
Institute of Computer Science
Im Neuenheimer Feld 326
69120 Heidelberg, Germany
http://se.ifi.uni-heidelberg.de
valtokari@informatik.uni-heidelberg.de

Hanna Remmel

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Branches in Subversion,
Debugging, scmbug
Software Engineering and Scientific Computing
Exercises Third Day

http://se.ifi.uni-heidelberg.de�
http://se.ifi.uni-heidelberg.de�
http://se.ifi.uni-heidelberg.de�
mailto:delater@informatik.uni-heidelberg.de�
mailto:delater@informatik.uni-heidelberg.de�
mailto:delater@informatik.uni-heidelberg.de�

Exercises – SE and SC – SS 2011Hanna Remmel 2
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Discussion

 How was the second exercise?
• CppUnit
• Doxygen

Exercises – SE and SC – SS 2011Hanna Remmel 3
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Content

 Branching Subversion

 Debugging

 Scmbug

Content – Branching in Subversion – Debugging – scmbug

Exercises – SE and SC – SS 2011Hanna Remmel 4
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Branching, Merging, and Tagging

 Sometimes you want to work on several different versions of software at once
• Example: need to do bug fixes on Version 3 while making incompatible changes toward Version 4
• Or want two sets of developers to be able to write and test large changes independently, then put

things back together
 All modern version control systems allow you to branch a repository

• Create a "parallel universe" which is initially the same as the original, but which evolves
independently

• Can later merge changes from one branch to another
 Also common to create tags

• Symbolic labels that identify particular revisions, such as "Release_2.0"
• Makes it easy to go back to an important revision later

Content – Branching in Subversion – Debugging – scmbug

[http://software-carpentry.org/]

http://software-carpentry.org/glossary.html�
http://software-carpentry.org/glossary.html�
http://software-carpentry.org/glossary.html�

Exercises – SE and SC – SS 2011Hanna Remmel 5
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Managing Branches

 Much better than just copying all the source files
• The version control system remembers where the branch came

from, and can trace its history back
• Example: fix a bug on one branch, merge the changes into other

branches that have the same bug

 Warning: many people become over-excited about
branching when they first start to use it
• Keeping track of what's going on where can be a considerable

management overhead
• On a small project, very rare to need more than two active

branches

Content – Branching in Subversion – Debugging – scmbug

Exercises – SE and SC – SS 2011Hanna Remmel 6
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Subversion Command Reference

Name Purpose
svn add Add files and/or directories to version control.
svn checkout Get a fresh working copy of a repository.
svn commit Send changes from working copy to repository (inverse of update).
svn delete Delete files and/or directories from version control.
svn diff Shows changes for directories/files in a unified diff format.
svn help Get help (in general, or for a particular command).
svn log Show history of recent changes.
svn merge Merge two different versions of a file into one.
svn mkdir Create a new directory and put it under version control.
svn rename Rename a file or directory, keeping track of history.
svn revert Undo changes to working copy (i.e., resynchronize with repository).
svn status Show the status of files and directories in the working copy.

svn update Bring changes from repository into working copy (inverse of
commit).

Content – Branching in Subversion – Debugging – scmbug

Exercises – SE and SC – SS 2011Hanna Remmel 7
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Symbolic Debuggers

 A debugger is a program that runs another program on your behalf
• Sometimes called a symbolic debugger because it shows you the source

code you wrote, rather than raw machine code
 While the target program (or debuggee) is running, the debugger can:

• Pause, resume, or restart the target
• Display or change values
• Watch for calls to particular functions, changes to particular variables, etc.

 Do not need to modify the source of the target program!
• Depending on your language, you may need to compile it with different

flags
 And yes, the debugger modifies the target's layout in memory, and

execution speed...
• ...but a lot less than print statements...
• ...with a lot less effort from you

Content – Branching in Subversion – Debugging – scmbug

http://software-carpentry.org/glossary.html�
http://software-carpentry.org/glossary.html�
http://software-carpentry.org/glossary.html�

Exercises – SE and SC – SS 2011Hanna Remmel 8
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Debugger Features

 Interactive debuggers typically show: The source code
• The call stack
• The values of variables that are currently in scope

- I.e., global variables, parameters to the current function call, and local
variables in that function

• A panel displaying what your program has printed to standard
output and/or standard error

Content – Branching in Subversion – Debugging – scmbug

Exercises – SE and SC – SS 2011Hanna Remmel 9
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Kinds of Debuggers

 There may be several ways to get into the debugger
• Launch the debugger, load the target program, and start work
• Run the debugger with the target program as a command-line

argument
• Switch into debugging mode in the middle of an interactive session

 Sometimes also do post mortem debugging
• When a program fails badly, it creates a core dump

- Copies all of its internal state to a file on disk
• Load that dump into the debugger, and see where the program was

when it terminated
- Not as good as watching it run...
- ...but sometimes the best you can do

Content – Branching in Subversion – Debugging – scmbug

http://software-carpentry.org/glossary.html�
http://software-carpentry.org/glossary.html�

Exercises – SE and SC – SS 2011Hanna Remmel 10
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Integrated Development Environments

 Debuggers are usually part of integrated development
environments (IDEs) Tools like this are available for every
modern language
• [Microsoft Visual Studio] on Windows
• [Eclipse] for Java (and now C++)

 Also usually contain a class browser that presents an
outline of the project's modules, classes, functions,
variables, etc.

 More about debugging on
http://software-carpentry.org/debugging.html

Content – Branching in Subversion – Debugging – scmbug

http://software-carpentry.org/glossary.html�
http://software-carpentry.org/glossary.html�
http://software-carpentry.org/bib.html�
http://software-carpentry.org/bib.html�
http://software-carpentry.org/glossary.html�
http://software-carpentry.org/debugging.html�

Exercises – SE and SC – SS 2011Hanna Remmel 11
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

scmbug

 Glue between Subversion and Bugzilla
 The reason for all these nasty errors commiting when

• No issue number is given
• Issue is not assigned to you
• Issue is not in the rights status

 Also the reason for
• The output of changed files in Bugzilla comments

Content – Branching in Subversion – Debugging – scmbug

Exercises – SE and SC – SS 2011Hanna Remmel 12
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Conclusion

 Dare to do some steps in Software Engineering
• You can only judge their value, if you tried some out

 Talk to other people about it
• You can learn a lot from your colleagues (in other groups)

[Bill Watterson]

Exercises – SE and SC – SS 2011Hanna Remmel 13
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

References

 Software caprentry (http://software-carpentry.org)

http://software-carpentry.org/�

Exercises – SE and SC – SS 2011Hanna Remmel 14
© 2011 Institute of Computer Science, Ruprecht Karl University of Heidelberg

Institute of Computer Science
Chair of Software Engineering
Im Neuenheimer Feld 326
69120 Heidelberg, Germany
http://se.ifi.uni-heidelberg.de
valtokari@informatik.uni-heidelberg.de

Hanna Valtokari

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

http://se.ifi.uni-heidelberg.de�
http://se.ifi.uni-heidelberg.de�
http://se.ifi.uni-heidelberg.de�
mailto:valtokari@informatik.uni-heidelberg.de�
mailto:valtokari@informatik.uni-heidelberg.de�
mailto:valtokari@informatik.uni-heidelberg.de�

	Branches in Subversion, Debugging, scmbug
	Discussion
	Content
	Branching, Merging, and Tagging
	Managing Branches
	Subversion Command Reference
	Symbolic Debuggers
	Debugger Features
	Kinds of Debuggers
	Integrated Development Environments
	scmbug
	Conclusion
	References
	Foliennummer 14

