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Schedule Second Day

9:00 Best practices for SE in CS
Project Management

10:00 Break
10:30 eXtreme Hour
12:00 Lunch
13:00
Incl. a 
short

break

Tools, Exercises
Unit test
Code Documentation

16.00 End
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Programming in a small team
What is
Ron doing?

I want to change
Ginnys code

I want to check
Harrys changes

I want to explain
my ideas to Hermione 

Version management,
Build management

Quality assurance
Testing

Project management
Issue Tracking

Modeling
Knowledge Management



Lecture– SE and SC – SS 2011Hanna Remmel 4
©  2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

10 Practices to 
Improve Your CSE 
Software

[Kay 2011]
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10 Practices to Improve Your CSE Software

 Practice 1: Use issue-tracking for requirements, features and 
bugs.

 Practice 2: Manage source with a version control tool
 Practice 3: Use configuration management tools
 Practice 4: Use a formal release process
 Practice 5: Create source-centric documentation
 Practice 6: Write tests first, run them often
 Practice 7: Use mail lists to communicate
 Practice 8: Use checklists for repeated processes
 Practice 9: Program tough stuff together
 Practice 10: Perform continual process improvement

10 – Release – Documentation – TDD – Mailing lists – Pair Programming – Process Improvment 

[Heroux 2009]
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Practice 4: Use a formal release process

 Release = a configuration of the software, that is delivered to a 
„customer“

• Customer does not have to be extern
• Test release, „stable version“ of the software

 Assign issues (enhancements and bugs) to a release
 Trace the status of a release

• Planned, in Process, implementation finished, tested, approved
• Status depends on the status of assigned issues

 Plan
• Purpose of a release
• Timeline

10 – Release – Documentation – TDD – Mailing lists – Pair Programming – Process Improvment 

Release: planned
Issue 25 New
Issue 33 Assigned
Issue 45 New

Release: in process
Issue 25 In Test
Issue 33 In Process
Issue 45 Assigned

Release:  impl. finished
Issue 25 In Test
Issue 33 In Test
Issue 45 In Test
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Planing Release

 In the long term: Project plan includes 
planing for releases (which kind of release 
and when)

 In the medium term: planing includes the 
issues (bugs and enhanchements) for one 
release

• Example: issue can have different kind of 
release information:

- Release as desired by the customer
- Release as  agreed with the 

development
- Delivered release

 If there are dependencies between different 
software modules that are released 
separately, there must be overall release 
planing (integration plan)

10 – Release – Documentation – TDD – Mailing lists – Pair Programming – Process Improvment 

Release 2.3 August 15th

Release 2.3 August 15th
Issue 25 50% ready
Issue 33 100% ready
Issue 45 75% ready

Release 2.3 August 18th

Ti
m

e
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Releases and source files
10 – Release – Documentation – TDD – Mailing lists – Pair Programming – Process Improvment 

Baseline

Release 2.3

Release 2.4

Release 2.4.1

 Brances for releases 2.3, 2.4 and 2.4.1
 The release 2.3 branch is closed, since 2.3 is no longer in 

production and won't be maintained.

merge
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Baseline / Checkpoint and Labeln

 Baseline / tag
• For a new release
• To be able to reproduce the state of source files at this point of time

 Label sources in Subversion
• Single Files,
• Intermediate results,
• …

10 – Release – Documentation – TDD – Mailing lists – Pair Programming – Process Improvment 
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Release Quality Assurance

 In a simple case
• Run some reasonable set of tests on defined set of platforms

 When all necessary processes have been completed, a 
release can be completed with greater confidence

 For minor releases, a  carefully chosen subset of the 
major release process could be used

10 – Release – Documentation – TDD – Mailing lists – Pair Programming – Process Improvment 
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Practice 5: Create source-centric documentation

Point of view in Trilinos – project
 in scientific software engineering

• documentation should be sufficient but minimal
• No large-scale formal document generation

 A combination of near-to-the-source and in-source 
documentation
• Functions and executable in source code (Doxygen)
• Conceptual documentation near-to-source
• Requirements, analysis and design in issue trackin tool

- Bugzilla, Trac, Flyspray,…
- UML graphics tools (e.g. Microsoft Vision, Doxygen) 

10 – Release – Documentation – TDD – Mailing lists – Pair Programming – Process Improvment 
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Doxygen

 Why use an automated system?
• Documentation is up-to-date
• Reuse of your own comments
• automatic formatting, and crosslinking
• In-code comments carry important meta 

information
 Why doxygen?

• It's free
• OpenSource with installer

- It's fairly comfortable to use 
• Configurable

- With a basic style sheet, and 
- twiddling the options you can 
- customize many aspects of the documentation

10 – Release – Documentation – TDD – Mailing lists – Pair Programming – Process Improvment 
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Coding Style

 common code layout style of the source code
• A good best practice when developing in groups
• Makes communication easier
• Reading Code gets faster
• Training for new developers is easier

 Talk about coding style at the start of a project
• If you get in a running project, adapt yourself to their coding style

10 – Release – Documentation – TDD – Mailing lists – Pair Programming – Process Improvment 
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Coding Style Example
10 – Release – Documentation – TDD – Mailing lists – Pair Programming – Process Improvment 

[http://www.equalizergraphics.com/doc_developer.html]
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Static Code Analysis Tools

 Java
• CheckStyle (http://checkstyle.sourceforge.net/)

 C#
• StyleCop (http://stylecop.codeplex.com/)

 C++
• No standard tool for checking code layout style
• Uncrustify, Astyle, Make pretty,…

10 – Release – Documentation – TDD – Mailing lists – Pair Programming – Process Improvment 

http://checkstyle.sourceforge.net/�
http://stylecop.codeplex.com/�
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Practice 6: Write tests first, run them often

 Many developers think tests should be developed late in 
the develpment process

 test-driven development (TDD)
• Write tests first
• Provide a full covarage of the expected functionality

 Benefits of TDD
• Test programs debug your design
• You can measure the progress on passing test cases

10 – Release – Documentation – TDD – Mailing lists – Pair Programming – Process Improvment 
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Catching Errors with Exceptions

 Using exceptions for error handling
• Separates normal operation from error handling
• Makes both easier to read

 Structured like if/else 
• Code for healthy case goes in a try block
• Error handling code goes in a matching except block

 When something goes wrong in the try block, raise an exception 
• This is caught by the matching except

10 – Release – Documentation – TDD – Mailing lists – Pair Programming – Process Improvment

void calculate(Number x, Number y)
{

try {
Number sum = x + y;
Number quot = x / y;

}
catch (Number::Overflow& exception) {
...code that handles overflow...

}
catch (Number::Underflow& exception) {

...code that handles underflow...
}
catch (Number::DivideByZero& exception) {
...code that handles divide-by-zero...

}
}

const Number& Number::operator/=( const Number & rhx )
{

if (rhx == 0) {
throw Number::DivideByZero();

}
int newNumber = m_number / rhs;
return *this;

}
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Exceptional Style

 Always use exceptions to report errors instead of returning 
None, -1, False, or some other value 
• Allows callers to separate normal code from error handling
• And sooner or later, your function will probably actually want to 

return that "special" value

 Throw low, catch high 
• I.e., throw lots of very specific exceptions...
• ...but only catch them where you can actually take corrective action
• Because every application handles errors differently 

- If someone is using your library in a GUI, you don't want to be printing 
to stderr

10 – Release – Documentation – TDD – Mailing lists – Pair Programming – Process Improvment
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Practice 7: Use mail lists to communicate

 Why use mailing lists instead of private email accounts?
• Information is available for everyone

- Also when someone is sick or in vacation
• No more CC
• Changes in responsibilities don‘t lead to a chaos

- New developers have access to all mails, formar developers don‘t keep getting 
mail

 Several mailing lists
• Users
• Developers
• Leaders
• Check-In (automatically generated from commit logs, i.e. Subversion)
• Announce

 Tool: Mailman
 Also: Wikis

10 – Release – Documentation – TDD – Mailing lists – Pair Programming – Process Improvment 
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Practice 8: Use checklists for repeated processes

 Checklists are a valuable tool for
• Making easily repeatable processes
• For training purposes
• Documenting workflows that 

- could get lost otherwise
- Are performed slightly different by different developers
- Include simple steps that get forgotten

 Examples
• Relese checklist
• Version control commit checklist

10 – Release – Documentation – TDD – Check lists – Pair Programming – Process Improvment 
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Practice 9: Program tough stuff together

 Pair programming is a concept 
formalized by Extreme Programming

 For development of complex software 
functions, working with a partner side-
by-side is very valuable

10 – Release – Documentation – TDD – Check lists – Pair Programming – Process Improvment 
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Practice 10: Perform continual process improvement

Heroux :

“Any software process, no matter how 
poorly defined, can be written down and 
improved upon, and any process, no matter 
how mature, can be made better.“

10 – Release – Documentation – TDD – Check lists – Pair Programming – Process Improvment 
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Project
Management

[http://www.softdistrict.com/free-project-management-software/]
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Project Management

 Has to balance cost, time and quality
 Has to organize the project

Four Essentials of Good Management
 Get the right people
 Match them to the right jobs
 Keep them motivated
 Help their teams to jell and stay jelled
(all the rest is Administrativa)

Tom DeMarco, The Deadline

Dorset House, 1997

Project Management – Process Models – eXtreme Programming
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Magic  Pentagon

People

Time

Quality /
Effectivity

Methods /
Tools

Cost /
Efficiency

Functio-
nality

Project Management – Process Models – eXtreme Programming
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Project phases

Initiating Planning

Controlling Executing

Closing

•Project-Kick-Off
•Process, Team, 
Tools

•Project goals

•Phases and milestones

•Work structure

•Effort, estimation

•Time schedule

•Risk management

•Quality assurance

•Team leadership

•Information

•Project-Touch-Down
•Acceptance test

•Capture experiences

•Measurement

•Evaluation

•Progress control

Project Management – Process Models – eXtreme Programming
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Process
models

[http://semanticstudios.com/publications/semantics/000228.php]
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What to do when?

 Software project organization adapts general software
process models to the project context

 There are many possible process models
• Waterfall model (~1970)
• V-model (~1980)
• Rational Unified Process (~1990)
• Agile methods (~2000)

- XP
- Scrum

Project Management – Process Models – eXtreme Programming
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Waterfall model

Requirements
Analysis

Implementation
(Coding)

Testing

Functional
Specification

Design

 Simple, but
• Tangible product too late (too much 

paper)
• Quality assurance too late

Project Management – Process Models – eXtreme Programming
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V-Model

 Core idea:
early quality
assurance
 but

• Does not 
support 
evolution

Project Management – Process Models – eXtreme Programming

[http://www.softtutorial.com/software-testing/v-model.html]
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Rational Unified Process
[http://www-01.ibm.com/software/awdtools/rup/]

 Early Feedback
through
Iterations

 But: 
often too much
paper work,
to little flexibility

Project Management – Process Models – eXtreme Programming
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Extreme Programming Principles

1. Fast Feedback
• The learning process depends on the time 

between the activities.
2. Straightforward Thinking

• Simple solutions are often sufficient
3. Incremental changes

• Do not change everything at once, but instead in 
small steps

4. Embrace change
• Do not fear changes – it induces more costs to 

postpone changes
5. Quality focus

• Quality supports the flexibility to react to 
changes 

Agile
Method

Difficult
for big
projects

Project Management – Process Models – eXtreme Programming
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XP Practices

Programming
Standards

Common
Ownership

40 hour week
Continuous Integration

Metaphor

Simple Design

Pair Programming

Unit Test

Refactoring

Acceptance
Test

Planning
Game

Short Increments

On-Site
Customer

Development life-cycle:

Project life-cycle:
Supporting Practices:

Project Management – Process Models – eXtreme Programming
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Scrum

Estimation,
Prioritization

User stories Analysis: WHAT

Design:HOW

Implementation,
Evaluation

Metrics, experiences

[Gloger]

Project Management – Process Models – eXtreme Programming
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Scrum ideas

 Change Management, Focus on Team
 Main idea:

• Develop software in sprints
• Daily meetings: Daily Scrum
• Team is responsible for planning and results

 Roles:
• Product Owner (from the customer organization)

- Vision, Prioritization
• Team
• ScrumMaster (not  Project manager!)

- Supports Team
- Moderates between  Product-Owner and Team

[Gloger]

Project Management – Process Models – eXtreme Programming
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Scrum Key Practices

 Sprint planning meeting held at the beginning of each iteration 
• Analyze and prioritize current product backlog 
• Select overall goal for sprint , Decide how to achieve the goal (design) 
• Create a sprint backlog from the product backlog
• Estimate backlog in hours 

- Nothing should be longer than a couple of working days 
- Anything that is should be broken into smaller testable/deliverable chunks 

 Daily scrum meeting 
• Every morning, 15 minutes long, standing up (to make sure it stays 15 minutes long) 
• Everyone says: 

- What they did yesterday , What they are going to do today , What stands in their way 
• Not a status update, but rather making commitments to colleagues 

 Sprint review held at the end of the iteration 
• Team presents what it accomplished 

- Demo, not slides , And yes, everything can be demo'd 
 Sprint retrospective also held at the end of the iteration 

• What do we want to start doing? 
• What do we want to stop doing? 
• What do we want to keep doing? 

[http://software-carpentry.org/]

Project Management – Process Models – eXtreme Programming
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 Which process model do you use?
 Which process model could you use?

Project Management – Process Models – eXtreme Programming
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Extreme Hour



Lecture– SE and SC – SS 2011Hanna Remmel 39
©  2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Extreme Hour Vision: A better coffee machine

 Accept this new vision. 
Plan, Schedule, 
Develop and Quality 
Assure our initial 
release.

 Project timeframe: 
1 Hour
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60 Minutes Project

 10 Minutes User Stories & Spike Architecture
 10 Minutes  Priority & Scope and 

1st Commitment Schedule
 10 Minutes Iteration 1
 10 Minutes 2nd Commitment Schedule
 10 Minutes Iteration 2
 10 Minutes Release!
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Project Roles

 Customers specify and estimate
 Quality assurance (QA) runs acceptance tests
 Developers estimate and implement

 Rules:
• If It Ain’t Drawn, It Ain’t Delivered.
• If It Ain’t Written, It Ain’t Required.
• QA can’t see what developers do till iteration’s end

- NB: In real XP, QA communicates with Developers & 
Customers.
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10 Minutes: User Stories, Test Fixtures, Spikes

 Customers write 
Stories. 
• E.g: I want to choose 

between 3 different kinds 
of coffee

 QA details quality 
requirements per story
• E.g.: It shall be possible 

to get coffee in 3 seconds

 Developers define 
Architecture.
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10 Minutes: 1st Commitment Schedule

 Customers sort Stories 
into 3 piles: 
• Must Have 
• Market Advantage
• Really Cool

 Then rank relative 
priorities within each 
pile.

 Then schedule stories 
for 2 Iterations.
• Use “Load Factor 2” for 

Project Velocity 

 Developers assign Ideal 
Minute costs to Stories 
based on Spike (and quality 
requirements).

 Max story size 3 ideal 
minutes, or else split/clarify.

 If developer estimates 
disagree, optimist wins. 

 QA specifies Acceptance 
Tests for all stories
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10 Minutes: Iteration 1

 QA can’t see what 
developers draw until 
end of Iteration.

 QA finishes Acceptance 
Tests

 Customers modify (also 
add) and reprioritize 
Iteration 2 Stories.

 Developers pair. Each pair 
picks 1 User Story & 1 pen.

 First draw simplest thing that 
could possibly work.

 Then Refactor drawing to 
make simplest system.
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10 Minutes:  2nd Commitment Schedule

 Customers reveal new Stories & Developers 
estimate them.

 QA “run” tests and note bugs as stories

 Customers prioritize bug vs. new stories
 Then schedule Second Iteration

- Use Measured Project Velocity
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10 Minutes: Iteration 2

 Developers pair. Each pair 
picks 1 User Story & 1 pen.

 First draw simplest thing that 
could possibly work.

 Then Refactor drawing to 
make simplest system.

 QA writes down 
Acceptance Tests for 
each Story.

 QA can’t see what 
developers draw until 
end of Iteration.

 Customers modify and 
reprioritize Iteration 3 
Stories.
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10 Minutes:  Release!

 QA “run” tests and note bugs as stories

 Joint Decision whether release is possible
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Retrospective

 How did you like it?
 What did you learn about the 3 roles?
 What did you learn about software project organization?
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