engineering, pp.
550-559, 2007.

[19] D. Kelly, and R. Sanders, “The Challenge of Testing Scientific
Software,” CAST 2008, Proc Conference of the Association of
Software Testing, Toronto, Canada, 2008.

[20] V. R. Basili, J. C. Carver, D. Cruzes, L. M. Hochstein, J. K.
Hollingsworth, F. Shull, and M. V. Zelkowitz, “Understanding
the High-Performance-Computing Community: A Software
Engineer's Perspective,” Software, IEEE, vol. 25, no. 4, pp. 29-
36, 2008.

[21] D. Kelly, S. Smith, “2nd CASCON Workshop on Software
Engineering for Science,” CASCON 2009, pp. 345-347, 2009.

[22] D. Kelly, and R. Sanders, “Assessing the Quality of Scientific
Software,” in Proceedings of the International Conference on
Software Engineering, First International Workshop on Software
Engineering for Computational Science and Engineering,
Leipzig, Germany, 2008.

[23] C. Morris, “Some Lessons learned reviewing scientific code,” in
Proceedings of the International Conference on Software
Engineering, First International Workshop on Software
Engineering for Computational Science and Engineering,
Leipzig, Germany, 2008.

66

[24] C. H. P. Kim, D. Batory, S. Khurshid, “Elimination products to
test in a software product line,” ASE ’10, Proceeding of the
IEEE/ACM international conference on Automated software
engineering, ACM New York, pp. 139-142, 2010.

[25] M. F. Johansen, Ø. Haugen, F. Fleurey, ”Bow tie testing: a
testing pattern for product lines,” EuroPLoP ’11, Proceedings of
the 16th European Conference on Pattern Languages of
Programs, ACM New York, no. 9, 2012.

[26] D. R. Kuhn, D. R. Wallace, and A. M. Gallo, “Software fault
interactions and implications for software testing,” IEEE
Transactions on Software Engineering, vol. 30, no. 6, pp. 418-
421, 2004.

[27] J. Segal, “Models of scientific software development,”
Proceeding of the 2008 Workshop Software Engineering In
Computational Science and Engineering, 2008.

[28] R. Baxter, “Software engineering is software engineering,” 26th
International Conference on Software Engineering, W36
Workshop Software Engineering for High Performance System
(HPCS) Applications, pp. 4-18, 2004.

[29] M. A. Heroux, and J. M. Willenbring, “Barely sufficient
software engineering: 10 practices to improve your CSE
software,” SECSE ’09 ICSE Workshop on Software
Engineering for Computational Science and Engineering, pp. 15-
21, 2009.

[30] M. A. Heroux, “Improving the Development Process for CSE
Software,” PDP ’07, 15th EUROMICRO International
Conference on Parallel, Distributed and Network-Based
Processing, pp. 11-17, 2007.

[31] R. Neely, “Practical software quality engineering on a large
multi-disciplinary HPC development team,” 26th International
Conference on Software Engineering, W3S Workshop Software
Engineering for High Performance Computing System (HPCS)
Applications, pp. 19-23, 2004.

[32] W. Heider, R. Rabiser, P. Grünbacher, D. Lettner, „Using
regression testing to analyze the impact of changes to variability
models on products,“ SPLC ’12 Proceedings of the 16th
International Software Product Line Conference – Volume 1, pp.
196-205, 2012.

[33] P. A. da M. S. Neto, I. C. Machado, Y. C. Cavalcanti, E. S.
Almeida, V. C. Garcia, and S. R. de Lemos Meira, “A
Regression Testing Approach for Software Product Lines
Architectures,” Fourth Brazilian Symposium on Software
Components, Architectures and Reuse (SBCARS), pp. 41-50,
2010.

[34] L. Crispin, and J. Gregory, “Agile Testing: A practical Guide for
Testers and Agile Teams,” Addison-Wesley Professional, 2008.

67

