
Institute of Computer Science
Im Neuenheimer Feld 326
69120 Heidelberg, Germany
http://se.ifi.uni-heidelberg.de
paech@informatik.uni-heidelberg.de

Barbara Paech, Hanna Remmel

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Software Engineering and
Scientific Computing

Barbara Paech, Hanna Remmel 2
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Scientific Software Engineering (1)

What does it have to do with me and my work?

Phenomena Algorithm Model Software

x = y * z sun()=

[Dubois 2005]

Barbara Paech, Hanna Remmel 3
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Scientific Software Engineering (2)

 Different from traditional Software Engineering
 Developed by scientists

 Alone or in a team, often distributed
 Mostly the developers are also users
 Professionals in the application field, not computer science
 Use software for research: interested in results, not the

software development process
 Often specific hardware needed: High Performance Computing
 Output not known in advance (missing test oracle)
 Requirement often non-functional: correctness, performance,

portability,…
 Things like UI not so important

Barbara Paech, Hanna Remmel 4
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

How do scientists develop software?
[Segal 2008]

Barbara Paech, Hanna Remmel 5
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Kinds of scientific software

 High performance computing
• Complex simulation on parallel computers

 Framework, library
• Code from which algorithms for a specific problem can be

created/adapted

 Scientific workflow
• Software to automate a process of performing a big experiment or

data analysis
• Describe the structure of the process (workflow)
• Support the semi-automatic execution (workflow management)

 Small scripts, Data Mining

Barbara Paech, Hanna Remmel 6
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Simulations using HPC

www.scientific-computing.com; http://newsinfo.iu.edu; http://www.ibrsistemi.com

Barbara Paech, Hanna Remmel 7
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Frameworks
[www.dune-project.org]

Barbara Paech, Hanna Remmel 8
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Scientific workflow (1)
[Shoshani et al. 2007]

Barbara Paech, Hanna Remmel 9
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Scientific workflow (2)
[Shoshani et al. 2007]

Barbara Paech, Hanna Remmel 10
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Scientific Software Engineering can help you to
develop better scientific software!

[Segal, Morris 2008]

Barbara Paech, Hanna Remmel 11
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Programming in a small team
What is
Ron doing?

I want to change
Ginnys code

I want to check
Harrys changes

I want to explain
my ideas to Hermione

Version management,
Build management

Quality assurance
Testing

Project management
Issue Tracking

Modeling
Knowledge Management

Barbara Paech, Hanna Remmel 12
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Version Management

 What do i need a Version Management for?
• Keeping track of different versions of the software
• Collaboration with other developers
• A safe copy of the software
• Possibilty to revert changes in many files at the same time
• …

Barbara Paech, Hanna Remmel 13
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Version Management
[http://svnbook.red-bean.com/en/1.5/svn-book.html]

Barbara Paech, Hanna Remmel 14
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Problem #1: Collaboration

 What if two or more people want to edit the same file at the
same time?

[http://svnbook.red-bean.com/en/1.5/svn-book.html]

Barbara Paech, Hanna Remmel 15
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Problem #1: Collaboration

 Option 1: make them
take turns
• But then only one person

can be working at any
time

• And how do you enforce
the rule?

 Option 2: patch up
differences afterwards
• Requires a lot of re-

working
• Stuff always gets lost

[http://svnbook.red-bean.com/en/1.5/svn-book.html]

Barbara Paech, Hanna Remmel 16
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Problem #1: Collaboration

Solution: Version Management!

[http://svnbook.red-bean.com/en/1.5/svn-book.html]

Barbara Paech, Hanna Remmel 17
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Solution: Version management

 The right solution is to use
a version control system

 Keep the master copy of
the file in a central
repository

 Each author edits a working
copy. When they're ready
to share their changes, they
commit them to the
repository

 Other people can then do
an update to get those
changes

[http://software-carpentry.org/]

http://software-carpentry.org/glossary.html�
http://software-carpentry.org/glossary.html�
http://software-carpentry.org/glossary.html�
http://software-carpentry.org/glossary.html�
http://software-carpentry.org/glossary.html�
http://software-carpentry.org/glossary.html�

Barbara Paech, Hanna Remmel 18
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

When working alone

 This is also a good way for one person to manage files on
multiple machines
• Keep one working copy on your personal laptop, the lab machine,

and the departmental server
• No more mailing yourself files, or carrying around a USB drive (and

forgetting to copy things onto it)

 This by itself is reason enough to use version control even
when you are the only author

[http://software-carpentry.org/]

Barbara Paech, Hanna Remmel 19
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Problem #2: Undoing Changes

 Often want to undo changes to a file
• Start work, realize it's the wrong approach, want to get back to

starting point
• Like "undo" in an editor...
• ...but keep the whole history of every file, forever

 Also want to be able to see who changed what, when
• The best way to find out how something works is often to ask the

person who wrote it

[http://software-carpentry.org/]

Barbara Paech, Hanna Remmel 20
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Solution: Version Control (again)

 Have the version control
system keep old revisions
of files
• And have it record who made

the change, and when

 Authors can then roll back
to a particular revision or
time

 (again) This by itself is
reason enough to use
version control even when
you are the only author

[http://software-carpentry.org/]

http://software-carpentry.org/glossary.html�
http://software-carpentry.org/glossary.html�

Barbara Paech, Hanna Remmel 21
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Versions
[F.Houdek: Vorlesung Projektmanagement WS2002/2003]

Branching possible!

Barbara Paech, Hanna Remmel 22
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Work Distribution

 Define and check access rights

 Define and check parallel access
• Element based: a developer can access a certain element

whenever s/he wants
• Role based: a developer can access a certain element whenever

s/he performs a certain task (role)

Barbara Paech, Hanna Remmel 23
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Different solutions

Local Version
Management

Central Version
Management

Distributed Version
Management

[Wiesner 2010]

Barbara Paech, Hanna Remmel 24
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Basic Use (Subversion examples)

 Ron and Hermione each have a working
copy of the solarsystem project repository

 Ron wants to add some information about
Jupiter's moons

• Runs svn update to synchronize his
working copy with the repository

• Goes into the jupiter directory and
edits moons.txt

 Ron then:
• Runs svn commit to save his

changes in the repository
- Repository is now at revision 121

 That afternoon, Hermione runs svn
update on her working copy

• Repository sends her Ron's changes

[http://software-carpentry.org/]

Barbara Paech, Hanna Remmel 25
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Resolving Conflicts

 Back to the problem of conflicting
edits (or, more simply, conflicts)

 Option 1: only allow one person to
have a writeable copy at any time

• This is called pessimistic
concurrency

• Used in Microsoft Visual
SourceSafe

 Option 2: let people edit, and resolve
conflicts afterward by merging files

• Called optimistic concurrency
• "It's easier to get forgiveness

than permission"
• Most modern systems (including

[Subversion]) do this

[http://software-carpentry.org/]

http://software-carpentry.org/glossary.html�
http://software-carpentry.org/glossary.html�
http://software-carpentry.org/glossary.html�
http://software-carpentry.org/glossary.html�
http://software-carpentry.org/glossary.html�
http://software-carpentry.org/glossary.html�
http://software-carpentry.org/bib.html�

Barbara Paech, Hanna Remmel 26
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Starvation

 But what happens if Ginny commits another set of
changes while Hermione is resolving?
• And then Harry commits yet another set?

 Starvation: Hermione never gets a turn because someone
else always gets there first

 This is a management problem, not a technical one
• Break the file(s) up into smaller pieces
• Give people clearer responsibilities
• The version control system is trying to tell you that people on your

team are working at cross purposes
• If you are doing things right, you will probably never (or rarely)

encounter this

[http://software-carpentry.org/]

http://software-carpentry.org/glossary.html�

Barbara Paech, Hanna Remmel 27
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Reverting

 After doing some more work, Ron notices he's on the
wrong path

 svn diff shows him which files he has changed, and
what those changes are

 He hasn't committed anything yet, so he uses svn
revert to discard his work
• I.e., throw away any differences between his working copy and the

master as it was when he started
• Synchronizes with where he was, not with any changes other

people have made since then (the base revision, not latest revision
in the repository)

 If you find yourself reverting repeatedly, you should
probably go and do something else for a while...

[http://software-carpentry.org/]

Barbara Paech, Hanna Remmel 28
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Rolling Back

 Now Ron decides that he doesn't like the
changes Harry just made to moons.txt

• Wants to do the equivalent of "undo"
 svn log shows recent history

• Current revision is 157
• He wants to revert to revision 156

 svn merge -r 157:156 moons.txt will do
the trick

• The argument to the -r flag specifies the
revisions involved

• Merging allows him to keep some of
Harry's changes if he wants to

• Revision 157 is still in the repository
• Remember, this affects Ron's local copy,

he still needs to commit this undo if he
wishes to commit these changes

[http://software-carpentry.org/]

Barbara Paech, Hanna Remmel 29
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Summary

 Version control is one of the things that distinguishes
professionals from amateurs
• And successful projects from failures

 Everything that a human being had to create should be
under version control

 You'll see the benefits almost immediately
 You will want to put all your work (even solo work) under

version control once you experience the benefits

[http://software-carpentry.org/]

Barbara Paech, Hanna Remmel 30
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Literature

 Software carpentry (http://software-carpentry.org)
 Version Control with Subversion (http://svnbook.red-

bean.com/en/1.5/svn-book.html)
 N. Ford: Produktiv Programmieren, O Reilly, 2008
 B. Collins-Sussman, B. W. Fitzpatrick, C. M. Pilato:

Versionskontrolle mit Subversion, 2008
(http://svnbook.red-bean.com/nightly/de/svn-book.html)

http://software-carpentry.org/�
http://svnbook.red-bean.com/en/1.5/svn-book.html�
http://svnbook.red-bean.com/en/1.5/svn-book.html�
http://svnbook.red-bean.com/nightly/de/svn-book.html�

	Software Engineering and Scientific Computing
	Scientific Software Engineering (1)
	Scientific Software Engineering (2)
	How do scientists develop software?
	Kinds of scientific software
	Simulations using HPC
	Frameworks
	Scientific workflow (1)
	Scientific workflow (2)
	Foliennummer 10
	Programming in a small team
	Version Management
	Version Management
	Problem #1: Collaboration
	Problem #1: Collaboration
	Problem #1: Collaboration
	Solution: Version management
	When working alone
	Problem #2: Undoing Changes
	Solution: Version Control (again)
	Versions
	Work Distribution
	Different solutions
	Basic Use (Subversion examples)
	Resolving Conflicts
	Starvation
	Reverting
	Rolling Back
	Summary
	Literature

