

©2014 IEEE. Reprinted, with permission, from Hesse, TM, Gärtner, S, Roehm, T, Paech B,

Schneider, K, Bruegge, B Semiautomatic Security Requirements Engineering and

Evolution using Decision Documentation, Heuristics and User Monitoring, Proceedings of

the 1st International Workshop on Evolving Security and Privacy Requirements

Engineering (ESPRE 2014), Karlskrona (Sweden), August 25th, 2014, pp. 1-6.

This material is posted here with permission of the IEEE. Such permission of the IEEE does not

in any way imply IEEE endorsement of any of the University of Heidelberg's products or

services. Internal or personal use of this material is permitted. However, permission to

reprint/republish this material for advertising or promotional purposes or for creating new

collective works for resale or redistribution must be obtained from the IEEE by writing to

pubspermissions@ieee.org. By choosing to view this document, you agree to all provisions of the

copyright laws protecting it.

Semiautomatic Security Requirements Engineering
and Evolution using Decision Documentation,

Heuristics, and User Monitoring
Tom-Michael Hesse∗, Stefan Gärtner†, Tobias Roehm‡, Barbara Paech∗, Kurt Schneider†, and Bernd Bruegge‡

∗Institute of Computer Science, University of Heidelberg, Germany
{hesse, paech}@informatik.uni-heidelberg.de

†Software Engineering Group, Leibniz Universität Hannover, Germany
{stefan.gaertner, kurt.schneider}@inf.uni-hannover.de

‡Institut für Informatik, Technische Universität München, Germany
{roehm, bruegge}@in.tum.de

Abstract—Security issues can have a significant negative im-
pact on the business or reputation of an organization. In most
cases they are not identified in requirements and are not continu-
ously monitored during software evolution. Therefore, the inabil-
ity of a system to conform to regulations or its endangerment by
new vulnerabilities is not recognized. In consequence, decisions
related to security might not be taken at all or become obsolete
quickly. But to evaluate efficiently whether an issue is already
addressed appropriately, software engineers need explicit decision
documentation. Often, such documentation is not performed due
to high overhead.

To cope with this problem, we propose to document de-
cisions made to address security requirements. To lower the
manual effort, information from heuristic analysis and end user
monitoring is incorporated. The heuristic assessment method
is used to identify security issues in given requirements au-
tomatically. This helps to uncover security decisions needed
to mitigate those issues. We describe how the corresponding
security knowledge for each issue can be incorporated into the
decision documentation semiautomatically. In addition, violations
of security requirements at runtime are monitored. We show how
decisions related to those security requirements can be identified
through the documentation and updated manually. Overall, our
approach improves the quality and completeness of security
decision documentation to support the engineering and evolution
of security requirements.

Index Terms—Security requirements engineering, decision
knowledge, decision documentation, heuristic analysis, user mon-
itoring, software evolution, knowledge carrying software.

I. INTRODUCTION

To consider security issues when developing long-living
information systems is of particular importance for the en-
gineering and evolution of security requirements. But security
requirements engineering and evolution in practice is often
performed manually. As a consequence, decisions on security
issues are not documented properly due to high manual
overhead for collecting and structuring all related knowledge.
But this is important to enable software engineers a quick
access and review of decisions because security decisions and
requirements remain important after deployment. As newly
discovered vulnerabilities might affect the security require-

ments, software engineers need to find out whether the security
requirements are adhered and used as intended during system
operation. Thus, security requirements need to be continuously
monitored and tracked during usage and evolution of the
system. If new vulnerabilities occur, the affected requirement
specifications and their development decisions have to be
identified and updated, what again causes manual effort.

To overcome these problems, we propose a semiautomatic
approach for documenting decisions, which address security
requirements. For this purpose, our approach combines struc-
tured documentation of security-related development decisions
with knowledge from heuristic analysis and user monitor-
ing. The structured decision documentation enables software
engineers to gain comprehensive and fast access to security
decisions, their implementation and related requirements. This
supports a quick reaction to new vulnerabilities and helps in
verifying that the system conforms to security requirements,
for instance in case of an application audit.

Since software engineers are usually not aware of security
issues in requirements, they cannot identify the related se-
curity requirements and address them appropriately in their
development decisions. On this account, the heuristic analysis
of textual requirements enables them to identify potential vul-
nerabilities in early project stages without requiring the team
to be security experts themselves. The knowledge from the
analysis can be incorporated semiautomatically into decision
documentation, what helps in decreasing the documentation
overhead. Additionally, user monitoring at runtime enables
software engineers to identify new potential vulnerabilities,
which are not covered by heuristic analysis so far. The related
security requirements and their development decisions can be
updated easier, as the decision documentation allows to access
them faster and makes decisions more comprehensive. By inte-
grating different sources of knowledge, our approach improves
the quality and completeness of decision documentation. This
is beneficial for software vendors and end users, as system
security is improved from the beginning and can be kept secure
over time more easily.

978-1-4799-6340-9/14/$31.00 c© 2014 IEEE ESPRE 2014, Karlskrona, Sweden1

The remainder of this paper is structured as follows. In
Section II, we introduce the components we integrate in
our approach and describe our running example. Then, we
describe in Section III how results from heuristic analysis
can be incorporated into decision documentation. Afterwards,
we explain how documented decisions can be updated with
data from monitoring of security-relevant user behavior in
Section IV. Finally, we present related work for automated
decision documentation in security requirements engineering
in Section V and conclude our insights in Section VI.

II. OVERVIEW OF COMPONENTS

The required components for our approach are depicted in
Figure 1: Decision documentation, security heuristics and user
monitoring. We will briefly introduce them in the following
subsections. As a prerequisite, our approach requires an ex-
plicit specification of requirements in form of use cases. Its
textual descriptions in natural language should be accessible
as structured or modeled data.

A. Decision Documentation

The decision documentation component provides the struc-
ture for documenting knowledge about security-relevant de-
cisions. Such decision knowledge addresses the implemen-
tation of security requirements, for instance, which type of
authentication is used to hinder unauthenticated users to access
sensible data. The documentation needs to be updated, when
the decision is modified in order to cope with changing secu-
rity requirements, for instance, when the encryption standard
for authentication is changed due to a new vulnerability.
Decision documentation helps software engineers, in particular
requirement engineers and software architects, to find and
exploit previous security-related decisions and plan upcoming
decisions. So, they can understand and assess more easily why
a certain requirement, design or library was considered and
reflect this knowledge in future decisions.

Decision knowledge consists of the decision problem, its
context, and rationales justifying the decision. A decision

Decision Documentation

• Documentation of security decisions
• Traceability to requirements

specification and implementation

Security Heuristics

• Identification of security requirements
by searching potential vulnerabilities in
textual requirements specifications

User Monitoring

• Identification of deviations between
user behavior and expected behavior
according to security requirements

• Identification of security vulnerabilities

Requirements
Specification

Extract model
of expected
user behavior

Analyze

Link & Trace

Potential security
vulnerabilities
with counter-
measures

Deviations of user
behavior from
expectations,
Potential security
vulnerabilities

Action Input for Documentation

Fig. 1. Incorporating Decision Knowledge From Security Heuristics and User
Monitoring Into Decision Documentation

Argument

Issue Assumption Alternative

Question Context Solution

Requirement
(e.g. Use Case)
Attached to

Related to

… … …

Decision

Knowledge
Element

Decision Component

Fig. 2. Knowledge Elements of the Decision Documentation Model

problem at least comprises the problem description, a set of al-
ternatives and a set of criteria to evaluate each alternative [12].
But decision knowledge may contain many additional pieces
of information explaining the context of the decision, such
as assumptions about related requirements or implications of
an alternative [14]. Moreover, decision knowledge can consist
of rationales, which are justifications for and reasons behind
a decision [5], such as arguments supporting or challenging
an alternative. In order to document all this knowledge, we
decided to use an iterative documentation model for decisions
as presented in [9]. It offers a set of different knowledge
elements, which can be aggregated iteratively and are depicted
in Figure 2. The basic element of this model is the De-
cision, which represents the set of knowledge elements for
one decision as aggregated DecisionComponents. Amongst
others, DecisionComponents can be refined to a decision
problem description as an Issue, to context information like
an Assumption, to a solution description as an Alternative, or
to a description of a rationale as an Argument. The decision
knowledge can be linked to the requirements specification
and other system information and stored in a central place.
For instance, DecisionComponents can be related to other
knowledge elements like related requirements or concrete
implementation artifacts. This allows software engineers a fast
access to security knowledge, which enables a fast reaction to
new vulnerabilities.

We decided to use this decision documentation model,
because all DecisionComponents can be aggregated without
structural restrictions and may be refined iteratively. This flex-
ibility supports the knowledge transformation from security
heuristics, as the content of heuristic analysis results may vary
and software engineers might even want to add additional con-
tents to the incorporated knowledge. In addition, the ability of
iterative refinement helps in updating the documentation with
monitoring results, as extensions and changes to documented
decisions can be made easily.

B. Security Heuristics

To find vulnerabilities in natural language requirements and
use them for decision documentation, it is usually necessary
to analyze a huge amount of requirements manually. On this

2

AssetSystem Component

Entry Point

Vulnerability Action

Threat

Attack

Countermeasure

Attacker

contains

contains providesAccessTo

contains

exploits

threatens

realizes

consistsOf

mitigates

performs

refines

Trust Level
accessibleBy

includes
contains

accessTo

followedBy

Fig. 3. Overall structure of the security knowledge required to derive
heuristics [6].

account, the security heuristics component analyzes textual
requirements specifications automatically. Therefore, we used
our assessment approach as described in [6], which leverages
previously reported incidents. An incident is an attempt to
violate security policies or to gain unauthorized access to
data [8].

To use an incident in our assessment approach, it must be
modeled according to the knowledge structure as depicted
in Fig. 3. According to that, an incident is described by
corresponding actions which use several entry points to access
assets (see [6] for further details). Additionally, discovered
vulnerabilities are assigned to the incident. To incorporate
expert knowledge for decision documentation, modeled inci-
dents are enriched with additional security knowledge. This
knowledge consists of a mixture of textbook knowledge,
security obligations and laws, as well as experiences.

The assessment approach takes requirements in form of
uses cases as well as modeled security incidents as input. The
scenario of the use case is scanned for instances of relevant vo-
cabulary and their chronological order. The found instances are
heuristically matched with instances used to model incidents.
If the comparison results in a positive match, the modeled
incident has been found in the use case indicating a potential
security vulnerability. The heuristic finding comprises the steps
of the usage scenario which describe suspicious interaction. It
is reported to the software engineer who has to investigate the
vulnerability and to decide how to handle it. Decisions taken
on base of heuristic findings are documented by the decision
documentation component. The application of the security
heuristics component and its interaction with the decision
documentation component is described in detail in Section III.

C. User Monitoring

The user monitoring component analyzes the interaction
between an end user and the application. Usually two things
are necessary for an exploit to happen: A vulnerability and
a malign end user. In case an application does not exhibit a
vulnerability, no security problem exists. When a vulnerability
is present, it might remain without effect if there is no malign
user who exploits it. Hence, the user monitoring component
monitors and analyzes end user actions at runtime, thereby im-
plementing a dynamic analysis approach and complementing
the static analysis of requirements using security heuristics.

The user monitoring component monitors end users dur-
ing their interaction with the application to assess security

requirements as described in [15]. Our goal is to check whether
users adhere to security policies and to uncover potential new
vulnerabilities. We hypothesize that a deviation of monitored
user behavior from expected user behavior (as defined by
security requirements) may indicate a vulnerability, e.g. when
a user accesses data, which he or she is not allowed to access.
An identified deviation is reported to software developers
who have to investigate the deviation and decide how to
handle it. These decisions are documented by the decision
documentation component. The application of the user mon-
itoring component and its interplay with the documentation
component are detailed in Section IV.

D. Running Example

To illustrate the usage and integration of the three com-
ponents, we introduce the medical application iTrust [11] as
running example. It supports patients to manage their health
records as well as medical staff to organize their work. Thus,
security and privacy issues play an important role. The iTrust
project was founded at North Carolina State University and is
currently maintained by the Realsearch Research Group [11].
It consists of 55 use cases written in natural language (version
23). Based on these requirements, the iTrust system (version
17) has been developed as a web application. Thus, the
requirements are sufficient to develop a working system. Since
for iTrust no security incidents have been documented yet,
we assume in the following sections that incidents have been
discovered with a focus on technical aspects.

III. INCORPORATING DECISION KNOWLEDGE
FROM SECURITY HEURISTICS

Regarding our running example iTrust, we consider use
case 6 as described in [11]. In this use case, the patient
choose to view a list of all licensed health care professionals
(HCP) she has ever had an office visit with. The HCP’s
name, specialty, address, date of office visit is presented to the
patient. Moreover, the patient can also add a HCP to her list by
searching for the HCP’s name or specialty. We further assume
that an incident has been reported describing that the patient
view with respect to the address field contains a vulnerability
so that Cross-Site Scripting (XSS) attacks become possible.
This is one of the most dangerous vulnerabilities in web
applications according to the Common Weakness Enumeration
(CWE) [17]. Cross-site scripting becomes possible through
improper neutralization of input. Attacker can inject malicious
browser-executable content into the patient view to steal sen-
sitive information (e.g. medical identification number, patient
information).

To use the reported incident in our assessment approach, we
modeled the incident according to Fig. 3. For this purpose, we
extracted affected system components, assets, trust levels, and
entry points from the use case as listed in Table I.

After our heuristic analysis of requirements was performed,
each finding belongs to one of the following categories:

A) The requirement contains security issues (true positive
hit) and all steps of the usage scenario have been marked

3

TABLE I
EXTRACT OF SECURITY KNOWLEDGE USED IN THE ITRUST EXAMPLE

Concept Individuals
System Component iTrust Medical Records System
Asset Address
Entry Point Address field, Health record, View, Display
Trust Level Patient, HCP
Threat Execute unauthorized code or commands, By-

pass protection mechanism, Read application
data

Attack Inject malicious script in address field
Attacker Inside or outside attacker (unknown)
Vulnerability/
Security Issue

Cross-Site Scripting (XSS)

Countermeasure Sanitize input (see CWE-79)

correctly
→ Decisions to address these issues must be taken and
documented.

B) The requirement contains security issues (true positive
hit), but not all steps of the usage scenario have been
marked correctly
→ Decisions to address these issues must be taken and
documented and an adapted documentation structure is
required.

C) Security issues were incorrectly identified for the re-
quirement (false positive hit)
→ The finding can be discarded and no decision must
be taken.

Transforming heuristic findings to decision knowledge de-
creases the documentation effort for decisions, as the in-
corporated security knowledge highlights decision points. To
transform relevant findings into an initial set of documented
decision knowledge, we have identified three necessary steps,
which can be performed semiautomatically:

1) Security issues are grouped according to their origin in
requirements specification as potential decisions.

2) Heuristic findings are mapped to elements of decision
knowledge.

3) Missing knowledge is elicited and added to the related
elements of a decision.

In the first step, the software engineers have to choose
how to group decisions and where to attach them. This is of
particular importance for enabling traceability between system
specification and decision knowledge, so that decisions on
security can be revisited in future development activities. To
support this task automatically, one decision is created by
default for each security issue which belongs to category A and
linked to all steps of the regarded usage scenario. For example,
after performing the heuristic analysis on iTrust use case 6, a
potential XSS vulnerability is found for step 3 correctly. To
document the decision for preventing this vulnerability, the
decision is created and linked to step 3 directly. However, if a
finding belongs to category B, it might be suitable to choose
a different grouping, as some steps of the usage scenario are
not affected in the actual system. For instance, if the incident
was not modeled in detail, heuristic results would indicate the
possibility of XSS for the whole use case. Then, the grouping

of the decision should be changed to step 3 manually. If a
finding belongs to category C, it can be discarded and does
not have to be considered in the next steps. This may happen
because the heuristic analysis of requirements is performed
semantically. Thus, some findings might not be appropriate in
all contexts. For example, in case the term “enter” was found
in step 1 of use case 6, this does not necessarily mean that
data is entered, but that a user enters a certain view. Then, this
finding does not indicate a security issue.

Additionally, it has to be determined in the first step of our
transformation, whether a decision that addresses the same
heuristic finding is already documented. Then, the software
engineer has to decide, whether the current finding shall only
be linked to existing decisions instead of creating new ones.
As a result of the first step, all potential decisions address a
particular security issue and are attached to all suitable parts
of the specification.

In the second step, the content of each heuristic finding
is mapped to the decision knowledge elements in order to
automatically generate proposals for the textual descriptions
and links of the decision knowledge elements. Based on the
modeled security knowledge as depicted in Fig. 3, a default
mapping between security knowledge and decision knowledge
is presented to the software engineers. The mapping is pre-
sented in Table II, where it is exemplarily applied to use case
6 from iTrust.

The Vulnerability of a System Component illustrates what
security-related decision is needed to address the security
issue and is therefore created as Decision. Attack and Attacker
describe the details within the security issue corresponding to
the description of a decision problem, so they are mapped to
Issue. This Issue element is linked to the concrete requirement
part such as a use case step or a subscenario, where the security
issue was found. Entry Points and Trust Level are forming an
Assumption, as they are the assumed circumstances permitting
a potential security issue. A Criterion as specialized context
knowledge serves to evaluate the decisions’ alternatives by
combining Threat and Asset. Then, alternatives are favored,
which mitigate or overcome the given threat for the mentioned

TABLE II
DEFAULT MAPPING BETWEEN HEURISTIC AND DECISION KNOWLEDGE

APPLIED ON THE ITRUST EXAMPLE

Heuristic
Knowledge

Decision
Knowledge

Example for Generated Textual
Content

Vulnerability,
System
Component

Decision Prevent Cross-Site Scripting in iTrust
Medical Records System

Attack,
Attacker

Issue Inject malicious script in address field
might be performed by inside or out-
side attacker (link to use case step)

Entry Points,
Trust Level

Assumption Attack can be performed through ad-
dress field in health record for the
roles patient, health care personnel

Threat, Asset Criterion
(as Context)

Prevent execute unauthorized code for
address

Counter-
measure

Alternative Sanitize input (link to mitigation
strategies of CWE-79)

4

asset. Finally, a Countermeasure describes how to react on a
security issue. It is mapped to an Alternative. The software
engineers have to decide for each finding if the default
mapping is appropriate. Otherwise, they need to rectify it
manually. For instance, for use case 6 the software engineer
might want use the Countermeasure as part of the Decision
and map the Vulnerability to Issue instead, as they are quite
similar for this heuristic finding.

In the third step, the automatically generated proposals for
textual contents and links of decision knowledge elements can
be adapted and refined manually if necessary. Furthermore, the
software engineers are requested to fill in missing description
parts for knowledge elements that are not included in the
findings. A major reason is that some aspects of the security
knowledge might not have been modeled completely within
the incidents. For instance, if no particular entry point is
specified for a particular system component, the software
engineer will be asked to add this as a part of the decisions’
description. Another example is a missing countermeasure,
so that no alternative can be added to the decisions’ initial
documentation automatically. If a decision becomes relevant
in further development, it is likely to be enriched iteratively
with more information.

IV. UPDATING DECISION KNOWLEDGE
BASED ON USER MONITORING

User monitoring can serve our approach in two ways: It can
help to prioritize heuristic findings and to uncover required
updates for decision knowledge. First, the heuristic findings
need to be prioritized, since not all use cases are relevant
in operation equally. If the monitoring would show that an
affected use case is used more frequently, heuristic findings
would be prioritized as more relevant. The reason is that
the damage is higher if the vulnerability is exploited by an
attacker. Regarding iTrust, a XSS vulnerability on a site, which
is shown to each patient by default, would execute a malicious
script on many computers. Therefore, the vulnerability should
be handled first for this use case.

Second, decision knowledge and its documentation need to
be updated to address evolving security requirements. Again,
we consider the iTrust, which is realized as a web application.
It requires users to login (use case 3) before they can view
their list of health care professionals and change it (use case
6). We use the login/ logout functionality to illustrate how
the monitoring component identifies potential security issues
using three steps [15]: Extracting a model of expected user
behavior, monitoring user behavior, and comparing monitored
and expected user behavior. First, a model of expected user
behavior is extracted from the requirements semiautomatically.
Therefore, the flow of events of each use case is transformed
in a machine-readable format. In our example, a model of
expected user behavior contains that users first login, then
they perform an arbitrary number of tasks, and finally logout.
Second, actions of users are monitored by software sensors,
which are incorporated in the application and capture user
actions. Depending on the implementation technology these

software sensors can be implemented as dedicated logging
code or reuse callback mechanisms of application development
frameworks. Further, user monitoring can be performed on the
user device, on the server (in case of a web application), or
as a combination of both. Third, monitored user actions are
compared to the extracted model of expected user behavior.
In our example, a deviation will probably be detected for
many users: They forget to logout and therefore deviate
from expected behavior which requires to logout explicitly.
This deviation is forwarded to the decision component. Now,
software engineers have to investigate the deviation whether
it is security-relevant or not. In the first case, they have to
decide how to address the deviation properly. In our example,
we are dealing with a medical application requiring a strict
security policy. Thus, the deviation - the missing logout - is
security-relevant and will probably be addressed by adding an
automated logout feature, which terminates a user session after
a certain time of inactivity. For a different type of application
(e.g., a gaming app) with a less strict security policy, software
engineers might decide to simply ignore the deviation.

The user monitoring component partially overlaps with an
intrusion detection system: Both aim at the identification of
anomalies in user behavior. But while intrusion detection
systems usually operate on network and system level, our
user monitoring component operates on the interaction level
between user and application. This allows to assess whether
the actual behavior of end users conforms to the given use
cases.

The forwarded deviation is processed by the decision doc-
umentation component in order to prepare an update of the
existing decision documentation. All decisions are retrieved
that are linked with the related requirement. In our example, it
is likely that a decision on how to implement the login/logout
mechanism was made, which we assume to be documented
already. This decision is linked to use case 3 and would,
therefore, be reissued to software engineers for updating it
in order to address the identified deviation for the logout step.
As mentioned, it will probably be decided to add an automated
logout feature. The decision for an automated logout and
consequent changes of security requirements can be docu-
mented directly by adding this knowledge to the given decision
documentation. In consequence, an effective reaction and a
comprehensive documentation of the requirements’ evolution
was supported by integrating user monitoring in our approach.

V. RELATED WORK

Our approach extends the current approaches for decision
documentation in requirements engineering, as it introduces
the semiautomatic documentation of security-related decisions
with low effort and improved quality and completeness of
informal documentation. Aurum et al. [2] outline the need for a
knowledge sharing environment for decisions in requirements
engineering, but they do not provide a computer-supported ap-
proach for knowledge acquisition and structuring. Nuseibeh et
al. [13] describe their experiences when performing a security
requirements analysis for an air traffic control systems. This

5

security analysis based on a method introduced by Haley et al.
[7] requires software engineers to create a formal context de-
scription for the system. Then, this context is validated against
security requirements automatically. Although decisions are
considered indirectly by proving that the system conforms to
the security requirements, there exists no explicit decision rep-
resentation in this approach. Moreover, modeling the formal
context is performed manually. In consequence, the effort for
identifying and documenting security-related decisions is high
and error-prone. Whereas this is no problem for safety-critical
air traffic systems, high analysis and documentation effort is
not suitable for the development of most information systems.

The approaches of Sindre and Opdahl [16] and Braz et
al. [3] focus on elicitation support using misuse cases to
uncover security requirements. But they do not describe how to
keep the security requirements specification and their related
decisions up-tp-date over time. Tun et al. present an approach
to analyze the evolution of security requirements [18]. They
propose a meta-model to automatically generate templates for
evolving security requirements. But this requires software en-
gineers to specify manually and formally, which requirements
are given for the system and what changes have occured in the
environment. Burge et al. [4] present an ontology-based tool
to provide rationale support for software engineers. Jansen
et al. [10] describe a tool-supported approach to discover
decisions within given architectural descriptions. However,
both approaches focus on design and implementation and do
not cover requirements.

VI. CONCLUSION

We have described a semiautomatic approach for incorpo-
rating knowledge from heuristic analysis and user monitoring
into decision documentation. Therefore, we use heuristic anal-
ysis to identify potential vulnerabilities in textual requirements
and user monitoring to identify potential vulnerabilities at
runtime. Then, we outlined several steps how knowledge from
these sources can be transformed to be a suitable starting point
for or extension to decision documentation. As a result, our
approach improves the quality and completeness of security
requirements and their related decisions. Moreover, it lowers
the effort for decision documentation. This supports the engi-
neering and evolution of security requirements of long-living
software systems, as software engineers can react faster when
security issues become known and have to be addressed in
implementation decisions.

Currently, we are developing a prototype of our approach
utilizing Unicase [1], which is a model-based management
tool for project and system knowledge in Eclipse. Future
work should consider two directions: First, evaluation of our
approach in form of a controlled experiment with software
engineers. And second, investigation of other measures and

information sources to improve engineering and evolution of
security requirements and related decisions. This may include
educating software engineers or enforcing a certain security
requirements engineering process.

ACKNOWLEDGEMENT

This work was partially supported by the DFG (German
Research Foundation) under the Priority Programme SPP1593:
Design For Future — Managed Software Evolution.

REFERENCES

[1] Unicase. http://unicase.org/ (Retrieved in 05-2014).
[2] A. Aurum, C. Wohlin, and A. Porter. Aligning Software Project

Decisions: A case study. International Journal of Software Engineering
and Knowledge Engineering, 16(06):795–818, Dec. 2006.

[3] F. a. Braz, E. B. Fernandez, and M. VanHilst. Eliciting Security
Requirements through Misuse Activities. In Proc. of the 19th Int.
Conference on Database and Expert Systems Applications, pages 328–
333. IEEE, 2008.

[4] J. E. Burge and D. C. Brown. Software Engineering Using RATionale.
Journal of Systems and Software, 81(3):395–413, Mar. 2008.

[5] A. Dutoit, R. McCall, I. Mistrik, and B. Paech. Rationale Management
in Software Engineering, chapter Rational Management in Software
Engineering: Concepts and Techniques. Springer, 2006.

[6] S. Gärtner, T. Ruhroth, J. Bürger, K. Schneider, and J. Jürjens. Maintain-
ing Requirements for Long-Living Software Systems by Incorporating
Security Knowledge. In Proc. of the 22th International Requirements
Engineering Conference. IEEE, 2014.

[7] C. B. Haley, R. C. Laney, J. D. Moffett, and B. Nuseibeh. Security Re-
quirements Engineering: A Framework for Representation and Analysis.
IEEE Trans. Software Eng., 34(1):133–153, 2008.

[8] S. Hansman and R. Hunt. A taxonomy of network and computer attacks.
Computers & Security, 24(1):31–43, 2005.

[9] T.-M. Hesse and B. Paech. Supporting the Collaborative Development
of Requirements and Architecture Documentation. In 3rd Int. Workshop
on the Twin Peaks of Requirements and Architecture, pages 22 – 26.
IEEE, 2013.

[10] A. Jansen, P. Avgeriou, and J. S. van der Ven. Enriching software archi-
tecture documentation. Journal of Systems and Software, 82(8):1232–
1248, Aug. 2009.

[11] A. Meneely, B. Smith, and L. Williams. iTrust electronic health care
system case study. In Software and Systems Traceability, pages 425–
438. Springer, 2012.

[12] T. Ngo and G. Ruhe. Decision Support in Requirements Engineering.
In Engineering and Managing Software Requirements, pages 267–286.
Springer, 2005.

[13] B. Nuseibeh, C. B. Haley, and C. Foster. Securing the Skies: In
Requirements We Trust. IEEE Computer, 42(9):64–72, 2009.

[14] B. Paech, A. Delater, and T.-M. Hesse. Integrating Project and Sys-
tem Knowledge Management. In Software Project Management in a
Changing World, pages 161–198. Springer, 2014.

[15] T. Roehm, N. Gurbanova, B. Bruegge, C. Joubert, and W. Maalej.
Monitoring user interactions for supporting failure reproduction. In
Proc. of the 21st International Conference on Program Comprehension
(ICPC), pages 73–82. IEEE, 2013.

[16] G. Sindre and A. L. Opdahl. Eliciting security requirements with misuse
cases. Requirements Engineering, 10(1):34–44, 2005.

[17] The MITRE Corporation. Common Weakness Enumeration (CWE),
2014.

[18] T. T. Tun, Y. Yu, C. Haley, and B. Nuseibeh. Model-Based Argument
Analysis for Evolving Security Requirements. In 4th International
Conference on Secure Software Integration and Reliability Improvement
(SSIRI), pages 88–97. IEEE, 2010.

6

