
Institute of Computer Science
Im Neuenheimer Feld 326
69120 Heidelberg, Germany
http://se.ifi.uni-heidelberg.de
valtokari@informatik.uni-heidelberg.de

Barbara Paech, Hanna Remmel

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

10 Practices to Improve Your CSE Software
Project Management

Software Engineering and Scientific Computing

http://se.ifi.uni-heidelberg.de�
http://se.ifi.uni-heidelberg.de�
http://se.ifi.uni-heidelberg.de�
mailto:delater@informatik.uni-heidelberg.de�
mailto:delater@informatik.uni-heidelberg.de�
mailto:delater@informatik.uni-heidelberg.de�

Lecture– SE and SC – SS 2011Hanna Remmel 2
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Schedule Second Day

9:00 Best practices for SE in CS
Project Management

10:00 Break
10:30 eXtreme Hour
12:00 Lunch
13:00
Incl. a
short

break

Tools, Exercises
Unit test
Code Documentation

16.00 End

Lecture– SE and SC – SS 2011Hanna Remmel 3
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Programming in a small team
What is
Ron doing?

I want to change
Ginnys code

I want to check
Harrys changes

I want to explain
my ideas to Hermione

Version management,
Build management

Quality assurance
Testing

Project management
Issue Tracking

Modeling
Knowledge Management

Lecture– SE and SC – SS 2011Hanna Remmel 4
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

10 Practices to
Improve Your CSE
Software

[Kay 2011]

Lecture– SE and SC – SS 2011Hanna Remmel 5
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

10 Practices to Improve Your CSE Software

 Practice 1: Use issue-tracking for requirements, features and
bugs.

 Practice 2: Manage source with a version control tool
 Practice 3: Use configuration management tools
 Practice 4: Use a formal release process
 Practice 5: Create source-centric documentation
 Practice 6: Write tests first, run them often
 Practice 7: Use mail lists to communicate
 Practice 8: Use checklists for repeated processes
 Practice 9: Program tough stuff together
 Practice 10: Perform continual process improvement

10 – Release – Documentation – TDD – Mailing lists – Pair Programming – Process Improvment

[Heroux 2009]

Lecture– SE and SC – SS 2011Hanna Remmel 6
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Practice 4: Use a formal release process

 Release = a configuration of the software, that is delivered to a
„customer“

• Customer does not have to be extern
• Test release, „stable version“ of the software

 Assign issues (enhancements and bugs) to a release
 Trace the status of a release

• Planned, in Process, implementation finished, tested, approved
• Status depends on the status of assigned issues

 Plan
• Purpose of a release
• Timeline

10 – Release – Documentation – TDD – Mailing lists – Pair Programming – Process Improvment

Release: planned
Issue 25 New
Issue 33 Assigned
Issue 45 New

Release: in process
Issue 25 In Test
Issue 33 In Process
Issue 45 Assigned

Release: impl. finished
Issue 25 In Test
Issue 33 In Test
Issue 45 In Test

Lecture– SE and SC – SS 2011Hanna Remmel 7
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Planing Release

 In the long term: Project plan includes
planing for releases (which kind of release
and when)

 In the medium term: planing includes the
issues (bugs and enhanchements) for one
release

• Example: issue can have different kind of
release information:

- Release as desired by the customer
- Release as agreed with the

development
- Delivered release

 If there are dependencies between different
software modules that are released
separately, there must be overall release
planing (integration plan)

10 – Release – Documentation – TDD – Mailing lists – Pair Programming – Process Improvment

Release 2.3 August 15th

Release 2.3 August 15th
Issue 25 50% ready
Issue 33 100% ready
Issue 45 75% ready

Release 2.3 August 18th

Ti
m

e

Lecture– SE and SC – SS 2011Hanna Remmel 8
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Releases and source files
10 – Release – Documentation – TDD – Mailing lists – Pair Programming – Process Improvment

Baseline

Release 2.3

Release 2.4

Release 2.4.1

 Brances for releases 2.3, 2.4 and 2.4.1
 The release 2.3 branch is closed, since 2.3 is no longer in

production and won't be maintained.

merge

Lecture– SE and SC – SS 2011Hanna Remmel 9
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Baseline / Checkpoint and Labeln

 Baseline / tag
• For a new release
• To be able to reproduce the state of source files at this point of time

 Label sources in Subversion
• Single Files,
• Intermediate results,
• …

10 – Release – Documentation – TDD – Mailing lists – Pair Programming – Process Improvment

Lecture– SE and SC – SS 2011Hanna Remmel 10
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Release Quality Assurance

 In a simple case
• Run some reasonable set of tests on defined set of platforms

 When all necessary processes have been completed, a
release can be completed with greater confidence

 For minor releases, a carefully chosen subset of the
major release process could be used

10 – Release – Documentation – TDD – Mailing lists – Pair Programming – Process Improvment

Lecture– SE and SC – SS 2011Hanna Remmel 11
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Practice 5: Create source-centric documentation

Point of view in Trilinos – project
 in scientific software engineering

• documentation should be sufficient but minimal
• No large-scale formal document generation

 A combination of near-to-the-source and in-source
documentation
• Functions and executable in source code (Doxygen)
• Conceptual documentation near-to-source
• Requirements, analysis and design in issue trackin tool

- Bugzilla, Trac, Flyspray,…
- UML graphics tools (e.g. Microsoft Vision, Doxygen)

10 – Release – Documentation – TDD – Mailing lists – Pair Programming – Process Improvment

Lecture– SE and SC – SS 2011Hanna Remmel 12
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Doxygen

 Why use an automated system?
• Documentation is up-to-date
• Reuse of your own comments
• automatic formatting, and crosslinking
• In-code comments carry important meta

information
 Why doxygen?

• It's free
• OpenSource with installer

- It's fairly comfortable to use
• Configurable

- With a basic style sheet, and
- twiddling the options you can
- customize many aspects of the documentation

10 – Release – Documentation – TDD – Mailing lists – Pair Programming – Process Improvment

Lecture– SE and SC – SS 2011Hanna Remmel 13
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Coding Style

 common code layout style of the source code
• A good best practice when developing in groups
• Makes communication easier
• Reading Code gets faster
• Training for new developers is easier

 Talk about coding style at the start of a project
• If you get in a running project, adapt yourself to their coding style

10 – Release – Documentation – TDD – Mailing lists – Pair Programming – Process Improvment

Lecture– SE and SC – SS 2011Hanna Remmel 14
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Coding Style Example
10 – Release – Documentation – TDD – Mailing lists – Pair Programming – Process Improvment

[http://www.equalizergraphics.com/doc_developer.html]

Lecture– SE and SC – SS 2011Hanna Remmel 15
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Static Code Analysis Tools

 Java
• CheckStyle (http://checkstyle.sourceforge.net/)

 C#
• StyleCop (http://stylecop.codeplex.com/)

 C++
• No standard tool for checking code layout style
• Uncrustify, Astyle, Make pretty,…

10 – Release – Documentation – TDD – Mailing lists – Pair Programming – Process Improvment

http://checkstyle.sourceforge.net/�
http://stylecop.codeplex.com/�

Lecture– SE and SC – SS 2011Hanna Remmel 16
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Practice 6: Write tests first, run them often

 Many developers think tests should be developed late in
the develpment process

 test-driven development (TDD)
• Write tests first
• Provide a full covarage of the expected functionality

 Benefits of TDD
• Test programs debug your design
• You can measure the progress on passing test cases

10 – Release – Documentation – TDD – Mailing lists – Pair Programming – Process Improvment

Lecture– SE and SC – SS 2011Hanna Remmel 17
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Catching Errors with Exceptions

 Using exceptions for error handling
• Separates normal operation from error handling
• Makes both easier to read

 Structured like if/else
• Code for healthy case goes in a try block
• Error handling code goes in a matching except block

 When something goes wrong in the try block, raise an exception
• This is caught by the matching except

10 – Release – Documentation – TDD – Mailing lists – Pair Programming – Process Improvment

void calculate(Number x, Number y)
{

try {
Number sum = x + y;
Number quot = x / y;

}
catch (Number::Overflow& exception) {
...code that handles overflow...

}
catch (Number::Underflow& exception) {

...code that handles underflow...
}
catch (Number::DivideByZero& exception) {
...code that handles divide-by-zero...

}
}

const Number& Number::operator/=(const Number & rhx)
{

if (rhx == 0) {
throw Number::DivideByZero();

}
int newNumber = m_number / rhs;
return *this;

}

Lecture– SE and SC – SS 2011Hanna Remmel 18
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Exceptional Style

 Always use exceptions to report errors instead of returning
None, -1, False, or some other value
• Allows callers to separate normal code from error handling
• And sooner or later, your function will probably actually want to

return that "special" value

 Throw low, catch high
• I.e., throw lots of very specific exceptions...
• ...but only catch them where you can actually take corrective action
• Because every application handles errors differently

- If someone is using your library in a GUI, you don't want to be printing
to stderr

10 – Release – Documentation – TDD – Mailing lists – Pair Programming – Process Improvment

Lecture– SE and SC – SS 2011Hanna Remmel 19
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Practice 7: Use mail lists to communicate

 Why use mailing lists instead of private email accounts?
• Information is available for everyone

- Also when someone is sick or in vacation
• No more CC
• Changes in responsibilities don‘t lead to a chaos

- New developers have access to all mails, formar developers don‘t keep getting
mail

 Several mailing lists
• Users
• Developers
• Leaders
• Check-In (automatically generated from commit logs, i.e. Subversion)
• Announce

 Tool: Mailman
 Also: Wikis

10 – Release – Documentation – TDD – Mailing lists – Pair Programming – Process Improvment

Lecture– SE and SC – SS 2011Hanna Remmel 20
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Practice 8: Use checklists for repeated processes

 Checklists are a valuable tool for
• Making easily repeatable processes
• For training purposes
• Documenting workflows that

- could get lost otherwise
- Are performed slightly different by different developers
- Include simple steps that get forgotten

 Examples
• Relese checklist
• Version control commit checklist

10 – Release – Documentation – TDD – Check lists – Pair Programming – Process Improvment

Lecture– SE and SC – SS 2011Hanna Remmel 21
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Practice 9: Program tough stuff together

 Pair programming is a concept
formalized by Extreme Programming

 For development of complex software
functions, working with a partner side-
by-side is very valuable

10 – Release – Documentation – TDD – Check lists – Pair Programming – Process Improvment

Lecture– SE and SC – SS 2011Hanna Remmel 22
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Practice 10: Perform continual process improvement

Heroux :

“Any software process, no matter how
poorly defined, can be written down and
improved upon, and any process, no matter
how mature, can be made better.“

10 – Release – Documentation – TDD – Check lists – Pair Programming – Process Improvment

Lecture– SE and SC – SS 2011Hanna Remmel 23
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Project
Management

[http://www.softdistrict.com/free-project-management-software/]

Lecture– SE and SC – SS 2011Hanna Remmel 24
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Project Management

 Has to balance cost, time and quality
 Has to organize the project

Four Essentials of Good Management
 Get the right people
 Match them to the right jobs
 Keep them motivated
 Help their teams to jell and stay jelled
(all the rest is Administrativa)

Tom DeMarco, The Deadline

Dorset House, 1997

Project Management – Process Models – eXtreme Programming

Lecture– SE and SC – SS 2011Hanna Remmel 25
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Magic Pentagon

People

Time

Quality /
Effectivity

Methods /
Tools

Cost /
Efficiency

Functio-
nality

Project Management – Process Models – eXtreme Programming

Lecture– SE and SC – SS 2011Hanna Remmel 26
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Project phases

Initiating Planning

Controlling Executing

Closing

•Project-Kick-Off
•Process, Team,
Tools

•Project goals

•Phases and milestones

•Work structure

•Effort, estimation

•Time schedule

•Risk management

•Quality assurance

•Team leadership

•Information

•Project-Touch-Down
•Acceptance test

•Capture experiences

•Measurement

•Evaluation

•Progress control

Project Management – Process Models – eXtreme Programming

Lecture– SE and SC – SS 2011Hanna Remmel 27
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Process
models

[http://semanticstudios.com/publications/semantics/000228.php]

Lecture– SE and SC – SS 2011Hanna Remmel 28
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

What to do when?

 Software project organization adapts general software
process models to the project context

 There are many possible process models
• Waterfall model (~1970)
• V-model (~1980)
• Rational Unified Process (~1990)
• Agile methods (~2000)

- XP
- Scrum

Project Management – Process Models – eXtreme Programming

Lecture– SE and SC – SS 2011Hanna Remmel 29
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Waterfall model

Requirements
Analysis

Implementation
(Coding)

Testing

Functional
Specification

Design

 Simple, but
• Tangible product too late (too much

paper)
• Quality assurance too late

Project Management – Process Models – eXtreme Programming

Lecture– SE and SC – SS 2011Hanna Remmel 30
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

V-Model

 Core idea:
early quality
assurance
 but

• Does not
support
evolution

Project Management – Process Models – eXtreme Programming

[http://www.softtutorial.com/software-testing/v-model.html]

Lecture– SE and SC – SS 2011Hanna Remmel 31
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Rational Unified Process
[http://www-01.ibm.com/software/awdtools/rup/]

 Early Feedback
through
Iterations

 But:
often too much
paper work,
to little flexibility

Project Management – Process Models – eXtreme Programming

Lecture– SE and SC – SS 2011Hanna Remmel 32
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Extreme Programming Principles

1. Fast Feedback
• The learning process depends on the time

between the activities.
2. Straightforward Thinking

• Simple solutions are often sufficient
3. Incremental changes

• Do not change everything at once, but instead in
small steps

4. Embrace change
• Do not fear changes – it induces more costs to

postpone changes
5. Quality focus

• Quality supports the flexibility to react to
changes

Agile
Method

Difficult
for big
projects

Project Management – Process Models – eXtreme Programming

Lecture– SE and SC – SS 2011Hanna Remmel 33
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

XP Practices

Programming
Standards

Common
Ownership

40 hour week
Continuous Integration

Metaphor

Simple Design

Pair Programming

Unit Test

Refactoring

Acceptance
Test

Planning
Game

Short Increments

On-Site
Customer

Development life-cycle:

Project life-cycle:
Supporting Practices:

Project Management – Process Models – eXtreme Programming

Lecture– SE and SC – SS 2011Hanna Remmel 34
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Scrum

Estimation,
Prioritization

User stories Analysis: WHAT

Design:HOW

Implementation,
Evaluation

Metrics, experiences

[Gloger]

Project Management – Process Models – eXtreme Programming

Lecture– SE and SC – SS 2011Hanna Remmel 35
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Scrum ideas

 Change Management, Focus on Team
 Main idea:

• Develop software in sprints
• Daily meetings: Daily Scrum
• Team is responsible for planning and results

 Roles:
• Product Owner (from the customer organization)

- Vision, Prioritization
• Team
• ScrumMaster (not Project manager!)

- Supports Team
- Moderates between Product-Owner and Team

[Gloger]

Project Management – Process Models – eXtreme Programming

Lecture– SE and SC – SS 2011Hanna Remmel 36
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Scrum Key Practices

 Sprint planning meeting held at the beginning of each iteration
• Analyze and prioritize current product backlog
• Select overall goal for sprint , Decide how to achieve the goal (design)
• Create a sprint backlog from the product backlog
• Estimate backlog in hours

- Nothing should be longer than a couple of working days
- Anything that is should be broken into smaller testable/deliverable chunks

 Daily scrum meeting
• Every morning, 15 minutes long, standing up (to make sure it stays 15 minutes long)
• Everyone says:

- What they did yesterday , What they are going to do today , What stands in their way
• Not a status update, but rather making commitments to colleagues

 Sprint review held at the end of the iteration
• Team presents what it accomplished

- Demo, not slides , And yes, everything can be demo'd
 Sprint retrospective also held at the end of the iteration

• What do we want to start doing?
• What do we want to stop doing?
• What do we want to keep doing?

[http://software-carpentry.org/]

Project Management – Process Models – eXtreme Programming

Lecture– SE and SC – SS 2011Hanna Remmel 37
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

 Which process model do you use?
 Which process model could you use?

Project Management – Process Models – eXtreme Programming

Lecture– SE and SC – SS 2011Hanna Remmel 38
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Extreme Hour

Lecture– SE and SC – SS 2011Hanna Remmel 39
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Extreme Hour Vision: A better coffee machine

 Accept this new vision.
Plan, Schedule,
Develop and Quality
Assure our initial
release.

 Project timeframe:
1 Hour

Lecture– SE and SC – SS 2011Hanna Remmel 40
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

60 Minutes Project

 10 Minutes User Stories & Spike Architecture
 10 Minutes Priority & Scope and

1st Commitment Schedule
 10 Minutes Iteration 1
 10 Minutes 2nd Commitment Schedule
 10 Minutes Iteration 2
 10 Minutes Release!

Lecture– SE and SC – SS 2011Hanna Remmel 41
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Project Roles

 Customers specify and estimate
 Quality assurance (QA) runs acceptance tests
 Developers estimate and implement

 Rules:
• If It Ain’t Drawn, It Ain’t Delivered.
• If It Ain’t Written, It Ain’t Required.
• QA can’t see what developers do till iteration’s end

- NB: In real XP, QA communicates with Developers &
Customers.

Lecture– SE and SC – SS 2011Hanna Remmel 42
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

10 Minutes: User Stories, Test Fixtures, Spikes

 Customers write
Stories.
• E.g: I want to choose

between 3 different kinds
of coffee

 QA details quality
requirements per story
• E.g.: It shall be possible

to get coffee in 3 seconds

 Developers define
Architecture.

Lecture– SE and SC – SS 2011Hanna Remmel 43
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

10 Minutes: 1st Commitment Schedule

 Customers sort Stories
into 3 piles:
• Must Have
• Market Advantage
• Really Cool

 Then rank relative
priorities within each
pile.

 Then schedule stories
for 2 Iterations.
• Use “Load Factor 2” for

Project Velocity

 Developers assign Ideal
Minute costs to Stories
based on Spike (and quality
requirements).

 Max story size 3 ideal
minutes, or else split/clarify.

 If developer estimates
disagree, optimist wins.

 QA specifies Acceptance
Tests for all stories

Lecture– SE and SC – SS 2011Hanna Remmel 44
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

10 Minutes: Iteration 1

 QA can’t see what
developers draw until
end of Iteration.

 QA finishes Acceptance
Tests

 Customers modify (also
add) and reprioritize
Iteration 2 Stories.

 Developers pair. Each pair
picks 1 User Story & 1 pen.

 First draw simplest thing that
could possibly work.

 Then Refactor drawing to
make simplest system.

Lecture– SE and SC – SS 2011Hanna Remmel 45
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

10 Minutes: 2nd Commitment Schedule

 Customers reveal new Stories & Developers
estimate them.

 QA “run” tests and note bugs as stories

 Customers prioritize bug vs. new stories
 Then schedule Second Iteration

- Use Measured Project Velocity

Lecture– SE and SC – SS 2011Hanna Remmel 46
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

10 Minutes: Iteration 2

 Developers pair. Each pair
picks 1 User Story & 1 pen.

 First draw simplest thing that
could possibly work.

 Then Refactor drawing to
make simplest system.

 QA writes down
Acceptance Tests for
each Story.

 QA can’t see what
developers draw until
end of Iteration.

 Customers modify and
reprioritize Iteration 3
Stories.

Lecture– SE and SC – SS 2011Hanna Remmel 47
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

10 Minutes: Release!

 QA “run” tests and note bugs as stories

 Joint Decision whether release is possible

Lecture– SE and SC – SS 2011Hanna Remmel 48
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Retrospective

 How did you like it?
 What did you learn about the 3 roles?
 What did you learn about software project organization?

Lecture– SE and SC – SS 2011Hanna Remmel 49
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

References

 Heroux, M.A.W., James M., Barely sufficient software engineering: 10
practices to improve your CSE software, in Proceedings of the 2009
ICSE Workshop on Software Engineering for Computational Science
and Engineering. 2009, IEEE Computer Society.

 http://www.suodenjoki.dk/us/archive/2010/cpp-checkstyle.htm
 http://www.dune-project.org/doc/devel/codingstyle.html
 http://www.flipcode.com/archives/C_Coding_Style-

My_Code_Style.shtml
 Dr. Frank Houdek, Michael Stupperich, Vorlesung „Management von

Softwareprojekten“
 http://www.infoq.com/articles/agile-version-control
 http://www.equalizergraphics.com

http://www.suodenjoki.dk/us/archive/2010/cpp-checkstyle.htm�
http://www.dune-project.org/doc/devel/codingstyle.html�
http://www.flipcode.com/archives/C_Coding_Style-My_Code_Style.shtml�
http://www.flipcode.com/archives/C_Coding_Style-My_Code_Style.shtml�
http://www.infoq.com/articles/agile-version-control�
http://www.equalizergraphics.com/�

Lecture– SE and SC – SS 2011Hanna Remmel 50
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Institute of Computer Science
Chair of Software Engineering
Im Neuenheimer Feld 326
69120 Heidelberg, Germany
http://se.ifi.uni-heidelberg.de
valtokari@informatik.uni-heidelberg.de

Hanna Remmel

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

http://se.ifi.uni-heidelberg.de�
http://se.ifi.uni-heidelberg.de�
http://se.ifi.uni-heidelberg.de�
mailto:valtokari@informatik.uni-heidelberg.de�
mailto:valtokari@informatik.uni-heidelberg.de�
mailto:valtokari@informatik.uni-heidelberg.de�

	10 Practices to Improve Your CSE Software�Project Management
	Schedule Second Day
	Programming in a small team
	Foliennummer 4
	10 Practices to Improve Your CSE Software
	Practice 4: Use a formal release process
	Planing Release
	Releases and source files
	Baseline / Checkpoint and Labeln
	Release Quality Assurance
	Practice 5: Create source-centric documentation
	Doxygen
	Coding Style
	Coding Style Example
	Static Code Analysis Tools
	Practice 6: Write tests first, run them often
	Catching Errors with Exceptions
	Exceptional Style
	Practice 7: Use mail lists to communicate
	Practice 8: Use checklists for repeated processes
	Practice 9: Program tough stuff together
	Practice 10: Perform continual process improvement
	Foliennummer 23
	Project Management
	Magic Pentagon
	Project phases
	Foliennummer 27
	What to do when?
	Waterfall model
	V-Model
	Rational Unified Process
	Extreme Programming Principles
	XP Practices
	Scrum
	Scrum ideas
	Scrum Key Practices
	Foliennummer 37
	Foliennummer 38
	Extreme Hour Vision: A better coffee machine
	60 Minutes Project
	Project Roles
	10 Minutes: User Stories, Test Fixtures, Spikes
	10 Minutes: 1st Commitment Schedule
	10 Minutes: Iteration 1
	10 Minutes: 2nd Commitment Schedule
	10 Minutes: Iteration 2
	10 Minutes: Release!
	Retrospective
	References
	Foliennummer 50

