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Scientific Software Engineering (1)

What does it have to do with me and my work?

Phenomena           Algorithm                       Model                       Software

x = y * z sun()=

[Dubois 2005]
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Scientific Software Engineering (2)

 Different from traditional Software Engineering
 Developed by scientists

 Alone or in a team, often distributed
 Mostly the developers are also users
 Professionals in the application field, not computer science
 Use software for research: interested in results, not the 

software development process
 Often specific hardware needed: High Performance Computing
 Output not known in advance (missing test oracle)
 Requirement often non-functional: correctness, performance, 

portability,…
 Things like UI not so important
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How do scientists develop software?
[Segal 2008]
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Kinds of scientific software

 High performance computing
• Complex simulation on parallel computers

 Framework, library
• Code from which algorithms for a specific problem can be

created/adapted

 Scientific workflow
• Software to automate a process of performing a big experiment or

data analysis
• Describe the structure of the process (workflow)
• Support the semi-automatic execution (workflow management)

 Small scripts, Data Mining
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Simulations using HPC

www.scientific-computing.com; http://newsinfo.iu.edu; http://www.ibrsistemi.com
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Frameworks
[www.dune-project.org]
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Scientific workflow (1)
[Shoshani et al. 2007]
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Scientific workflow (2)
[Shoshani et al. 2007]
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Scientific Software Engineering can help you to 
develop better scientific software!

[Segal, Morris 2008]
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Programming in a small team
What is
Ron doing?

I want to change
Ginnys code

I want to check
Harrys changes

I want to explain
my ideas to Hermione 

Version management,
Build management

Quality assurance
Testing

Project management
Issue Tracking

Modeling
Knowledge Management
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Version Management

 What do i need a Version Management for?
• Keeping track of different versions of the software
• Collaboration with other developers
• A safe copy of the software
• Possibilty to revert changes in many files at the same time
• …
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Version Management
[http://svnbook.red-bean.com/en/1.5/svn-book.html]
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Problem #1: Collaboration

 What if two or more people want to edit the same file at the 
same time?

[http://svnbook.red-bean.com/en/1.5/svn-book.html]
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Problem #1: Collaboration

 Option 1: make them 
take turns 
• But then only one person 

can be working at any 
time

• And how do you enforce 
the rule?

 Option 2: patch up 
differences afterwards 
• Requires a lot of re-

working
• Stuff always gets lost

[http://svnbook.red-bean.com/en/1.5/svn-book.html]
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Problem #1: Collaboration

Solution: Version Management!

[http://svnbook.red-bean.com/en/1.5/svn-book.html]
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Solution: Version management

 The right solution is to use 
a version control system

 Keep the master copy of 
the file in a central 
repository

 Each author edits a working 
copy.  When they're ready 
to share their changes, they 
commit them to the 
repository

 Other people can then do 
an update to get those 
changes

[http://software-carpentry.org/]

http://software-carpentry.org/glossary.html�
http://software-carpentry.org/glossary.html�
http://software-carpentry.org/glossary.html�
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When working alone

 This is also a good way for one person to manage files on 
multiple machines 
• Keep one working copy on your personal laptop, the lab machine, 

and the departmental server
• No more mailing yourself files, or carrying around a USB drive (and 

forgetting to copy things onto it)

 This by itself is reason enough to use version control even 
when you are the only author

[http://software-carpentry.org/]
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Problem #2: Undoing Changes

 Often want to undo changes to a file 
• Start work, realize it's the wrong approach, want to get back to 

starting point
• Like "undo" in an editor...
• ...but keep the whole history of every file, forever

 Also want to be able to see who changed what, when 
• The best way to find out how something works is often to ask the 

person who wrote it

[http://software-carpentry.org/]
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Solution: Version Control (again)

 Have the version control 
system keep old revisions
of files 
• And have it record who made 

the change, and when

 Authors can then roll back
to a particular revision or 
time

 (again) This by itself is 
reason enough to use 
version control even when 
you are the only author

[http://software-carpentry.org/]

http://software-carpentry.org/glossary.html�
http://software-carpentry.org/glossary.html�
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Versions
[F.Houdek: Vorlesung Projektmanagement WS2002/2003]

Branching possible!
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Work Distribution

 Define and check access rights

 Define and check parallel access
• Element based: a developer can access a certain element 

whenever s/he wants
• Role based: a developer can access a certain element whenever 

s/he performs a certain task (role)
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Different solutions

Local Version 
Management

Central Version 
Management

Distributed Version 
Management

[Wiesner 2010]
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Basic Use (Subversion examples)

 Ron and Hermione each have a working 
copy of the solarsystem project repository 

 Ron wants to add some information about 
Jupiter's moons 

• Runs svn update to synchronize his 
working copy with the repository

• Goes into the jupiter directory and 
edits moons.txt

 Ron then: 
• Runs svn commit to save his 

changes in the repository 
- Repository is now at revision 121

 That afternoon, Hermione runs svn 
update on her working copy 

• Repository sends her Ron's changes

[http://software-carpentry.org/]
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Resolving Conflicts

 Back to the problem of conflicting 
edits (or, more simply, conflicts)

 Option 1: only allow one person to 
have a writeable copy at any time 

• This is called pessimistic 
concurrency

• Used in Microsoft Visual 
SourceSafe

 Option 2: let people edit, and resolve
conflicts afterward by merging files 

• Called optimistic concurrency
• "It's easier to get forgiveness 

than permission"
• Most modern systems (including 

[Subversion]) do this

[http://software-carpentry.org/]
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Starvation

 But what happens if Ginny commits another set of 
changes while Hermione is resolving? 
• And then Harry commits yet another set?

 Starvation: Hermione never gets a turn because someone 
else always gets there first

 This is a management problem, not a technical one 
• Break the file(s) up into smaller pieces
• Give people clearer responsibilities
• The version control system is trying to tell you that people on your 

team are working at cross purposes
• If you are doing things right, you will probably never (or rarely) 

encounter this

[http://software-carpentry.org/]

http://software-carpentry.org/glossary.html�
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Reverting

 After doing some more work, Ron notices he's on the 
wrong path

 svn diff shows him which files he has changed, and 
what those changes are

 He hasn't committed anything yet, so he uses svn 
revert to discard his work 
• I.e., throw away any differences between his working copy and the 

master as it was when he started
• Synchronizes with where he was, not with any changes other 

people have made since then (the base revision, not latest revision 
in the repository)

 If you find yourself reverting repeatedly, you should 
probably go and do something else for a while...

[http://software-carpentry.org/]
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Rolling Back

 Now Ron decides that he doesn't like the 
changes Harry just made to moons.txt 

• Wants to do the equivalent of "undo"
 svn log shows recent history 

• Current revision is 157
• He wants to revert to revision 156

 svn merge -r 157:156 moons.txt will do 
the trick 

• The argument to the -r flag specifies the 
revisions involved

• Merging allows him to keep some of 
Harry's changes if he wants to

• Revision 157 is still in the repository
• Remember, this affects Ron's local copy, 

he still needs to commit this undo if he 
wishes to commit these changes

[http://software-carpentry.org/]



Barbara Paech, Hanna Remmel 29
©  2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Summary

 Version control is one of the things that distinguishes 
professionals from amateurs 
• And successful projects from failures

 Everything that a human being had to create should be 
under version control

 You'll see the benefits almost immediately
 You will want to put all your work (even solo work) under 

version control once you experience the benefits

[http://software-carpentry.org/]
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Literature

 Software carpentry (http://software-carpentry.org) 
 Version Control with Subversion (http://svnbook.red-

bean.com/en/1.5/svn-book.html) 
 N. Ford: Produktiv Programmieren, O Reilly, 2008
 B. Collins-Sussman, B. W. Fitzpatrick, C. M. Pilato: 

Versionskontrolle mit Subversion, 2008 
(http://svnbook.red-bean.com/nightly/de/svn-book.html)
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