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Schedule Third Day

9:00 Quality Assurance and Testing
10:30 Break
11:00 Modeling

Knowledge Management
12:00 Lunch
13:00
Incl. a 
short

break

Tools, Exercises
Branches and Tagging in Subversion 
IDE
Wrap-Up, Feedback

16.00 End
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Programming in a small team
What is
Ron doing?

I want to change
Ginnys code

I want to check
Harrys changes

I want to explain
my ideas to Hermione 

Version management,
Build management

Quality assurance
Testing

Project management
Issue Tracking

Modeling
Knowledge Management
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Quality 
Assurance

[http://www.elec-intro.com]
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What is Quality? 

 Basic definition of quality: meeting the users’ needs
• needs, not wants
• true functional needs are often unknowable

 There is a hierarchy of needs.
• Do the required tasks.
• Meet performance requirements.
• Be usable and convenient.
• Be economical and timely.
• Be dependable and reliable.

[http://www.sei.cmu.edu/tsp/index.cfm]
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Quality Focus

 To be useful, software must 
• install quickly and easily
• run consistently
• properly handle normal and abnormal cases
• not do destructive or unexpected things
• be essentially bug-free

 Defects are not important to users, as long as they do not
• affect operations
• cause inconvenience
• cost time or money
• cause loss of confidence in the program’s results

[http://www.sei.cmu.edu/tsp/index.cfm]
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Quality Assurance Goals

 Which Quality Assurance goals are important in your project?

Accessibility

Compatibility
Concurrency

Efficiency Functionality

Correctness

Installability

Localizability

Maintainability

Performance

Portability

Reliability

Scalability

Security

TestabilityUsability
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Quality Assurance Methods

• Proof (complex theorem provers needed, only specific domains)
• Test (probe product with specific inputs)
• Review (systematic reading)
• Metrics (automated determination of characteristics, i.e. bugs per line

of code, code coverage)
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Reviews

 In a personal review
• you privately review your product
• your objective is to find and fix defects before test

 Reviews are most effective when they are structured and 
measured.

 Use reviews for requirements, designs, code, and 
everything else that you develop.

 Also continue to use inspections, compiling, and testing.

[http://www.sei.cmu.edu/tsp/index.cfm]

Best Of
for Scientific 

Software
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Why Reviews are Efficient

 In testing, you must 
• detect unusual behavior
• figure out what the test program was doing
• find where the problem is in the program
• figure out which defect could cause such behavior

 This can take a lot of time.

 With reviews, you 
• follow your own logic
• know where you are when you find a defect
• know what the program should do, but did not 
• know why this is a defect
• are in a better position to devise a correct fix

[http://www.sei.cmu.edu/tsp/index.cfm]
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“Quality is free, but only to those who are 
willing to pay heavily for it.” 

– T. DeMarco and T. Lister
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Testing

[http://www.kollewin.com/blog]
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Testing levels

Unit 1 Unit 2

Unit 3 Unit 4

Software System

User/CustomerRelease

Unit Testing

Integration Testing

SystemTesting

AcceptanceTesting

Each testing level is important and should not be neclected!



Barbara Paech, Hanna Remmel 14
©  2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Lecture – SE and SC – SS 2011

Unit Testing

 A unit is the smallest testable part of software
 method, function, class,…

 Several tools available
 CppUnit (C++), CUnit (C), Junit (Java), googletest(C, C++), 

Check (C)
 Benefits

 Unit testing increases confidence in changing/maintaining code
 Codes are more reusable, since in order to make unit testing possible, codes 

need to be modular
 The cost of fixing a defect detected during unit testing is lesser in comparison to 

that of defects detected at higher levels
 Tips

 Isolate the development environment from the test environment
 Use test data that is close to that of production
 Before fixing a defect, write a test that exposes the defect
 Aim at covering all paths through the unit
 Perform unit tests continuously and frequently

[http://softwaretestingfundamentals.com]

Best Of
for Scientific 

Software
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Integration Testing

 The purpose of this level of testing is to expose faults in the 
interaction between integrated units. 

 Tips
 Ensure that the interactions between each unit are clearly defined
 Make sure that each unit is first unit tested before you start Integration 

Testing
 As far as possible, automate your tests

[http://softwaretestingfundamentals.com]
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System Testing

 System Testing is a level of the software testing process where a 
complete, integrated system/software is tested.

 The purpose of this test is to evaluate the system’s compliance with 
the specified requirements

 Benefits for the use in scientific software
 Only at this level the interaction of mathematical model, 

numerical model and the implementation can be tested

[http://softwaretestingfundamentals.com]
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Acceptance Testing

 The purpose of this test is to evaluate the system’s compliance with 
the business requirements and assess whether it is acceptable for 
delivery.

 Types
 Internal acceptance testing
 External acceptance testing (customer, user)

[http://softwaretestingfundamentals.com]
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Source: Xerox
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[http://www.sei.cmu.edu/tsp/index.cfm]
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Test methods

 Black-Box:
• Only use knowledge about the interface
• Test the visible behaviour
• No control of the test execution
• Can not identify unnecessary code
• Example: equivalence classes

 White-Box:
• Use knowledge about the internal structure of the code
• Control the test execution
• Can not identify missing requirements
• Example: code coverage testing

?

int z = 0;
if ( (x > 0) && 
(y > 0) ) {

z = x;
}
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Test Types

 Smoke Testing:
• Covers most of the major functions of the software but none of 

them in depth
• The result of this test is used to decide whether to proceed with 

further testing
• If the smoke test passes, go ahead with further testing
• If it fails, halt further tests and ask for a new build with the required 

fixes. If an application is badly broken, detailed testing might be a 
waste of time and effort.

 Regression Testing:
• intends to ensure that changes (enhancements or defect fixes) to 

the software have not adversely affected it
• can be performed during any level of testing
• Fix set of tests that run in a regular basis Best Of

for Scientific 
Software
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Test specification

 Define
• Test object (e.g. system, unit)
• Test cases (black box or white box)
• Test end criteria (e.g. how many % of the test cases must be

successfully performed, at which defect density do you stop the
testing)
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Test process

Test Manager Test planning and control

Test Designer
Test specification

Test scripting
Test Automation

Test protocol

Test evaluation

Test execution
Tester
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Software Testing Exercise 1

Hold a pen. 
Identify the types of testing you would 
perform on it to make sure that it is of 
the highest quality.

[http://softwaretestingfundamentals.com]
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Software Testing Exercise 2

There is a simple program with the following items:

• Input Box A
• Input Box B
• Add button
• Result Text Box [=A+B]

Identify all the test cases for the program. [Example: 
press the Add button without entering anything in Input 
Box A and B]

[http://softwaretestingfundamentals.com]
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Test case selection

 Since it is impossible to test everything, how do i select a set of test 
cases?

1 class Trivial {
2     static int sum( int a, int b) {
3         return a + b;
4     }
5 }

[Ehmke 2011]
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Equivalence classes

 Equivalence class: subset of all inputs which invoke similar
program bevahiour

 A representative set of tests (sometimes only one) is taken from 
each class.

 Typical equivalence classes
 Correct / incorrect inputs
 Boundary values

 Gets more complicated with several input parameters

Equvalent class 1 Equvalent class 2

[SWEBOK, Ehmke 2011]
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Code Coverage
[Ehmke 2011]

1 int foo ( int x, int y)
2 {
3     int z = 0;
4     if ( (x > 0) && (y > 0) ) {
5         z = x;
6     }
7     return z ;
8 }

 Function coverage (foo(x,x))
 Statement coverage (foo(1,1))
 Decision coverage (foo(1,1), foo(1,0))
 Condition coverage (foo(1,1), foo(1,0), foo(0,0))
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“All code is guilty, until proven innocent.” 
– Anonymous
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Testing Scientific 
Software
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Possible Sources of Defects

sun()

=
Reality Conceptual model Mathematical model

∂F
∂x

Numerical modelComputer Program
Simulation

?
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Model for Testing Scientific Software

 1. Code verification
• check the program code for 

bugs

 2. Algorithm verification
• Is the implementation of the

mathematical model correct?

 3. Scientific Validation
• Verify if the result is accurate

Scientific

Algorithm

Code 
Verification

Verifikation

Validation

Reference: Hook & Kelly 2009
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Example: DUNE system test environment

• Automatic regression test environment
• Verify that development changes in the DUNE framework work 

in an expected way and do not break any other functionality
• Tests run every night using the current development version of 

DUNE. 
• The results of the test run are published as a graphical 

overview on the projects web page.
• Additionally, there is a mailing list accessible for all scientists 

developing DUNE informing about unsuccessful test runs.
• Supports algorithm verification and scientific validation
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Code Verification

 First check the program code for bugs
 Reviews
 (Unit) Testing

Example DUNE:
Code Verification is done with Unit Testing
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Algorithm Verification

 suitability of methods for algorithm verification strongly depends on 
the mathematical model used in the scientific software
 i.e. grid convergence testing, symmetry and conservation tests

 If possible, the reference values for these mathematical quantities are 
determined analytically. 
 If this is not possible, like it typically isn’t for scientific software, the 

scientists set up these values from a scientifically validated run of the 
test application.

Example DUNE:

Test program output Reference file
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Scientific Validation

 comparison of the graphical simulation output files
 the values in these output files are compared with according 

scientific validation reference files
 Both, absolute and relative difference between the output file values 

and reference file values are tested. 
 A change in these expected values always indicates a change in the 

test applications behavior. 
 Either there is a defect
 Or the scientific software was changed in a way that a change in this 

specific test application was expected. In this case, the scientists can 
update the reference values for the test case.

 Changes in reference files always have to be scientifically justified 
and carefully documented.
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Testing and Debugging

John Guttag, Department of Electrical Engineering and Computer 
Science, Massachusetts Institute of Technology, MIT

http://videolectures.net/mit600f08_guttag_lec11/�
http://videolectures.net/john_guttag/�
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Testing principles (1)

 Principle 1
Complete testing not possible

 Principle 2
»Program testing can be used to show the presence of 
bugs, but never to show their absence!«? Edsger Dijkstra

 Principle 3
Start early with testing (see defect removal times)

 Principle 4
Defects are not evenly distributed in the code. If you have 
found many defects at one place, look for more. 
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Testing principles (2)

 Principle 5
Test cases must be managed (evaluated, updated)

 Principle 6
Test effort has to be adapted to the context (more for 
critical systems)

 Principle 7
A defect-free system does not guarantee customer 
satisfaction
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“Fast, good, cheap: pick any two.” 
– Anonymous
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