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Abstract—The testing of scientific frameworks is a challenging 
task. The special characteristics of scientific software e.g. missing 
test oracle, the need for high performance parallel computing, 
and high priority of non-functional requirements, need to be 
accounted for as well as the large variability in a framework. In 
our previous research, we have shown how software product line 
engineering can be applied to support the testing of scientific 
frameworks. We developed a process for handling the variability 
of a framework using software product line (SPL) variability 
modeling. From the variability models, we derive test 
applications and use them for system tests for the framework. In 
this paper we examine the overall quality assurance for a 
scientific framework. First, we propose a SPL test strategy for 
scientific frameworks called Variable test Application strategy 
for Frameworks (VAF). This test strategy tests both, 
commonality and variability, of the framework and supports the 
framework’s users in testing their applications by creating 
reusable test artifacts. We operationalize VAF with test activities 
that are combined with other quality assurance activities to form 
the design of a quality assurance process for scientific 
frameworks. We introduce a list of special characteristics for 
scientific software that we use as rationale for the design of this 
process. 

Index Terms—scientific software development, software 
product line engineering, quality assurance process, test strategy. 

I. INTRODUCTION 

In our research, we concentrate on the testing of scientific 
frameworks. A framework consists of common code that 
provides solutions for several similar applications for specific 
types of problems [1]. DUNE1, the software we deal with, is a 
complex scientific framework for solving partial differential 
equations supporting a large variety of applications (e.g. fluid 
mechanics or transport in porous media), mathematical models 

                                                           
1 http://www.dune-project.org/ 

and numerical algorithms. DUNE is introduced in more detail 
in [2] and [3]. 

The testing of scientific software is a challenging task, since 
it has to deal with special challenges like missing test oracle, 
the need for high performance parallel computing, and high 
priority of non-functional requirements over functional 
requirements [4]. When testing a scientific framework, we 
additionally need to find a way to deal with the large variability 
in a framework. A special challenge of a scientific framework 
like DUNE is that the variability is hidden in the mathematics 
the framework implements. The variability is expressed 
precisely, but not in a form that could be understood as a model 
by a human or a computer.  

Our approach to meet this challenge is to apply software 
product line engineering (SPLE) to handle the framework’s 
variability. In SPLE, the idea is to develop a software platform 
during domain engineering and then, in application 
engineering, use mass customization for the creation of a group 
of similar applications that differ from each other in specific 
predetermined characteristics [5]. 

Similar to the division of the SPLE process into two 
development processes, SPL testing is broken down into 
domain testing and application testing. In domain testing, the 
goal is to ensure the quality of the reusable platform, including 
the commonality (common characteristics for every application 
in the product line) and the variability, defined for the product 
line in the domain engineering process. This includes the 
testing of those artifacts that can be tested as early and often as 
possible and the creation of reusable test artifacts that can then 
be reused in application testing. Variable artifacts that are only 
used in one or few applications are tested in application testing. 
In application testing, the applications derived from the SPL 
platform are tested. The test activities in application testing 
concern parts of the application that are developed during 
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application engineering but also reuse test artifacts from 
domain testing [6]. 

For developers of a scientific framework the importance of 
domain testing is high, since they need to test the functionality 
of the scientific framework without knowing exactly what kind 
of applications the users are going to develop. They have a lot 
less impact on application testing, which is performed by the 
users of the scientific framework. In other words, the 
definitions of the roles developer and user in our context are 
different from the traditional SPLE, where the developers carry 
out both, domain and application engineering processes. In the 
context of scientific frameworks, the developers only deal with 
domain engineering. The application engineering, meaning the 
development of specific applications, is done by the users of 
the framework. In scientific frameworks, the users are at the 
same time the developers in the application engineering process 
[7]. 

In scientific software development, the source code is often 
tested with unit testing. Also in SPLE, unit and integration 
testing are typically performed in domain testing. During unit 
and integration testing, most functional failures should already 
have been found, but in scientific software system testing this 
is still the only testing level where the interaction between the 
mathematical model, the numerical model, and its 
implementation can thoroughly be tested [8]. At system testing 
level also non-functional requirements like correctness and 
performance can be tested [9]. This is why we have developed 
a regression test environment executing system tests for DUNE 
(introduced in detail in [8]). For the systematical creation of 
system tests, we use SPL variability modeling.  

Those software characteristics, that can vary, are called 
variation points and the possible values for a variation point are 
called variants. A variability model is described by variation 
points and their variants. It also includes the constraints 
between the variation points and the variants. A special 
challenge for domain testing is absent variants. These are 
variants that are only created in application engineering and not 
available in domain engineering [5].  

In [7], we discuss a process for creating variability models 
for DUNE based on the mathematical requirements (the 
mathematical problems that the framework should solve). Each 
variability model is associated with a system test application, 
which implements the corresponding mathematical problem. 
We use each variability model for a system test application as a 
basis for systematically selecting the set of test cases for this 
test application.  

In this paper, we examine the overall quality assurance for a 
scientific framework. First, we propose a SPL test strategy for 
scientific frameworks. In a SPL test strategy, the partition of 
responsibilities between domain testing and application testing 
is defined. The used test strategy strongly influences the 
activities performed in domain testing and application testing 
[10]. Second, we introduce the design for a quality assurance 
process for a scientific framework using SPLE. We explain the 
quality assurance activities harmonized with the proposed SPL 
test strategy in detail. As a basis, we choose the RiSE Product 
Line Engineering TEsting project (RiPLE-TE), a quality 

assurance process introduced for software product lines by 
Machado et al. in [11]. We introduce a list of special 
characteristics for scientific software that we use as rationale 
for the design of a quality assurance process to suit the needs of 
the scientific framework. 

In Section II, we describe the proposed SPL test strategy. 
This is followed by the description of the designed quality 
assurance process for a scientific framework in Section III.  
After the discussion of related work in Section IV, we 
summarize our findings and present our future work in Section 
V. 

II. SPL TEST STRATEGY FOR SCIENTIFIC FRAMEWORKS 

As described in Section I, a SPL test strategy describes, 
how the testing responsibility is partitioned between domain 
testing and application testing. In this section, we first shortly 
introduce SPL test strategies found in the literature and discuss 
why they are not suitable for scientific frameworks. Then, we 
propose a SPL test strategy for scientific frameworks and 
assess it using the criteria for SPL test strategies introduced by 
Pohl et al. in [10]. 

A. Software Product Line Test Strategies 

The following SPL test strategies can be found in the 
literature: 

A. Brute Force Strategy (test only in domain engineering) 
[10] 

B. Pure Application Strategy or Testing Product by 
Product (test only in application engineering) [10], [12] 

C. Incremental Testing of Product Lines (test the first 
application individually and the following applications 
using regression testing techniques; a special case for 
B) [12] 

D. Sample Application Strategy (SAS) (one or few sample 
applications are created and used to test domain 
artifacts; testing for the specific applications in 
application engineering is still needed) [6] 

E. Commonality and Reuse Strategy (CRS) or Design 
Test Assets for Reuse (test common parts in domain 
engineering and for the variable parts create reusable 
test artifacts for the testing in application engineering) 
[10],[12] 

F. Combination of strategies SAS and CRS (use 
fragments of a sample application in domain testing 
and create reusable test artifacts for application testing) 
[10] 

G. Opportunistic Reuse of Test Assets (create test artifacts 
for one application in application testing and use these 
artifacts for further product line applications) [13] 

H. Division of Responsibilities(select testing levels to be 
applied in both, domain and application engineering, 
for example, test common parts with unit testing in 
domain engineering and execute integration, system, 
and acceptance testing in application engineering) [12] 

In a previous paper [7], we mentioned that SAS would be 
the SPL test strategy we want to use for scientific frameworks. 
At that time, we were not aware of the exact criteria for a SPL 
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test strategy a scientific framework needs to fulfill. That is why 
we need to revise this decision. 

Considering the special case of a framework where the 
framework developers only deal with domain testing and the 
application testing is accomplished by the framework’s users, a 
SPL test strategy for a framework needs to fulfill the following 
criteria:  

1. Both, commonality and the variability of the 
framework are tested in domain testing. 

2. Application testing is supported with reusable test 
artifacts created in domain testing. 

3. Product line applications still need to be tested, 
especially parts developed in application testing. 

In most SPL strategies, only the common parts of the 
platform are tested in domain testing. The variability of the 
platform, meaning possible applications that can be derived 
from the platform, is tested only in application testing, where 
concrete applications exist. Since we need to test the whole 
platform, i.e. the framework’s functionality, we also need to 
test the framework’s variability using reference applications in 
domain engineering already (Criterion 1). Still, the 
framework’s users need to test their applications, because these 
always include some own functionality and may use the 
framework in a way the framework’s developers could not 
expect. The users should not assume that since the framework 
is tested, they do not need to test their own applications 
(Criterion 3). 

In domain engineering, a SPL test strategy for a framework 
should include the creation of reusable test artifacts, like test 
applications including variability. These test artifacts can be 
reused by the framework’s users when they are testing their 
own applications (Criterion 2).  

Table I demonstrates which SPL test strategy criteria for a 
framework are fulfilled by the existing test strategies. Criterion 
1 is only fulfilled by the Brute Force Strategy (A), but this test 
strategy firstly does not fulfill the other criteria and secondly is 
not recommended by the authors in [10]. Test strategies 
Incremental Testing of Product Lines (C) and Opportunistic 
Reuse of Test Assets (G) create reusable test artifacts merely in 
application testing and therefore only partly fulfill Criterion 2. 
The most suitable test strategies are CRS (E) and the 
Combination of strategies SAS und CRS (F). However, these 
strategies do not test the whole variability in domain testing 
and therefore do not fulfill Criterion 1. 

Since none of the existing SPL test strategies fulfills the 
criteria for a framework, in the next subsection we propose a 
new SPL test strategy for frameworks fulfilling all criteria.   

TABLE I.  FULFILLMENT OF CRITERIA FOR A SPL TEST STRATEGY FOR A 
FRAMEWORK  

Criteria SPL Test Strategy 

 A B C D E F G H 

1. X        

2.   (X)  X X (X)  

3  X X X X X X X 

Legend: ‘X’ = fulfills criterion, ‘(X)’ = partly fulfills criterion 

B. Variable Test Application Strategy for Frameworks 

What we need is a SPL test strategy similar to CRS, but the 
strategy also needs to test the variability of the product line in 
domain engineering. For this purpose, we first take a short look 
at the variability modeling for a framework. If we had a 
variability model for the whole framework, we could derive the 
test applications and test cases thereof as illustrated in Fig. 1. 
Since it is not feasible to create such a variability model for the 
whole framework covering a wide range of functionality (as 
discussed in Section I), we start with the mathematical 
requirements for the framework (the mathematical problems, 
which the framework should solve) and create several 
variability models based on those mathematical requirements 
(detailed description of the variability model creation for a 
scientific framework can be found in [7]). Each variability 
model is associated with a test application, as shown in Fig. 2. 
For example, one mathematical problem the DUNE framework 
should support is solving the Poisson equation, an elliptic 
partial differential equation. A variability model for this 
problem covers among others the different possible grid 
configurations and used discretization methods (for details, see 
[8]). The fulfillment of this mathematical requirement can be 
tested with the associated test application. 

In our SPL test strategy called Variable test Application 
strategy for Frameworks (VAF), we not only create a few 
sample test applications in domain testing. Moreover, we 
attempt to create a set of test applications that cover the range 
of mathematical requirements of the framework. The 
commonality of the framework is tested with unit and 
integration testing, which fulfills Criterion 1. The domain test 
applications include variability themselves and can be reused 
by the framework’s users to test in application engineering 
their specific applications created on the basis of the 
framework (Criterion 2). Testing their own applications in 

 

Fig. 2.  Derivation of Variability Models (VM) and the Associated 
Test Applications from the Frameworks Requirements 

 

Fig. 1.  Derivation of Test Applications and Test Cases for a 
Framework with Variability Model (VM) 
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application testing is still the users’ responsibility (Criterion 3). 
The framework’s developers support this with the reusable test 
applications. 

In the next subsection, we will assess VAF and compare it 
with CRS, which is one of the test strategies most often applied 
in practice. 

C. Assessment 

Pohl et al. [10] introduce five essential criteria for a SPL 
test strategy: 

1. Time to Create Test Artifacts (overall time needed for 
creating test artifacts in domain and application testing; 
influenced by the amount of test artifacts and by the 
difficulty to create them) 

2. Absent Variants (how well does a test strategy deal 
with absent variants; for definition see Section I) 

3. Early Validation (the time between the finalization of 
an artifact and its validation should be low to help 
keeping the costs for repairing defects low) 

4. Learning Effort (time it takes for a tester to be able to 
perform the test activities associated with the test 
strategy) 

5. Overhead (amount of unnecessarily performed 
activities and/or produced artifacts when the same 
result could be achieved with lower effort) 

In Table II we compare VAF with CRS using these criteria. 
In our assessment of VAF, we take into account our context 
with a scientific software development.  

In VAF, the required test artifacts are the variability models 
and test applications. Their creation is time-consuming and 
mathematical expert knowledge is required. Additionally, the 
framework’s users need to create new test artifacts or extend 
the reusable artifacts to suit their specific scientific 
environment. Therefore, we rate the time to create criterion 
with “-”. As for CRS, the handling of absent variants is 
excellent, since the test applications created in domain testing 
cover the variability of the framework. If the users of the 
framework introduce new variants in application engineering, 
they can extend the reusable test applications to test them.  

The assessment of the early validation criterion is better 
than for CRS, since the test applications created in domain 
testing can also already be executed in domain testing. The 
learning effort is high in both cases, since scientists developing 
the framework are not familiar with SPLE methods, like 
creating a variability model. On the other hand, this part of the 
test strategy needs to be created only once at the beginning and 
does not need to be changed very often afterwards, since the 
mathematical requirements do not change a lot. As for CRS, 
the overhead for VAF is low, since the created test artifacts can 
be reused in application testing. 

TABLE II.  COMPARING VAF AND CRS TEST STRATEGIES 

 Time to 
create 

Absent 
variants 

Early 
validation 

Learning 
effort 

Overhead 

VAF - + + - + 

CRS [10] + + 0 - + 

Legend: ‘+’ = positive, ‘-’ = negative, ‘0’ = neutral 

III. QUALITY ASSURANCE PROCESS FOR A SCIENTIFIC 

FRAMEWORK 

In this section, we operationalize the domain testing part of 
VAF (Criteria 1 and 2) with test activities (unit, integration, 
and system testing). Together with other quality assurance 
activities (e.g. review, scientific validation) they form a quality 
assurance process. The use of SPLE is not the only aspect we 
need to consider for an overall quality assurance process. The 
fact that we are dealing with scientific software has a major 
influence on it. 

In the following subsections, we first discuss characteristics 
in scientific software development that need to be considered, 
when we are designing a quality assurance process for a 
scientific framework. This includes the most important quality 
goals for scientific software in general and for the DUNE 
framework in particular: correctness, performance, portability, 
and maintainability. After that, we present RiPLE-TE, a quality 
assurance process for SPL introduced by Machado et al. in 
[11]. We will show how this quality assurance process needs to 
be adapted to take into account VAF and the characteristics for 
scientific software development. 

A. Characteristics of Scientific Software Development 
Relevant for the Design of a Quality Assurance Process 

In the literature on scientific software development, several 
special characteristics compared to traditional software 
development are mentioned. In a manual literature review, we 
collected such special characteristics that need to be taken into 
account when designing a quality assurance process for 
scientific software. The papers we reviewed were collected 
between April 2010 and October 2012 using the IEEE and 
ACM digital libraries. Search strings with most hits were 
“scientific software engineering”, “scientific software 
development” and “scientific computing software”. 
Furthermore, we collected papers from the previous 
Workshops on Software Engineering for Computational 
Science and Engineering and Software Engineering for High 
Performance Systems Applications. Altogether, we found 201 
papers. We looked through the papers to find out if they 
mentioned any special characteristics for scientific software 
development relevant for the design of a quality assurance 
process. We found eight papers describing such characteristics. 

The characteristics are presented in Table III. These are 
used as rationale in the following description of the quality 
assurance process. 

C1: There are different possible sources of a problem in 
scientific software: the underlying science, the translation of 
the mathematical model of the field of application to an 
algorithm and the translation of this algorithm into program 
code. Each of these should be handled separately: first check 
the source code for bugs with code verification methods and 
then verify the mathematical algorithm with numerical 
algorithm verification methods. Only after these two steps, 
knowing that errors in code and mathematical algorithm have 
already been excluded, the scientists are able to perform the 
scientific validation (evaluate whether the output of the 
software is a reasonable proximity to the real world). 
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TABLE III.  CHARACTERISTICS OF SCIENTIFIC SOFTWARE 

 Characteristic Reference 
Considered 

in 

C1 

Different possible sources for a 
software problem. Need support for 
Code Verification, Algorithm 
Verification and Scientific 
Validation. 

[14],[15],
[16] 

Rev, U&I, 
Sys, SV 

C2 Lack of test oracles. [17] 
U&I, Sys, 

SV 

C3 

Most software requirements, except 
for high-level ones, are not known 
at the beginning of a software 
project. Requirements stem from 
science. 

[18] 

Pla 

C4 
The cognitive complexity, the 
difficulty in understanding a 
concept, thought, or system, is high.  

[19] TR, Pla, 
Rev, SV 

C5 

Need for shared, centralized 
computing resources; high 
performance computing, 
parallelism. 

[20] U&I, Sys 

C6 
Calculations include rounding 
errors and machine accuracy. 

[16] Sys, SV 

C7 
Most developers are domain 
scientists or engineers, not software 
engineers.  

[15],[21],
[20],[18] 

TR, Rev 

C8 
There is a high turnover in the 
development team. 

[15] Pla, Rev, 
Rep 

C9 
The most highly ranked project 
goals:  1. Correctness  

[18] Sys, Val 

C10 
The most highly ranked project 
goals:  2. Performance   

[18] Sys 

C11 
The most highly ranked project 
goals:  3. Portability 

[18] Sys 

C12 
The most highly ranked project 
goals:  4. Maintainability  

[18] Rev, Rep 

a. Legend: TR = Test Roles, Pla = Planning, Rev = Review, U&I = Unit and Integration Testing, Sya = 
System Testing, SV = Scientific Validation, Rep = Reporting 

C2: Scientific software is used for gaining research results 
or solving problems that cannot be solved by other means. The 
outcome is therefore often not known in advance. This is a 
problem for testing, since most testing techniques in software 
engineering assume accurate test oracles.  

C3: At the beginning of a scientific software project, the 
known requirements are often the laws of nature, or, like in our 
case, stem from mathematics. In most cases, further 
requirements for the software have not been defined in advance 
but emerge during software development. 

C4: The context of scientific software is usually very 
complex. Only scientists familiar with the scientific domain in 
question have the ability to entirely understand the software. 
This is a problem for testing, since the tester should understand 
what the software is supposed to do. 

C5: Solving complex scientific problems with scientific 
software often requires special resources like high performance 
computing. At the same time, a special programming paradigm 
like the use of parallel computing is applied. This must be 
taken into account when testing the software. 

C6: Scientific calculations use floating-point values, which 
cannot be represented exactly by a computer. This leads to 
rounding errors and machine accuracy in the calculations. 
Testing scientific software must support floating-point 
arithmetic.  

C7: The fact that the developers of scientific software 
mostly are domain scientists and not software engineers has to 
be considered in the design of a quality assurance process. An 
important goal is to keep the process as straightforward and 
understandable as possible. The process should not include too 
many technical software engineering terms or structures. There 
is also a difference in the objective: a software engineer’s goal 
is to produce high quality software, whereas the goal of a 
scientist is to produce high quality science. The scientists 
developing the software must be convinced that each step is 
important and has a real value for the scientific results. 

C8: Many developers of scientific software are doctorate 
students or postdocs who only stay in the team for a few years. 
Because of this, the overhead of the process should be as low 
as possible and the method should be easy to learn and quick to 
adopt. 

C9 - C12. In scientific software development, the priority of 
non-functional requirements is high compared to functional 
requirements. In a series of case studies, Carver et al. [18] 
found out, that the most highly ranked scientific software 
project goals are correctness, performance, portability and 
maintainability. 

We use the characteristics described in this subsection as 
rationale for adjustments in the quality assurance process 
RiPLE-TE introduced in the next subsection.   

B.  RiPLE-TE Quality Assurance Process for SPL 

Based on a systematic mapping study on SPL testing and 
evaluated with an experimental study, Machado et al. [11] 
designed a quality assurance process for product lines. The 
process comprises both, domain testing and application testing.  

The first activity in both, domain testing and application 
testing, is the development of a master test plan defining what 
and how will be tested, who will do it, the coverage criteria and 
a time schedule. The planning should be continuously 
performed during the other quality assurance activities and the 
plan should be updated whenever necessary. 

Since it is desirable that failures in the source code can be 
detected as early as possible, the second step is a technical 
review, where the main artifacts in SPL, such as variability 
model, product map etc., are reviewed before the dynamic tests 
are being started.   

In domain testing, where the product line platform with 
reusable artifacts is developed, the focus is on unit and 
integration testing. The unit testing should ensure that the 
components may be reused further. After that, integration 
testing seeks to guarantee that tightly coupled components 
work together. 

In application testing, integration, system, and acceptance 
testing is performed. In this stage, integration testing affects the 
components that will comprise the application. System testing 
evaluates the application as a whole against system 
requirements. In acceptance testing, customer feedback on the 
application is gathered. If any new artifacts have been created 
in application engineering, these should first be tested with unit 
testing. 
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Each of the testing activities above includes four tasks: 
planning, design, execution, and reporting. After these tasks 
have been performed, coverage criteria are used to decide 
whether the testing activity is accomplished or not. If not, the 
cycle returns to planning. 

In the following subsections, we discuss how we need to 
adjust this quality assurance process in order to make it suitable 
for a framework. Furthermore, we need to take into account the 
characteristics of scientific software development collected in 
Table III. The rationale based on these characteristics is marked 
in the text in brackets. 

This is a plan for a quality assurance process for the DUNE 
framework. Most of the steps (unit, integration and system 
testing, scientific validation, regression testing and reporting) 
have, with some limitations, been implemented already. Other 
steps still need to be established.   

C. Test Roles 

In the RiPLE-TE quality assurance process, the activities 
and tasks are assigned to many different test roles: test 
manager, test architect, test designer, and tester. In scientific 
software development, in the most cases, every team member 
fulfills the role developer and the different test roles all in one 
person.  

The most important reason for this is that the scientist 
developing a piece of code often is the only person who has the 
expertise to entirely understand the code (C4). At least in 
academic projects, even the colleagues in the same group 
typically are working on different topics. The scientist 
developing the code must be responsible for creating suitable 
tests for his or her own code. Another reason not to use many 
different test roles is that the developers of scientific software 
normally are not software engineering professionals (C7). The 
quality assurance process should be as simple as possible. 

In our quality assurance process, we are using the roles 
developer and user, and as the only test specific role, test 
administrator. The test administrator is responsible for keeping 
the (nightly executed) test environment running. This role 
should ideally be fulfilled by technical staff. If this is not 
possible, the role can also be carried out by a scientist. For 
some activities in the quality assurance process, it is more 
suitable to have a team of developers do this. This will be 
mentioned in the detailed description of the process. 

D. Quality Assurance Process Steps 

This subsection discusses the steps in the quality assurance 
process for scientific frameworks. The process is illustrated in 
Fig. 3. One main difference to RiPLE-TE is that our process 
only covers domain testing and not application testing, since in 
the development of a framework we only deal with domain 
engineering. 

Shifting a major part of the quality assurance responsibility 
from application testing to domain testing, as described in the 
SPL test strategy for scientific frameworks in Section II, results 
in introducing system tests already in domain testing. Since we 
are assuring the quality of scientific software, we need to add a 
new step scientific validation (C1) at the end of the quality 
process. 

 In the following, the implementation of VAF is also 
documented. 

1) Planning: The activities in this step are critical for the 
success of the whole process. When a developer makes 
changes in the source code or develops a new piece of code, 
she or he has to pay attention to the following quality assurance 
issues.  

The developer is responsible for creating new unit test cases 
and/or adjusting/removing existing unit tests whenever 
appropriate. It is very important that the developers take time to 
create suitable unit tests for their own source code at the very 
time when they are developing the source code. It is advisable 
to perform test driven development (TDD) meaning that the 
unit test cases are created first as a kind of light weight 
specification for the planned changes, since specifications 
mostly do not exist in advance (C3). The developer might be 
the only one to thoroughly understand the source code she or 
he is developing (C4) and it is very difficult to ensure the 
quality of the code later, when the developer may have already 
left the team (C8). 

If the mathematical requirements for the framework 
change, e.g. when a new functionality is included into the 
framework, it can be necessary to formulate one or more new 
variability models based on the requirements together with the 
associated system test applications. In other cases only existing 
variability models and system test applications must be 
adjusted, e.g. by including new variation points or variants. 

There is no formal planning for the testing activities. As 
described above, each developer is responsible for preparing 
tests for his or her own source code. When major changes are 
planned for the framework and the developers arrange the 

 

Fig. 3.  Quality Assurance Process for scientific frameworks  
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responsibility for the development changes, they also should 
decide who is responsible for preparing the tests. 

2) Review: The earlier a failure is found, the lower is the 
cost of removing it. The earliest possible point for finding 
failures is right after developing the code. Taking the time for 
consciously reading one’s own code before checking it in (also 
called desk-checking), can reveal failures before the code is 
even tested. At the same time, the developer can review the 
code’s readability and structure. Since the software context is 
complex (C4), the developers should seek to write source code 
in an understandable way with a sufficient amount of 
comments. This is also a benefit for new colleagues working 
with the same software (C8) and it improves the 
maintainability of the code (C12). 

In contrast to the technical review in the RiPLE-TE quality 
assurance process, our process involves reviewing the source 
code, not just SPL artifacts like the variability models. 
Certainly, the developer should review all artifacts she or he 
created or changed: source code, unit tests, variability models, 
and system test applications. Review is one part of the code 
verification needed for the verification and validation (V&V) 
of scientific software (C1). 

If appropriate, the developer can ask a colleague to review 
her or his changes as well. The development team could also 
name responsible developers for different software modules 
who review the changed source code on a regular basis [22]. 
We do not pursue any structured inspection or review process, 
since the goal is to keep the quality assurance process practical 
and simple (C7). 

3) Unit and Integration Testing: Together with the review 
step, unit and integration testing build the code verification part 
of V&V for scientific software (C1). The goal in unit testing is 
to verify the functionality of single software units. Since unit 
and integration testing covers the commonality of the 
framework, the first part of VAF is implemented. In this step, 
as in the RiPLE-TE quality assurance process, the 
communication between software units working closely 
together is tested with integration testing. 

In some contexts of scientific software, where system tests 
can only run on a high performance computer (C5), the 
importance of unit testing gets even higher, since the unit tests 
do not need a long time to run and still have high test coverage 
[23]. In a similar way, the problem with a missing test oracle 
for system tests (C2) can be alleviated by comprehensive unit 
testing. A developer can execute the unit tests manually, but 
they also run automatically every night in a regression test 
environment. 

When the test environment reports a failure, the scientists 
first have to find out where the problem is: in the 
implementation of the unit test or in the source code of the 
framework. Depending on the situation, the developer can fix 
the defect right away, if she or he is testing current 
development or the developer or test administrator creates a 
ticket in the ticket system, if there isn’t one already for the 
specific failure. 

 

4) System Testing: Our system test environment executes the 
system test cases derived from the system test applications as 
described in Section I. The system test applications implement 
the second part of VAF, because they test the variability of the 
framework. 

If all of the test cases can run at once over night on the 
available computer resources, they all can build up the test 
suite for the system testing. Mostly, this is not possible and 
therefore we need a way to reduce the amount of test cases 
without losing the defect detection power. In the literature, 
different test suite selection methods can be found to address 
this problem, for example sampling (test configurations are 
selected based on domain knowledge), feature interaction 
(based on statistical analysis the most relevant variant 
combinations are selected) or the use of regression test 
techniques [24].  

Combinatorial Interaction Testing is especially suitable for 
us, because it is based directly on the variability model and can 
be automated. This method selects a subset of all possible 
variant combinations, where possibly many potential variant 
interaction failures may happen. For example, in 2-wise testing 
(also called pairwise testing), those test cases will be chosen, 
where for every pair of two variants the combinations “both 
available”, “one available” and “none available” are tested 
[25]. Kuhn et al. have used the technique and found out, that 
most bugs were found with 6-wise testing. 1-wise found 50%, 
2-wise 70% and 3-wise 95% of the bugs. For non-critical 
product lines, the authors recommend 3-wise test coverage. In 
one example for 1024 possible variant combinations, 2-wise 
leads to 41 and 3-wise to 119 test cases [26]. 

For algorithm verification (C1), the system test applications 
output includes some significant mathematical quantities like 
the grid convergence rate or the count of iterations, depending 
on the used mathematical and numerical model. The expected 
output values for the mathematical quantities are, if possible, 
determined analytically. Typically, this is often not possible 
(C2) and therefore the scientists set up the expected values 
from a scientifically validated run of the system test application 
[8]. All expected output values include a manually adjustable 
tolerance range for taking rounding errors into account (C6). 
Supporting algorithm verification and testing on different 
platforms and with different configurations (e.g. count of 
processors, compiler options) is significant for assuring 
important quality goal correctness (C9) and portability (C11). 
System testing is also the suitable step for executing 
performance testing (C10). 

The difference between our system test applications and 
those used in RiPLE-TE is that our system test applications 
include variability and can be reused by the framework’s users. 
This implements the reuse part of VAF. 

Similar to unit testing, a developer can execute the system 
tests manually or rely on the nightly running system tests. The 
automated nightly execution is especially beneficial for the 
system test environment, because the complex mathematical 
problems solved mostly take some time to run (C5). Similar to 
unit tests, a failure means that there is either a problem in the 
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source code, or the system test application or the expected 
output must be adjusted to suit the development changes. 

5) Scientific Validation: Scientific validation is the last of 
three steps in V&V for scientific software (C1). The goal is to 
determine how accurate the computational model simulates the 
real situation (C9). In an ideal case we can compare the 
simulation with an analytical solution. Since this is mostly not 
possible for the kind of simulations that are created with DUNE 
(C2), our goal in scientific validation is to support the 
developers in deciding, based on their domain knowledge (C4), 
whether the simulation result is what they expected or not. The 
DUNE system test environment supports the scientific 
validation by comparison of the graphical simulation output 
files. The values in these output files are compared with the 
corresponding expected scientific validation output values 
taking rounding errors and machine accuracy into account (C6) 
[8]. 

E. Regression Testing 

In contrast to RiPLE-TE, we integrate regression testing in 
our quality assurance process. The main idea of a regression 
test environment (automated test running on a regular basis, 
illustrated in Fig. 3 with a dashed arrow) is to show that 
modifications in the software code do not cause any unwanted 
side effects. In other words, running regression tests 
demonstrates to the developers that their changes did not break 
anyone else’s code and that software, which previously passed 
the tests, still does. 

If every developer creates suitable unit and system tests for 
their own source code in the planning step, the regression test 
environment proves that the code still works in an evolving 
framework. Without such tests, the source code could get 
broken without anyone noticing it. The unit, integration and 
system tests in the DUNE run every night using the current 
development version.  

F. Reporting 

Reporting the results of the quality assurance process is 
important for the developers so that they can reconstruct which 
changes caused which effects, in the framework (C12). The log 
files of unit, integration, and system testing include, beside 
unexpected or incorrect results also, among others, the 
information, which source code version and which 
configuration was used for the test. 

A clearly reported instruction for the use of the quality 
assurance process and the automated regression test 
environment is crucial so that the knowledge will not get lost, 
when the developers leave the team (C8).  

G. Summary 

 The quality assurance process for scientific frameworks we 
introduced in this section implements the SPL test strategy 
VAF proposed in the section before. In unit testing and system 
testing, the commonality and variability of the framework is 
tested, which fulfills the first part of VAF. Since the system test 
applications include variability and can be reused by the 
framework’s users, the second part is also fulfilled. The third 

part is fulfilled, when the framework’s users test their own 
applications.  

The special characteristics of scientific software are also 
taken into account in the quality assurance process. The process 
is straightforward and the only software engineering method 
not known by most of the scientists in the DUNE team is the 
creation of variability models. We want to add this activity to 
the scientists’ work together with software engineers in our 
future work. 

The accomplishment of the important quality goals 
correctness, portability, and maintainability are already tested 
by the process. In future work we need to find out, which kind 
of performance testing is most suitable for DUNE and then 
adapt it to the system testing step of the quality assurance 
process. 

As in RiPLE-Te, there is no formalized acceptance testing 
for DUNE. The developers of DUNE stay in close contact with 
the framework’s users and get frequently feedback from the 
users. 

The introduced quality assurance process is suitable for 
scientific frameworks. If adopted for a framework in another 
domain, the process should be adjusted to suit to the 
characteristics of that domain. 

IV. RELATED WORK 

In this subsection, we consider other quality assurance 
processes proposed in the literature for scientific software or 
SPLE. We are not aware of any other cases where both aspects 
were regarded together. 

For scientific software development, some models are 
introduced in the literature, like an iterative and incremental 
model by Segal in [27] and a staged delivery model, similar to 
a waterfall model, used by software projects at a research 
center by Baxter in [28]. For a development process in general 
and for quality assurance in particular, we could find in [14], 
[29], [30], and [31] several lists of recommended software 
engineering practices, e.g. source control, configuration 
management, issue tracking, unit testing, verification, and 
regression testing, but they are not defined as a development 
and quality assurance process. 

In SPLE, besides RiPLE-TE, we found two testing process 
descriptions. Heider et al. [32] outline existing verification and 
testing approaches supporting product line evolution: model 
verification techniques for verifying the variability model and 
application configurations, unit testing for core assets and 
application generators and integration and system testing 
methods, e.g. the use of sample applications in domain testing. 
They illustrate the interplay of these quality assurance methods, 
but do not discuss how these steps could form a quality 
assurance process. Neto et al. [33] propose a very formal 
regression testing approach for the reference architecture of a 
SPL, which uses extensive documentation, many detailed 
process steps and plenty of test roles. Their approach 
concentrates on the commonality of the SPL and does not 
apply system testing.  

Many key success factors for a test process in agile testing 
are similar to ours: a high grade of automation that we 
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implement with the regression test environment, which also 
ensures the rapid feedback to the developer about software 
failures, a low management overhead, and dissolving test roles 
[34]. Nevertheless, an agile testing process can only be fully 
adopted in a scientific software project, if, at the same time, an 
agile software development process model like Scrum is used.    

V. CONCLUSIONS AND FUTURE WORK 

In this paper we propose a SPL test strategy for scientific 
frameworks called VAF. This test strategy tests both 
commonality and variability of the framework and supports the 
framework’s users in testing their applications by creating 
reusable test artifacts.  

We operationalize VAF with test activities. The 
commonality is tested by unit testing and the variability by 
creating a set of system test applications that cover the range of 
mathematical requirements of the framework. These test 
applications can be reused by frameworks users. Together with 
other quality assurance activities (e.g. review, scientific 
validation), these test activities form a quality assurance 
process for scientific frameworks. 

As a basis for the quality assurance process we use RiPLE-
TE, a quality assurance process for SPL introduced by 
Machado et al. in [11]. We adjust RiPLE-TE so that it 
implements the SPL test strategy VAF. We introduce a list of 
special characteristics of scientific software that we use as 
rationale for the design of the quality assurance process. 

In our future work, we plan to implement those parts of the 
quality assurance process for DUNE that have not been 
completed yet. Then, we want to evaluate the process. After 
that, we want to make the reusable test applications available 
for DUNE users and evaluate the acceptance and benefit of this 
solution. 
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