
Institute of Computer Science
Im Neuenheimer Feld 326
69120 Heidelberg, Germany
http://se.ifi.uni-heidelberg.de
paech@informatik.uni-heidelberg.de

Barbara Paech, Hanna Remmel

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Software Engineering and
Scientific Computing

Barbara Paech, Hanna Remmel 2
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Schedule Third Day

9:00 Quality Assurance and Testing
10:30 Break
11:00 Modeling

Knowledge Management
12:00 Lunch
13:00
Incl. a
short

break

Tools, Exercises
Branches and Tagging in Subversion
IDE
Wrap-Up, Feedback

16.00 End

Barbara Paech, Hanna Remmel 3
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Programming in a small team
What is
Ron doing?

I want to change
Ginnys code

I want to check
Harrys changes

I want to explain
my ideas to Hermione

Version management,
Build management

Quality assurance
Testing

Project management
Issue Tracking

Modeling
Knowledge Management

Barbara Paech, Hanna Remmel 4
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Quality
Assurance

[http://www.elec-intro.com]

Barbara Paech, Hanna Remmel 5
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

What is Quality?

 Basic definition of quality: meeting the users’ needs
• needs, not wants
• true functional needs are often unknowable

 There is a hierarchy of needs.
• Do the required tasks.
• Meet performance requirements.
• Be usable and convenient.
• Be economical and timely.
• Be dependable and reliable.

[http://www.sei.cmu.edu/tsp/index.cfm]

Barbara Paech, Hanna Remmel 6
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Quality Focus

 To be useful, software must
• install quickly and easily
• run consistently
• properly handle normal and abnormal cases
• not do destructive or unexpected things
• be essentially bug-free

 Defects are not important to users, as long as they do not
• affect operations
• cause inconvenience
• cost time or money
• cause loss of confidence in the program’s results

[http://www.sei.cmu.edu/tsp/index.cfm]

Barbara Paech, Hanna Remmel 7
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Quality Assurance Goals

 Which Quality Assurance goals are important in your project?

Accessibility

Compatibility
Concurrency

Efficiency Functionality

Correctness

Installability

Localizability

Maintainability

Performance

Portability

Reliability

Scalability

Security

TestabilityUsability

Barbara Paech, Hanna Remmel 8
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Quality Assurance Methods

• Proof (complex theorem provers needed, only specific domains)
• Test (probe product with specific inputs)
• Review (systematic reading)
• Metrics (automated determination of characteristics, i.e. bugs per line

of code, code coverage)

Barbara Paech, Hanna Remmel 9
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Reviews

 In a personal review
• you privately review your product
• your objective is to find and fix defects before test

 Reviews are most effective when they are structured and
measured.

 Use reviews for requirements, designs, code, and
everything else that you develop.

 Also continue to use inspections, compiling, and testing.

[http://www.sei.cmu.edu/tsp/index.cfm]

Best Of
for Scientific

Software

Barbara Paech, Hanna Remmel 10
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Why Reviews are Efficient

 In testing, you must
• detect unusual behavior
• figure out what the test program was doing
• find where the problem is in the program
• figure out which defect could cause such behavior

 This can take a lot of time.

 With reviews, you
• follow your own logic
• know where you are when you find a defect
• know what the program should do, but did not
• know why this is a defect
• are in a better position to devise a correct fix

[http://www.sei.cmu.edu/tsp/index.cfm]

Barbara Paech, Hanna Remmel 11
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

“Quality is free, but only to those who are
willing to pay heavily for it.”

– T. DeMarco and T. Lister

Barbara Paech, Hanna Remmel 12
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Testing

[http://www.kollewin.com/blog]

Barbara Paech, Hanna Remmel 13
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Testing levels

Unit 1 Unit 2

Unit 3 Unit 4

Software System

User/CustomerRelease

Unit Testing

Integration Testing

SystemTesting

AcceptanceTesting

Each testing level is important and should not be neclected!

Barbara Paech, Hanna Remmel 14
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Unit Testing

 A unit is the smallest testable part of software
 method, function, class,…

 Several tools available
 CppUnit (C++), CUnit (C), Junit (Java), googletest(C, C++),

Check (C)
 Benefits

 Unit testing increases confidence in changing/maintaining code
 Codes are more reusable, since in order to make unit testing possible, codes

need to be modular
 The cost of fixing a defect detected during unit testing is lesser in comparison to

that of defects detected at higher levels
 Tips

 Isolate the development environment from the test environment
 Use test data that is close to that of production
 Before fixing a defect, write a test that exposes the defect
 Aim at covering all paths through the unit
 Perform unit tests continuously and frequently

[http://softwaretestingfundamentals.com]

Best Of
for Scientific

Software

Barbara Paech, Hanna Remmel 15
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Integration Testing

 The purpose of this level of testing is to expose faults in the
interaction between integrated units.

 Tips
 Ensure that the interactions between each unit are clearly defined
 Make sure that each unit is first unit tested before you start Integration

Testing
 As far as possible, automate your tests

[http://softwaretestingfundamentals.com]

Barbara Paech, Hanna Remmel 16
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

System Testing

 System Testing is a level of the software testing process where a
complete, integrated system/software is tested.

 The purpose of this test is to evaluate the system’s compliance with
the specified requirements

 Benefits for the use in scientific software
 Only at this level the interaction of mathematical model,

numerical model and the implementation can be tested

[http://softwaretestingfundamentals.com]

Barbara Paech, Hanna Remmel 17
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Acceptance Testing

 The purpose of this test is to evaluate the system’s compliance with
the business requirements and assess whether it is acceptable for
delivery.

 Types
 Internal acceptance testing
 External acceptance testing (customer, user)

[http://softwaretestingfundamentals.com]

Barbara Paech, Hanna Remmel 18
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Source: Xerox

Defect-removal Times

1

10

100

1000

10000

Ti
m

e
in

 M
in

ut
es

Design
Review

Design
Inspect.

Code
Review

Code
Inspect.

Unit
Test

System
Test

Defect-removal Phase

5

22

2

25 32

1405

1

10

100

1000

10000

Ti
m

e
in

 M
in

ut
es

Design
Review

Design
Inspect.

Code
Review

Code
Inspect.

Unit
Test

System
Test

Defect-removal Phase

5

22

2

25 32

1405

[http://www.sei.cmu.edu/tsp/index.cfm]

Barbara Paech, Hanna Remmel 19
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Test methods

 Black-Box:
• Only use knowledge about the interface
• Test the visible behaviour
• No control of the test execution
• Can not identify unnecessary code
• Example: equivalence classes

 White-Box:
• Use knowledge about the internal structure of the code
• Control the test execution
• Can not identify missing requirements
• Example: code coverage testing

?

int z = 0;
if ((x > 0) &&
(y > 0)) {

z = x;
}

Barbara Paech, Hanna Remmel 20
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Test Types

 Smoke Testing:
• Covers most of the major functions of the software but none of

them in depth
• The result of this test is used to decide whether to proceed with

further testing
• If the smoke test passes, go ahead with further testing
• If it fails, halt further tests and ask for a new build with the required

fixes. If an application is badly broken, detailed testing might be a
waste of time and effort.

 Regression Testing:
• intends to ensure that changes (enhancements or defect fixes) to

the software have not adversely affected it
• can be performed during any level of testing
• Fix set of tests that run in a regular basis Best Of

for Scientific
Software

Barbara Paech, Hanna Remmel 21
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Test specification

 Define
• Test object (e.g. system, unit)
• Test cases (black box or white box)
• Test end criteria (e.g. how many % of the test cases must be

successfully performed, at which defect density do you stop the
testing)

Barbara Paech, Hanna Remmel 22
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Test process

Test Manager Test planning and control

Test Designer
Test specification

Test scripting
Test Automation

Test protocol

Test evaluation

Test execution
Tester

Barbara Paech, Hanna Remmel 23
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Software Testing Exercise 1

Hold a pen.
Identify the types of testing you would
perform on it to make sure that it is of
the highest quality.

[http://softwaretestingfundamentals.com]

Barbara Paech, Hanna Remmel 24
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Software Testing Exercise 2

There is a simple program with the following items:

• Input Box A
• Input Box B
• Add button
• Result Text Box [=A+B]

Identify all the test cases for the program. [Example:
press the Add button without entering anything in Input
Box A and B]

[http://softwaretestingfundamentals.com]

Barbara Paech, Hanna Remmel 25
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Test case selection

 Since it is impossible to test everything, how do i select a set of test
cases?

1 class Trivial {
2 static int sum(int a, int b) {
3 return a + b;
4 }
5 }

[Ehmke 2011]

Barbara Paech, Hanna Remmel 26
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Equivalence classes

 Equivalence class: subset of all inputs which invoke similar
program bevahiour

 A representative set of tests (sometimes only one) is taken from
each class.

 Typical equivalence classes
 Correct / incorrect inputs
 Boundary values

 Gets more complicated with several input parameters

Equvalent class 1 Equvalent class 2

[SWEBOK, Ehmke 2011]

Barbara Paech, Hanna Remmel 27
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Code Coverage
[Ehmke 2011]

1 int foo (int x, int y)
2 {
3 int z = 0;
4 if ((x > 0) && (y > 0)) {
5 z = x;
6 }
7 return z ;
8 }

 Function coverage (foo(x,x))
 Statement coverage (foo(1,1))
 Decision coverage (foo(1,1), foo(1,0))
 Condition coverage (foo(1,1), foo(1,0), foo(0,0))

Barbara Paech, Hanna Remmel 28
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

“All code is guilty, until proven innocent.”
– Anonymous

Barbara Paech, Hanna Remmel 29
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Testing Scientific
Software

Barbara Paech, Hanna Remmel 30
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Possible Sources of Defects

sun()

=
Reality Conceptual model Mathematical model

∂F
∂x

Numerical modelComputer Program
Simulation

?

Barbara Paech, Hanna Remmel 31
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Model for Testing Scientific Software

 1. Code verification
• check the program code for

bugs

 2. Algorithm verification
• Is the implementation of the

mathematical model correct?

 3. Scientific Validation
• Verify if the result is accurate

Scientific

Algorithm

Code
Verification

Verifikation

Validation

Reference: Hook & Kelly 2009

Barbara Paech, Hanna Remmel 32
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Example: DUNE system test environment

• Automatic regression test environment
• Verify that development changes in the DUNE framework work

in an expected way and do not break any other functionality
• Tests run every night using the current development version of

DUNE.
• The results of the test run are published as a graphical

overview on the projects web page.
• Additionally, there is a mailing list accessible for all scientists

developing DUNE informing about unsuccessful test runs.
• Supports algorithm verification and scientific validation

Barbara Paech, Hanna Remmel 33
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Code Verification

 First check the program code for bugs
 Reviews
 (Unit) Testing

Example DUNE:
Code Verification is done with Unit Testing

Barbara Paech, Hanna Remmel 34
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Algorithm Verification

 suitability of methods for algorithm verification strongly depends on
the mathematical model used in the scientific software
 i.e. grid convergence testing, symmetry and conservation tests

 If possible, the reference values for these mathematical quantities are
determined analytically.
 If this is not possible, like it typically isn’t for scientific software, the

scientists set up these values from a scientifically validated run of the
test application.

Example DUNE:

Test program output Reference file

Barbara Paech, Hanna Remmel 35
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Scientific Validation

 comparison of the graphical simulation output files
 the values in these output files are compared with according

scientific validation reference files
 Both, absolute and relative difference between the output file values

and reference file values are tested.
 A change in these expected values always indicates a change in the

test applications behavior.
 Either there is a defect
 Or the scientific software was changed in a way that a change in this

specific test application was expected. In this case, the scientists can
update the reference values for the test case.

 Changes in reference files always have to be scientifically justified
and carefully documented.

Barbara Paech, Hanna Remmel 36
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Testing and Debugging

John Guttag, Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, MIT

http://videolectures.net/mit600f08_guttag_lec11/�
http://videolectures.net/john_guttag/�

Barbara Paech, Hanna Remmel 37
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Testing principles (1)

 Principle 1
Complete testing not possible

 Principle 2
»Program testing can be used to show the presence of
bugs, but never to show their absence!«? Edsger Dijkstra

 Principle 3
Start early with testing (see defect removal times)

 Principle 4
Defects are not evenly distributed in the code. If you have
found many defects at one place, look for more.

Barbara Paech, Hanna Remmel 38
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Testing principles (2)

 Principle 5
Test cases must be managed (evaluated, updated)

 Principle 6
Test effort has to be adapted to the context (more for
critical systems)

 Principle 7
A defect-free system does not guarantee customer
satisfaction

Barbara Paech, Hanna Remmel 39
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

“Fast, good, cheap: pick any two.”
– Anonymous

Barbara Paech, Hanna Remmel 40
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

References

 W.L. Oberkampf, T.G. Trucano, and C. Hirsch: Verification,
Validation, and Predictive Capability in Computational
Engineering and Physics, 2004

 www.swebok.com
 http://softwaretestingfundamentals.com/

http://www.swebok.com/�
http://softwaretestingfundamentals.com/�

	Software Engineering and Scientific Computing
	Schedule Third Day
	Programming in a small team
	Foliennummer 4
	What is Quality?
	Quality Focus
	Quality Assurance Goals
	Quality Assurance Methods
	Reviews
	Why Reviews are Efficient
	Foliennummer 11
	Foliennummer 12
	Testing levels
	Unit Testing
	Integration Testing
	System Testing
	Acceptance Testing
	Defect-removal Times
	Test methods
	Test Types
	Test specification
	Test process
	Software Testing Exercise 1
	Software Testing Exercise 2
	Test case selection
	Equivalence classes
	Code Coverage
	Foliennummer 28
	Foliennummer 29
	Possible Sources of Defects
	Model for Testing Scientific Software
	Example: DUNE system test environment
	Code Verification
	Algorithm Verification
	Scientific Validation
	Testing and Debugging
	Testing principles (1)
	Testing principles (2)
	Foliennummer 39
	References

