

©2014 IEEE. Reprinted, with permission, from Remmel H, Paech B, Engwer C,
Bastian P, A Case Study on a Quality Assurance Process for a Scientific
Framework, Computing in Science and Engineering Vol. 16, No. 3, May 2014,
pp. 58-66.

This material is posted here with permission of the IEEE. Such permission of the
IEEE does not in any way imply IEEE endorsement of any of the University of
Heidelberg's products or services. Internal or personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution must be obtained from the IEEE by writing to pubs-
permissions@ieee.org. By choosing to view this document, you agree to all
provisions of the copyright laws protecting it.

58 Computing in Science & Engineering 1521-9615/14/$31.00 © 2014 IEEE Copublished by the IEEE CS and the AIP May/June 2014

A Case Study on a Quality Assurance Process
for a Scientific Framework

Hanna Remmel and Barbara Paech | University of Heidelberg

Christian Engwer | University of Münster

Peter Bastian | University of Heidelberg

The following case study analyzes the feasibility and acceptance by developers of two parts of the quality assurance
process: variability model creation and desk-checking. The study found that both parts are accepted and feasible
for development, but a different variability modeling language is needed to represent all important aspects.

O
ur research concentrates on the quality
assurance of scientific frameworks. The
Distributed and Unified Numerics En-
vironment (Dune; www.dune-project.

org), the software we use, is a complex scientific
framework for solving partial differential equa-
tions supporting a large variety of applications
(for example, fluid mechanics or transport in po-
rous media), mathematical models, and numerical
algorithms.

Testing scientific software is a challenging
task, because it must deal with special challenges
such as missing test oracles, the need for high-
performance parallel computing, and the high
priority of nonfunctional over functional require-
ments.1 When testing a scientific framework, we
also need to find a way to deal with the large vari-
ability, which means the various possible uses, of a
framework.

Our approach to meeting this challenge is to
apply software product line engineering (SPLE)
to handle the framework’s variability. In SPLE,
the idea is to develop a software platform dur-
ing domain engineering and then, in application
engineering, to use mass customization for the
creation of a group of similar applications that
differ from each other in specific predetermined
characteristics.2

In earlier work, we proposed the design of
a quality assurance process for scientific frame-
works.3 This process is based on a quality assur-
ance process for SPL introduced by Ivan do Carmo

Machado and his colleagues in the context of the
RiSE Product Line Engineering Testing project
(Riple-TE).4 (See the “Related Work in Quality
Assurance” for other work in this area.) We ad-
justed this quality assurance process to account for
an SPL test strategy for scientific frameworks and
special characteristics for scientific software devel-
opment, which we introduced earlier.3 The main
adjustments in our quality assurance process re-
garding Riple-TE were that our process only covers
domain testing, introduces system testing already
in domain testing, includes scientific validation,
and reduces the number of test roles.

Here, we report on a case study based on the
method described by Per Runeson and his col-
leagues,5 analyzing those parts of the design of the
quality assurance process that aren’t yet familiar
to the Dune developers: variability model creation
and desk-checking. The use of variability modeling
for the systematic creation of system tests is a new
method in scientific software development, which
makes case study results interesting for the com-
putational science and engineering community in
general. Desk-checking, on the other hand, is a rel-
atively well-known technique and has already been
mentioned in scientific software engineering litera-
ture,6 but no experimental results on the feasibil-
ity and acceptability of the method in the context
of scientific software were available at the time of
this study. The objective is to analyze the feasibil-
ity and the acceptance of these methods. Based on
the results of the case study, we’ll want to adjust

SoFtwARE EnginEERing FoR CSE

CISE-16-03-Remmel.indd 58 29/05/14 11:06 AM

www.computer.org/cise 59

the design of the quality assurance process before
establishing it completely.

Case Study Background
In previous work, we discussed a process for cre-
ating variability models for Dune.7 We use SPL
variability modeling for the systematic creation of
system tests. Because it isn’t feasible to create such
a variability model for the whole framework cov-
ering a wide range of functionality, we start with
the mathematical requirements for the framework
(the mathematical problems, which the framework
should solve) and create several variability models
based on those mathematical requirements. Each
variability model is associated with a system test
application, a Dune application solving the cor-
responding mathematical problem. For example,
one mathematical problem the Dune framework
should support is solving the Poisson equation, an
elliptic partial differential equation. A variability
model for this problem covers, among other things,
the different possible grid configurations and the
discretization methods used.7

We propose using the orthogonal variabil-
ity modeling language of Klaus Pohl and his col-
leagues.2 Software characteristics that can vary are
called variation points and a variation point’s pos-
sible values are called variants. A variability model
is described by variation points and their variants.
This model also includes the constraints between
the variation points and the variants.2 Figure 1
shows an example variability model including the
graphical notation used.

Figure 2 illustrates the design of the quality
assurance process. Highlighted are those parts of
the design that are necessary to understand the
background of the case study: planning, includ-
ing the creation of variability models, and review
(desk-check). Only these parts are discussed here.
The entire process is discussed in detail elsewhere.3

Planning
The activities in this step are critical for the success
of the whole process. When developers change the
source code or develop a new piece of code, they
plan ahead for quality assurance issues such as cre-
ating or adjusting unit test cases.

If the mathematical requirements for the
framework change (for example, when a new func-
tionality is included in the framework), the devel-
oper might need to formulate one or more new
variability models based on the requirements to-
gether with the associated system test applications.

In other cases, existing variability models and sys-
tem test applications must be adjusted (for exam-
ple, by including new variation points or variants).

Review
The sooner a failure is found, the lower the cost of
removing it. The earliest possible point for finding
failures is right after developing the code. Taking
the time to consciously read one’s own code before
checking it in (also called desk-checking6) can re-
veal failures before the code is even tested. At the
same time, the developer can review the code’s
readability and structure. Because the software
context is complex, developers should strive to
write comprehensible source code with a sufficient

Related work in Quality Assurance

Here, we consider other empirical studies on quality assurance pro-

cesses for software product line engineering (SPLE). We couldn’t

find any empirical studies for quality assurance processes for scientific

software in the literature.

The unit testing part of Riple-TE, the quality assurance process we

based our process on, was initially evaluated in an experimental study

by Ivan do Carmo Machado and his colleagues.1 The goal was to analyze

the effectiveness of unit testing in this process and to determine which

professional skills impact the test activity results. In the experiment, 30

undergraduate students tested the same source code with and without the

process. The authors admitted that the results of this experiment weren’t

very significant. This initial experiment serves as a baseline for future

experiments.

Paulo Anselmo da Mota Silveira Neto and his colleagues propose a

formal regression testing approach for the reference architecture of an

SPL, which uses extensive documentation, many detailed process steps,

and plenty of test roles.2 Their approach concentrates on the commonality

of the SPL and doesn’t apply to system testing. The approach was evalu-

ated to calibrate and improve it. Eight postgraduate students applied the

approach in an experimental scenario. The approach showed its efficiency,

although it wasn’t tested in a real SPL context.

One major advantage in our case study was that we could conduct the

case study with developers of scientific software who are the actual target

audience instead of undergraduate or postgraduate students, making the

results more significant.

References
1. I.C. Machado et al., “RiPLE-TE: A Process for Testing Software Product

Lines,” Proc. 23rd Int’l Conf. Software Eng. and Knowledge Eng., 2011,

pp. 711–716.

2. P.A. da Mota Silveira Neto et al., “A Regression Testing Approach for

Software Product Lines Architectures,” Proc. 4th Brazilian Symp. Soft-
ware Components, Architectures and Reuse, 2010, pp. 41–50.

CISE-16-03-Remmel.indd 59 29/05/14 11:06 AM

Software engineering for CSe

60 May/June 2014

number of comments. This would also benefit new
colleagues working with the same software, and it
improves the code’s maintainability.

In contrast to the technical review in the Riple-
TE quality assurance process, our process involves
a review of the source code, not just SPL artifacts
like the variability models. Certainly, developers
should review all artifacts they created or changed:
source code, unit tests, variability models, and sys-
tem test applications.

If appropriate, the developer can ask a col-
league to review the changes as well. The develop-
ment team could also name developers responsible
for different software modules who regularly re-
view the changed source code.6 We don’t pursue a
structured inspection or review process, as the goal
is to keep the quality assurance process practical
and simple.

Case Study Design
The case study’s objective is to analyze the feasibil-
ity and acceptance of variability model creation
and desk-checking as part of the designed qual-
ity assurance process. This objective was chosen as
these aspects hadn’t yet been familiar to the Dune
developers. The advantage of analyzing the process
before it’s completely established is that we can still
adjust the design according to the case study re-
sults without much overhead.

The case study was executed with a group of
six Dune developers. They all work in the same
academic group and have developed Dune for
2.5–3.5 years, with one developer having worked
in the group for 10 years. Four of the develop-
ers are mathematicians and two are computer
scientists.

Research Questions
According to the goal question metric approach
(GCM),8 to measure in a purposeful way, we first
need to specify our goals and then define how we
intend to collect and interpret data with respect to
the stated goals. The following are the goals for the
case study:

■■ Goal 1: Assess the feasibility of variability
modeling.

■■ Goal 2: Assess the feasibility of desk-checking.
■■ Goal 3: Assess the acceptance of variability

modeling.
■■ Goal 4: Assess the acceptance of desk-checking.

All of these goals were analyzed in the quality
assurance context from the developer’s viewpoint.

Feasibility. For the feasibility assessment, we re-
flected on possible advantages and disadvantages of
variability modeling and desk-checking. We then
formulated research questions that would check
whether these assumptions apply. In addition, we
wanted to find out if the Dune developers think
that the advantages of these methods outbalance
the effort required.

Acceptance. The acceptance part of our case study
is based on the technology acceptance model
(TAM).9 This method was developed for software
systems, but we use it for software engineering
methods. Fred Davis and his colleagues found
that during a one-hour hands-on introduction,
people form a perception of a system’s (method’s)
usefulness that is strongly linked to their usage

requires_V_V

excludes_V_V

excludes_V_V Variant excludes variant

Graphical notation:

Constraint dependencies:

VP

Grid
structure

V
Non-structured

excludes_V_V

Grid
conformity

VP

V
Conforming

requires_V_V

requires_V_VP

V

VP

V

Variation point

Variant

Alternative choice

requires_V_V

requires_V_VP Variant requires variation point

Variant requires variant

Structured

VP

Local Global

Grid
refinement type

V V

Non-
conforming

V

Figure 1. Example of the use of an orthogonal variability

modeling language for supporting the systematic

creation of system tests.

CISE-16-03-Remmel.indd 60 29/05/14 11:06 AM

www.computer.org/cise 61

intention.9 Furthermore, the intention of use is
 significantly correlated with the future acceptance
of the system (method). According to TAM, per-
ceived usefulness and ease of use are of primary rel-
evance for acceptance behavior.

Table 1 contains our research questions, the as-
sociated hypotheses, and the sources used to collect
the data.

Research Methods
We designed and conducted the case study ac-
cording to instructions by Runeson and his
colleagues.5

The main author of this article took part in
and moderated a two-hour meeting with the Dune
developers. An external researcher also attended
the meeting for validity reasons.

The Dune developers performed the given
tasks together in a group. The researcher didn’t
take part in the tasks, but questions of comprehen-
sion to the researcher were allowed. The case study
meeting was recorded, transcribed, and coded for
analysis purposes.

Task 1 was to model different possibilities of
how a grid can be defined.7 The proposed approach
was to first list possible variation points on a flip
chart and then continue with the variability mod-
eling on a poster board.

Task 2 was to adjust a proposed desk-check-
ing checklist for the needs of Dune development.
Which items are suitable and which are not?
Which items are missing? The developers didn’t try
out desk-checking directly because it wasn’t possi-
ble to simulate a realistic application of desk-check-
ing. The “Proposed Desk-Checking Checklist”
sidebar shows the checklist the Dune developers
were given.

We used different data sources for the case
study: observation, questionnaire, and discussion.
The metrics used for observation and discussion
were subjective notes by the researcher. For the
open questionnaire questions, we used the Dune
developers’ subjective opinion metric. For the data
aggregation, we counted how many times similar
answers were given. For the closed questionnaire
questions, we used a Likert scale and aggregated
the answers with a median. If the median was be-
tween two values, we chose the side with the higher
dispersal in the answers.

Results
We report the results of the case study using the
research questions in Table 1.

Variability Modeling by Developers
When the Dune developers were working on their
variability model, the working atmosphere was
open and everyone took part in the discussion
about variability model details (F_RQ_VM1). The
developers were motivated to learn the method and
many questions of comprehension were asked.

First, the developers collected possible varia-
tion points on a flip chart. Every proposal was
thoroughly discussed right away and at the end
accepted or rejected by the group. Possible vari-
ants were listed instantly for each variation point.
Before drawing the variability model, the develop-
ers considered possible dependencies between the
variation points and their variants. They wanted to
draw the variation points with their dependencies
close to each other.

The developers thought of the model with “lev-
els” or a “hierarchy,” although the proposed vari-
ability model doesn’t have levels. They considered
which variation point should be put on the top,
meaning which variation point is most essential for
the variability model. They wanted to put variation
points that are built in a similar way “on the same

Figure 2. Quality assurance process for scientific frameworks. The parts

needed to understand this case study, planning and review (desk-check),

are highlighted. The whole process is introduced in detail elsewhere.3

Yes No

Algorithm
verification

Yes

Yes

No

No

Failure
found?

Planning
Review
(desk-
check)

Unit and
integration
testing

Code
verification

System
testing

Yes No

Scientific
validation

Failure
found?

Failure
found?

Scientific
validation

R
eporting

R
egression testing

Failure
found?

CISE-16-03-Remmel.indd 61 29/05/14 11:06 AM

Software engineering for CSe

62 May/June 2014

level.” This seems to be an intuitive way of think-
ing of a variability model.

In Dune, there’s a technical constraint when it
comes to defining a grid: there are a handful of grid

implementations a Dune user can choose from when
implementing a Dune application. Each grid imple-
mentation has its own characteristics and constraints.
It’s only possible to use a grid with characteristics that

table 1. Research questions.

Research question Coding* Hypothesis Data source

How do developers perform
variability modeling?

F_RQ_VM1 N/A Observation

What do the developers
believe are the advantages
of variability modeling for
the Dune development?

F_RQ_VM2 Variability modeling offers a systematic way to
model different possibilities to solve a
mathematical problem and a support for
system test program development.

Observation, open and
closed questionnaire
questions

What do the developers
believe are the disadvantages
of variability modeling for the
Dune development?

F_RQ_VM3 Variability model creation is a complex task and
requires deep domain knowledge.

Observation, open and
closed questionnaire
questions

Can variability modeling be
used to capture the variability
of mathematical problems
solved by the framework?

F_RQ_VM4 Yes, variability modeling can be used to capture
the variability of mathematical problems.

Observation

How do developers perform
desk-checking?

F_RQ_DC1 N/A Observation

What do the developers
believe are the advantages
of desk-check for the Dune
development?

F_RQ_DC2 Desk-checking helps developers find software
failures even before testing, provides a reminder
of creating tests and documentation, and leads
to an increase in software quality, in particular
readability and maintainability.

Observation, open and
closed questionnaire
questions

What do the developers
believe are the disadvantages
of desk-check for the Dune
development?

F_RQ_DC3 Desk-checking leads to minor overhead. Observation, open and
closed questionnaire
questions

Do the advantages of a
variability model outbalance
the effort of creating it?

E_RQ_VM The advantages of a variability model outbalance
the effort of creating it.

Closed questionnaire
questions

Do the advantages of desk-
checking outbalance the
effort needed for it?

E_RQ_DC The advantages of a desk-checking outbalance
the effort needed for it.

Closed questionnaire
questions

Do the developers think
variability modeling/desk-
checking is useful for them?

A_RQ_VM/DC1 The developers find variability modeling/desk-
checking useful for them.

Closed questionnaire
questions

Do the developers think
variability modeling/desk-
checking is easy to use?

A_RQ_VM/DC2 The developers think variability modeling/desk-
checking is easy to use.

Closed questionnaire
questions

Do the developers intend
to use variability modeling/
desk-checking in Dune
development?

A_RQ_VM/DC3 The developers intend to use variability modeling/
desk-checking in Dune development.

Closed questionnaire
questions

*Legend for research question codes: F = feasibility, E = effort, A = acceptance, RQ = research question, VM = variability modeling,
DC = desk-checking.

CISE-16-03-Remmel.indd 62 29/05/14 11:06 AM

www.computer.org/cise 63

suit at least one of these grid implementations. The
used grid implementation is actually not a grid char-
acteristic, but technically highly essential. Thus, the
developers decided to select grid implementation as a
central variation point.

Possible variants for the variation point “ele-
ment type” depend on the variation point “grid
dimension.” In 2D, possible element types are
cubes and simplexes. In 3D, there are also prism,
pyramid, and so on, because sometimes a grid can’t
be defined correctly without these filling element
types. The developers decided to use an “abstrac-
tion” for the variation point element type: they de-
fined only the variants “cube(d)” and “simplex(d)”
for it. Depending on the grid dimension, it’s clear
which concrete element types are available.

Advantages of Variability Modeling for the
Dune Development
The following list collects the most frequently men-
tioned advantages that Dune developers see in vari-
ability modeling (F_RQ_VM2 and E_RQ_VM).
The numbers in parentheses indicate how many
times each statement was mentioned in the open
questionnaire questions about the advantages:

■■ Variability modeling offers a systematic way to
cope with all different possible combinations
of features and their dependencies (5).

■■ The process of variability modeling leads to a
deeper reflection about the set of needed vari-
ants, concrete dependencies between the con-
cepts in the software, or scope and goal of a
test case (5).

■■ Variability modeling is the first step in the au-
tomatic generation of test cases for Dune: every
valid combination of variants is a test case (2).

The summarized results of closed questionnaire
questions reveal that the developers agree that vari-
ability modeling would be helpful in developing sys-
tem test applications, and that the advantages of a
variability model outbalance the effort of creating it.

Disadvantages of Variability
Modeling for the Dune Development
The disadvantages some developers see in variabil-
ity modeling (F_RQ_VM3) in general include the
following:

■■ Creating a variability modeling is costly be-
cause of the complexity of the mathematical
problems (1).

■■ It will be difficult to implement the automatic
creation of test cases, because each set of vari-
ants must be implemented differently (1).

These are the disadvantages the developers see
in the proposed variability model:

■■ The presentation becomes complex easily and
therefore unclear, unreadable, and hard to
maintain. Many lines (dependencies) make the
model unclear (5).

■■ The developers miss the possibility to define a
hierarchy between variation points (4).

■■ The modeling language can’t represent some
important aspects. Some dependencies are
more complex than can be modeled. For ex-
ample, in some cases one variant should be ex-
cluded if a combination of two other variants
is chosen. To model this kind of situation, the
developers combined two variation points—
grid implementation and grid dimension. This
solution didn’t satisfy the developers (3).

Capturing the Variability of Mathematical
Problems with Variability Modeling
While working on the variability model, the de-
velopers didn’t agree about how detailed the model
should be (F_RQ_VM4). Some developers repeat-
edly came up with special cases and other develop-
ers argued that these cases weren’t really relevant.
One developer noted that the variability model
only needs to be as detailed as someone wants
to define the different test cases for a system test
 application. Some minor features could be imple-
mented as arbitrary parameters without being part
of the variability model.

Proposed Desk-Checking Checklist

Before checking in, please read through the source code one more

time:

■■ Is the desired functionality or change implemented correctly?

■■ Is the source code sufficiently documented?

■■ Does the source code follow the coding style?

■■ Were unit tests created for new functionality? Were existing unit tests

adjusted for the changed source code?

■■ If new mathematical requirements were implemented, were system

tests created?

CISE-16-03-Remmel.indd 63 29/05/14 11:06 AM

Software engineering for CSe

64 May/June 2014

All developers agreed that the viewpoint has a
major influence on the created variability model.
A variability model created for a specific system
test application will be different from a variability
model for a general case. Many developers agreed
that it makes sense to choose a “test application”
viewpoint, because the variability model would be
more precise and less complex.

Acceptance of Variability Modeling
The developers agreed that variability model-
ing is useful for the Dune development, easy to
learn and use, and that they intend to use vari-
ability modeling for the Dune development
(A_RQ_VM1-3).

Desk-Checking by Developers
The developers found several items important in
the proposed checklist (F_RQ_DS1):

■■ The developers distinguished between source
code documentation and commit messages
in the version control system. They thought
both of these were important. The com-
mit messages were distributed over a mail-
ing list so other developers could review
the changes.

■■ Several developers argued for the importance
of creating and extending suitable tests, in par-
ticular for changes in the Dune base classes.

■■ A couple of developers thought that checking
whether the source code follows the coding
style is also important.

In addition, one developer noted that the
items in the checklist are rather suitable for the
development in the Dune base classes instead of
source code for solutions of special mathematical
problems.

There were also some ideas for additional
checklist items:

■■ Several developers found it important to check
the naming of variables for suitability before
checking in the source code.

■■ Another point mentioned was that each devel-
oper should check that his or her source code is
written comprehensibly.

The item in the checklist that most develop-
ers found redundant was whether the functional-
ity was correctly implemented. They found that
it’s self-evident that only source code that works

will be checked in. They didn’t see any advantage
in reading the source code one more time to re-
view this. Rather, they check the functionality
through testing or by looking at the output of the
software.

Advantages of Desk-Checking
for the Dune Development
The main advantage the developers see in desk-
checking (F_RQ_DC2 and E_RQ_DC) is
quality improvement, in particular of the docu-
mentation (5). Other quality improvements they
expect are:

■■ a more careful check that an implementation
is correct (2);

■■ a better chance that proper tests are developed
(2); and

■■ more readable code that follows the coding
style (2).

In the closed questionnaire questions, the
developers answered that they agree that desk-
checking helps to develop higher quality, more
maintainable, and more readable source code, and
that the advantages of desk-checking outbalance
the effort required. They rather agree that desk-
checking leads to a higher detection rate of soft-
ware failures.

Disadvantages of Desk-Checking
for the Dune Development
The disadvantages that the developers saw in desk-
checking (F_RQ_DC3) include the following:

■■ There’s an overhead before checking in source
code, mainly because of the creation of new
tests (4).

■■ Most of the items in the checklist are subjec-
tive. Developers have their own opinions on,
for example, what is “sufficiently documented.”
Minimum requirements must be defined for
each issue (2).

Acceptance of Desk-Checking
The developers agreed that desk-checking is use-
ful for the Dune development and easy to learn,
and they intend to use it for the Dune develop-
ment (A_RQ_DC1-3). They clearly find desk-
checking acceptable, although they only agree
that it’s easy to learn or personally important
to them.

CISE-16-03-Remmel.indd 64 29/05/14 11:06 AM

www.computer.org/cise 65

Support for Stated goals
The results of our case study support the goals out-
lined earlier.

goal 1: Feasibility of Variability Modeling
Dune developers recognized important advantages
of variability modeling. A surprising result was that
almost every developer brought up the positive ef-
fect of a deeper reflection about the variability in
the examined concept. The disadvantages found
were almost all associated with the presented vari-
ability modeling language, not with variability
modeling in general.

The results of the case study reveal that vari-
ability modeling can be used to capture the vari-
ability of mathematical problems if the viewpoint
is fixed first and the modeling task is clearly de-
fined. This means that variability modeling is feasi-
ble for the Dune quality assurance, but we need to
find a different variability modeling language that
can represent all important aspects and enables the
definition of a hierarchy.

goal 2: Feasibility of Desk-Checking
The case study convinced the developers that
desk-checking helps to develop higher quality
source code. They could see many advantages in
desk-checking. The main disadvantage they see—
overhead—is mainly associated with the creation
of tests. However, they’re willing to accept this
overhead, as they see it as an advantage that desk-
checking reminds them of creating the tests.

The case study results indicate that desk-check-
ing is feasible for the Dune development. As a next
step, the developers should adjust the desk-check-
ing checklist to better suit their needs and define
the minimum requirements for each item in the
checklist.

goal 3: Acceptance of Variability Modeling
The acceptance of variability modeling for the
Dune development was positive. We expect accep-
tance to increase with a more suitable variability
modeling language.

goal 4: Acceptance of Desk-Checking
The case study results in a clear acceptance of desk-
checking. The developers see that desk-checking is
useful for the Dune development and intend to use it.

threats to Validity
In our analysis of the validity of the case study and
its results, we distinguish between different aspects

of the validity as presented by Runeson and his
colleagues.5

Construct Validity
Construct validity reflects the extent to which the
used research methods really represent what’s in-
vestigated according to the research questions.5

We used different methods to increase the
construct validity of our case study. To achieve a
methodological triangulation, we combined differ-
ent types of data collection methods: observation,
questionnaire, and discussion. The case study de-
sign includes a chain of evidence on how the data
of the different data sources are used to answer
the research questions. Observer triangulation was
achieved by an external observer during the case
study meeting.

Several researchers checked the questions in
the questionnaire for understandability. During
the case study, external influence on the develop-
ers was kept to a minimum. The moderator didn’t
mention any advantages or disadvantages of the
methods. The developers always answered the open
questions about the advantages and disadvantages
before reading the closed question that mentioned
some possible advantages. During the case study,
we found that it wasn’t clear to all developers if
they should report their opinion on variability
modeling in general or on the proposed variabil-
ity modeling language. Some problems with this
specific variability modeling language might have
negatively influenced the results on the variability
modeling part of the case study.

The researcher who moderated the case study
has been working with the Dune developers regu-
larly over the past several years, and thus, there’s a
trusting relationship between them. Runeson and
his colleagues call this a “prolonged involvement.”5
One positive effect of this is that the researcher can
understand how the developers interpret the terms
used in the study.

As a further step to increase the construct va-
lidity, the results of the case study were sent to the
participating Dune developers in advance. They
confirmed that the results reflect their opinion
correctly.

External Validity
The analysis of external validity seeks to determine
the extent to which it’s possible to generalize the
findings for other cases.5

The findings of this case study indicate that
variability modeling and desk-checking could be

CISE-16-03-Remmel.indd 65 29/05/14 11:06 AM

Software engineering for CSe

66 May/June 2014

found feasible and acceptable for other cases in the
context of scientific software development. Further
examination is necessary to confirm this.

Reliability
Reliability of validity relates to the extent to which
the data and the analysis are dependent on a spe-
cific researcher.5

During the design, data collection, and analy-
sis of the case study, the researcher continuously
documented every step that was performed. A
second researcher peer reviewed each step. Fur-
thermore, an external researcher reviewed the case
study design. This means there’s a reproducible
chain of evidence for the case study.

In our current and future work, we plan to adjust
the design of the quality assurance process ac-

cording to the results of the case study. Together
with the developers, we’ll adjust the desk-check-
ing checklist to fit the need of the Dune devel-
opment. Currently, we’re adapting tool support
for feature-oriented software development. This
includes support for variability modeling and
the development of test applications using the
variability model. The variability modeling lan-
guage used in the tool we plan to use, FeatureIDE
(http://fosd.de/fide), is a feature tree that satisfies
all our requirements.

References
1. J.C. Carver, “Report: The Second International

Workshop on Software Engineering for CSE,”
Computing in Science & Eng., vol. 11, no. 6, 2009,
pp. 14–19.

2. K. Pohl, G. Böckle, and F. Linden, Software Product
Line Engineering: Foundations, Principles, and Tech-
niques, Springer Berlin Heidelberg, 2005.

3. H. Remmel et al., “Design and Rationale of a Qual-
ity Assurance Process for a Scientific Framework,”
Proc. 5th Int’ l Workshop Software Eng. Computation-
al Science and Eng. (SECSE 13), 2013, pp. 58–67.

4. I.C. Machado et al., “RiPLE-TE: A Process for
Testing Software Product Lines,” Proc. 23rd Int’ l
Conf. Software Eng. and Knowledge Eng., 2011,
pp. 711–716.

5. P. Runeson et al., Case Study Research in Software
Engineering, John Wiley & Sons, 2012.

6. D. Kelly, and R. Sanders, “Assessing the Quality of
Scientific Software,” Proc. 1st Int’ l Workshop on Soft-
ware Eng. for Computational Science and Eng., 2008;
http://secse08.cs.ua.edu/Papers/Kelly.pdf.

7. H. Remmel et al., “Supporting the Testing of Sci-
entific Frameworks with Software Product Line
Engineering: A Proposed Approach,” Proc. 4th Int’ l
Workshop Software Eng. Computational Science and
Eng., 2011, pp. 10–18.

8. V.R. Basili, G. Caldiera, and H.D. Rombach, “The
Goal Question Metric Approach,” Encyclopedia
of Software Eng., John Wiley & Sons, 1994, pp.
528–532.

9. F.D. Davis, R.P. Bagozzi, and P.R. Warshaw, “User
Acceptance of Computer Technology: A Compari-
son of Two Theoretical Models,” Management Sci-
ence, vol. 35, no. 8, 1989, pp. 982–1003.

Hanna Remmel is a graduate student at the Institute for
Computer Science, University of Heidelberg, Germany.
Her research interests include software engineering for
computational science and engineering, particularly test-
ing scientific frameworks. Remmel has a master’s degree in
computer science from the University of Jyväskylä, Finland.
Contact her at remmel@informatik.uni-heidelberg.de.

Barbara Paech is the chair of software engineering
at the Institute for Computer Science, University of
Heidelberg, Germany. Her research interests include
achieving quality with adequate effort, requirements en-
gineering, and rationale management. Paech has a PhD
in computer science from the Ludwig-Maximilians-
Universität München, Germany. Contact her at paech@
informatik.uni-heidelberg.de.

Christian Engwer is a junior professor at the University
of Münster, Germany. His research interests include nu-
merical methods for the solution of partial differential
equations, their application to complex or coupled prob-
lems, and the development of efficient and maintainable
numerics software. Engwer has a PhD in mathematics
from University of Heidelberg, Germany. Contact him
at christian.engwer@wwu.de.

Peter Bastian is the chair of scientific computing at
the Interdisciplinary Center for Scientific Computing,
University of Heidelberg, Germany. His research inter-
ests include the numerical solution of partial differential
equations, parallel algorithms, and simulation of flow and
transport in porous media. Bastian has a PhD in math-
ematics from the University of Heidelberg, Germany.
Contact him at peter.bastian@iwr.uni-heidelberg.de.

Selected articles and columns from IEEE Computer
Society publications are also available for free at

http://ComputingNow.computer.org.

CISE-16-03-Remmel.indd 66 29/05/14 11:06 AM

	Remmel, Paech, Engwer, Bastian_Zusatz
	remmel_cise14.pdf

