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Abstract

Context and Motivation: Users give natural language feedback for software in online
forums, which can be used by developers to create requirements. In order to categorize
user feedback into categories which are relevant for requirements engineering, feedback
can be classified into different categories. One such approach is the classification into dif-
ferent software aspects. The TORE framework provides a basis for such a classification.
The classification can be done manually by creating codes containing TORE categories
for tokens, which can be done by one or multiple raters on the same documents. In
order to limit mistakes stemming from the raters, the classifications can be compared by
creating inter-rater agreements. This comparison can be supported by tools, which can
simplify the process of resolving disagreements. However, manual classification is cost-
and time-intensive. Therefore an algorithm is needed for the automatic classification of
natural language user feedback into TORE-categories.

Contributions: This thesis contains three major contributions. Firstly, a tool support is
provided for the comparison of an arbitrary number of annotations of the same dataset.
Disagreements can be resolved by accepting or declining codes assigned to words. Ad-
ditionally, agreement overviews as well as statistics are provided. Secondly, a literature
review is conducted on automatic deep-learning-based classification of natural language
user feedback from online forums. The review shows that many approaches use binary
classification as a basis, although some use multi-class classification. Most of them use
some kind of pre-processing, Word2Vec for word embeddings, and a neural network for
the classification. Lastly, a classifier is implemented, based on a Bi-LSTM model for the
automatic classification of natural language texts into TORE-categories. The classifier
is trained on a manual annotation of forum data, and subsequently evaluated.

Results: A tool for the comparison of annotations is developed and implemented in
Feed.UVL, and the quality is assured through extensive system tests and an informal
usability test. The tool reuses existing views and functionalities, and is user-friendly
in design, due to the use of multiple tool-tips and standardized icons. The underlying
microservice architecture simplifies possible future extension of the algorithm. The
automatic classification tool, based on a deep learning algorithm, is also implemented
into Feed.UVL, and reuses the existing views and functionalities for the classification
results. The accuracy achieved over all classes is about 52.74%, with a recall of 53.47%,
precision of 54.59% and F1-score of 53.78%, which is mainly due to the small amount
of training data, as well as a poorly chosen test dataset.





Zusammenfassung

Kontext und Motivation: NutzerInnen geben in Online-Foren natürlichsprachliches Feed-
back für Software, das von EntwicklerInnen verwendet werden kann, um Anforderungen
zu erstellen. Einen Ansatz das Nutzerfeedback in Kategorien einzuordnen, die für die
Anforderungsentwicklung relevant sind, bietet die Klassifikation in verschiedene Soft-
wareaspekte. Hierfür bietet das TORE-Framework eine Grundlage. Die Klassifikation
kann manuell erfolgen, indem Kodierungen erstellt werden, die TORE-Kategorien für
Textstellen enthalten, welche von mehreren KodiererInnen an denselben Dokumenten
vorgenommen werden können. Um Fehler der KodiererInnen einzuschränken, können
die Klassifikationen durch das Erstellen von Interrater Agreements verglichen werden.
Dieser Vergleich kann durch Tools unterstützt werden, die den Prozess der Lösung von
Uneinigkeiten vereinfachen können. Die manuelle Klassifikation ist jedoch kosten- und
zeitintensiv. Daher wird ein Algorithmus zur automatischen Klassifikation von natür-
lichsprachlichem Nutzerfeedback in TORE-Kategorien benötigt.

Beiträge: Diese Arbeit enthält drei Hauptbeiträge. Erstens wird eine Werkzeugunter-
stützung für den Vergleich einer beliebigen Anzahl von Annotationen desselben Daten-
satzes bereitgestellt. Uneinigkeiten können gelöst werden, indem den Wörtern zugeord-
nete Codes akzeptiert oder abgelehnt werden. Zusätzlich werden Übersichten sowie
Statistiken bereitgestellt. Zweitens wird eine Literaturrecherche zur automatischen
Deep-Learning-basierten Klassifikation von Nutzerfeedback in natürlicher Sprache aus
Online-Foren durchgeführt. Die Übersicht zeigt, dass viele Ansätze eine binäre Klas-
sifikation als Grundlage verwenden, und dass die meisten eine Art des Pre-Processing,
Word2Vec für Word Embeddings und ein neuronales Netzwerk für die Klassifikation
benutzen. Schließlich wird ein Classifier basierend auf einem Bi-LSTM-Modell zur au-
tomatischen Klassifikation von natürlichsprachlichen Texten in TORE-Kategorien im-
plementiert. Der Classifier wird auf einer manuellen Annotation von Forumsdaten
trainiert und anschließend ausgewertet.

Resultate: Ein Tool zum Vergleich von Annotationen ist in Feed.UVL entwickelt und im-
plementiert, die Qualität wird durch umfangreiche Systemtests und einem informellen
Nutzungstest sichergestellt. Das Tool verwendet vorhandene Sichten und Funktion-
alitäten und ist nutzerfreundlich gestaltet. Die zugrunde liegende Mikroservice-Archi-
tektur vereinfacht zukünftige Erweiterungen des Algorithmus. Das automatische Klassifi-
zierungstool, das auf einem Deep-Learning Algorithmus basiert, ist ebenfalls in
Feed.UVL implementiert und verwendet die vorhandenen Sichten und Funktionalitäten
für die Klassifizierungsergebnisse. Die erreichte Accuracy über alle Klassen liegt bei
etwa 52,74%, mit einem Recall von 53,47%, einer Precision von 54,59% und einem F1-
Score von 53,78%, was hauptsächlich auf die geringe Menge an Trainingsdaten sowie
einen schlecht gewählten Testdatensatz zurückzuführen ist.
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1 Introduction

This chapter serves as an introduction for this thesis. In section 1.1 the motivations for
this paper are outlined, the goals are summarized in section 1.2, and in section 1.3 an
overview of the rest of this thesis is provided.

1.1 Motivation

In the software engineering process, there are multiple ways to extract information from
users, such as interviews, questionnaires, etc. While these extraction methods can be
used in order to establish requirements, they can also be expensive, as they require a
lot of effort: developing questions with which to best extract data from users; collecting
data from users who take part in the data extraction methods; and lastly using the data
to develop requirements.

Conveniently, users already give feedback in various forms, be it in the form of prod-
uct reviews, in the app store, on Twitter, or in online forums. In the case of online
forums, users can take part in discussions about software, either by asking and answer-
ing questions, or by stating their opinion about it. Those online forums form a large
corpus about specific software, which have already been used as a basis to develop re-
quirements (e.g. [10], [14], [8]), although they pose some challenges. Users mostly tend
to formulate their feedback from the perspective of someone using the UI, and mostly
have an external view of the software. As requirements engineers and developers tend
to have an internal view of the software, meaning they tend to think about software
components and processes within the software, it can be hard to grasp which parts of
the software users are referring to. Classification of the feedback into categories which
describe the mental models of the users could help developers understand the needs and
requirements of users better.

The Task-Oriented Requirements Engineering (TORE) [17] framework, which was orig-
inally developed to help requirement engineers with integrating object-oriented devel-
opment into the requirement engineering process, is used as a basis for the classification
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of user feedback. It consists of multiple layers of abstraction, which can be used by re-
quirement engineers as a basis for decision processes and the definition of requirements.
Feedback gathered from online forums can be annotated using the TORE framework,
which means text passages of the user feedback can be assigned identifiers from the
TORE framework. Additionally, as the user feedback from online forums is in natu-
ral language, it contains mistakes and incorrect grammar, making the analysis more
difficult.

Furthermore, manual annotation of a dataset can be subjective, and depends on the
annotator involved. In order to alleviate the subjectiveness, an agreement, which is a
comparison of multiple annotations by different annotators, can be used for the clas-
sification process. Two or more annotations can be compared, and more objective
identifiers for text passages can be assigned, which can be useful as basis for the train-
ing of an automatic classifier. The need to compare large annotations necessitates tool
support for inter-rater agreement functionalities. Raters comparing annotations would
require multiple days to weeks without proper tool support which can reduce the time
needed dramatically. Lastly, manual annotation is cost- and time-intensive. A devel-
oper classifying 100 user feedback statements with the TORE framework would require
about 15 hours, as experienced during the classification of a dataset for this thesis. The
implementation of an automatic classifier could reduce the time to mere seconds.

1.2 Goals

In this thesis, there are two major goals:

1. Extending the functionalities of the Feed.UVL1 tool by adding the pos-
sibility to compare annotations to another, as well as calculating inter-
rater agreements of two or more annotators. Feed.UVL already provides
the functionality to create annotations for natural language data, and the TORE
framework can already be used as a basis to encode text-passages. With the ad-
dition of inter-rater functionalities, multiple annotations, and therefore the codes
for text-passages, can be compared.

2. Implementing a deep-learning-based classifier in Feed.UVL, in order
to classify forum data automatically using the TORE framework. The
forum data consists of natural language documents, which contains information
about the software. This feedback can be analysed automatically in order to find

1https://feed-uvl.ifi.uni-heidelberg.de/dashboard/login
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out which components and aspects of the software users are most interested in,
using the TORE framework.

1.3 Overview

First, in chapter 2, the fundamentals necessary to understand this thesis are introduced.
A thorough literature review based on predefined research questions has been conducted,
the results of which are documented in chapter 3. In the following chapter 4, the addition
of the inter-rater functionalities are documented. The training dataset, implementation
and evaluation of the deep-learning-based classifier are provided in chapter 5. Lastly,
in chapter 6 the results of this thesis are summarized and possibilities for future work
are outlined.
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2 Fundamentals

The fundamental knowledge needed to understand this thesis is summarized in the fol-
lowing sections. In section 2.1 the basis for the annotation of datasets used in this paper,
TORE, is explained. In section 2.2 annotations of datasets are introduced, manual and
automatic annotations are differentiated, and inter-rater agreements are outlined. In
section 2.3 the annotation process of a dataset using the TORE framework is explained
using an example. In section 2.4, Feed.UVL is presented and the most important func-
tionalities, the microservice architecture and the software used to implement it are
outlined. Lastly, in section 2.5, the deep learning algorithm Bi-LSTM is introduced.

2.1 TORE

As mentioned in section 1.1, TORE stands for the Task-Oriented Requirements En-
gineering Framework, first introduced by Paech in [17]. It consists of decision points,
which can be grouped into four abstraction layers, which can be observed in figure 2.1.

Fig. 2.1: The TORE model with four layers of abstraction. [1]

For the purposes of applying TORE to user feedback, a simplified model of the TORE
framework is used, and the Goal & Task Level and Domain Level are summarized,
resulting in a model with only three abstraction layers as shown in figure 2.2.

The first layer, the Domain Level, consists of decisions concerning the domain of the
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Fig. 2.2: The compressed TORE model with three layers of abstraction.

software. This includes decisions about the Stakeholders, as well as their Goals, Tasks
and Activities. Stakeholders are people or entities that are using or influencing the
software; stakeholders’ Tasks are great responsibilities, which can be divided into many
small activities. Activities consist of steps that realize the tasks, and can be performed
without the software. Lastly, Domain Data is any data relevant to a task.

The second layer, the Interaction Level, consists of decisions regarding the Interaction
of the system with the stakeholder. System Functions are functions provided by the
system itself that manipulate data in some form. Interactions describe the interaction
between users and the system, mostly through some form of interaction with the UI.
Interaction Data is data which is relevant to a system function or an interaction. Lastly,
the Workspaces/UI-Structure includes any grouping of system functions, interactions or
UI-functionalities into Workspaces.

The last layer, the System Level, only includes software-internal data and functions,
and is independent of the stakeholder. Decisions include Internal Actions and Internal
Data, which consist of functions to realize the interactions internally, as well as data
necessary for the internal processes. Decisions about Software contain all related soft-
ware components for the realization of the software. A summary of the TORE-levels
and the respective decisions can be observed in table 2.1.
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Table 2.1: TORE decisions and their definitions. From Anders et al., [1].

Goal, Task, and Domain Level

Stakeholders Roles supported by or influencing the developed software

Stakeholders’ Goals Goals the software should fulfill

Stakeholders’ Tasks Responsibilities of the Stakeholder as part of larger
processes in the domain

Activities Steps in the Stakeholder Tasks

Domain Data Data relevant to some activity

Interaction Level

Interaction
The interaction between a user and the software
Includes in addition the Dialog as a refinement of the
Interactions into screen sequences

System Functions

Functions executed by the software that
consume, manipulate or produce data
Includes in addition the Navigation and Support Functions
needed for the data related functions

Interaction Data Data relevant for the System Functions
Includes the UI-Data which refines the Interaction Data

UI-Structure
(Workspace)

Grouping of Interaction Data and System Functions which
are relevant for one Task into so-called Workspaces
Includes Screen Structure as a refinement of the Workspaces

System Level

Internal Actions Steps needed to realize the Interaction Level

Architecture
(Software) Components of the software and their relationships

Internal Data Data processed by Internal Actions

2.2 Annotation

In subsection 2.2.1, the terminology for the annotation process is defined. In subsec-
tion 2.2.2 manual annotations are presented, followed by an explanation of automatic
annotations in subsection 2.2.3. Finally, in subsection 2.2.4 the concept of inter-rater
agreements is provided.
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2.2.1 Terminology

Firstly, to establish an understanding of annotations, there is some terminology to be
defined.

Dataset. A dataset is a collection of documents that are related in some way. In
the context of this thesis, the term dataset will be used to refer to a collection of
documents with the same source, such as multiple posts from a single forum on a
single topic.

Text Passage. A text passage is a cohesive unit of speech of variable length,
which contains relevant information for an annotator. A text passage itself can
consist of multiple sub-text passages.

Code. A code is an identifier that is assigned to a text passage.

Annotation/Encoding. An annotation is a version of an annotated/encoded
dataset, which was established by an annotator. Consequently, a dataset can
have multiple annotations, which can be distinguished by the number of code
occurrences and the annotated text passages.

The terms annotation and encoding are synonymous, and are henceforth used inter-
changeably.

2.2.2 Manual Annotation

Manual annotation is a process in which annotations are created manually by a human
being, usually an expert in the domain. This human expert, also called annotator, is
given a dataset and a set of categories. The annotator is then asked to annotate the
data, which in general means assigning codes to parts of the document. In this thesis,
annotators are asked to assign codes to text passages. The resulting annotation can for
example be used to train machine learning or deep learning algorithms.

Manual annotation is comparatively time consuming and costly. Additionally, annotat-
ing a dataset can take a long time, and when there is a lot of data, human annotators can
become tired and less focused. Still, manual annotation tends to be relatively accurate.
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2.2.3 Automatic Annotation

Automatic annotation is a process in which annotations are created automatically by a
machine or algorithm. Algorithms used for automatic annotation are usually machine
learning algorithms, with the dataset as the input of a pre-trained machine learning
algorithm, and the annotation as the output.

Automatic annotation tends to be much less costly, as no human annotators have to be
paid. Since algorithms can work with large amounts of data in a short time, automatic
annotation requires less time overall. However, automatic annotation tends to be less
accurate than manual annotation especially with natural language datasets, as seman-
tic context and incorrect spelling and grammar can be problematic to understand for
machine learning algorithms. Additionally, if the algorithm’s model is not well trained,
the accuracy suffers further.

2.2.4 Inter-Rater Agreement

The inter-rater agreement is based on the comparison of two or more annotations, and
describes the degree to which annotations are identical. (Gisev et al., [7]) In order
to find the degree to which annotators agree, their annotations have to be compared.
More precisely, when annotators have encoded the same text passage with the same
code, they have a higher degree of similarity. In this thesis, two kappa values are used
to measure this similarity: The Fleiss’ Kappa from [6] and the Kappa of Brennan &
Prediger from [3].

Kappa values can be between 0 and 1, with higher values pointing to a higher degree
of relatedness, and therefore a better inter-rater agreement. The kappa values can also
be used as an indicator of how well machine learning algorithms may perform on a
similar dataset, as high kappa values point to human annotators having no problems
annotating datasets. A low kappa value could point to difficulties for human annotators
in the annotation process of datasets.
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2.3 TORE Encodings

In this section, the annotation process of a dataset with TORE categories is explained
using an example sentence from the training dataset used for the classifier:

I’m road cycling and I would like to see the specific maps.

In the first step, the sentence is split into single words.

I | ’m | road | cycling | and | I | would | like | to | see | the | specific | maps | .

Afterwards, text passages that are relevant for the TORE classification are identified
and connected.

I | ’m | road cycling | and | I | would | like | to | see | the | specific | maps | .

In the last step, the TORE categories are assigned to the relevant text passages.

I | ’m | road cycling | and | I | would | like | to | see | the | specific | maps | .
Activity Interaction Interaction Data

2.4 Feed.UVL

In section 2.4.1 the basic microservice architecture used in the Feed.UVL project is
explained. Feed.UVL is the tool that is extended in this thesis, hence a short summary
of the most relevant functionalities is provided in section 2.4.2. Lastly in section 2.4.3
the containerization application Docker, as well as Jenkins, an application supporting
continuous integration, are introduced.

2.4.1 Mircoservice Architecture

Traditionally, applications have been managed as one service, which is known as a mono-
lithic architecture. As there is only one service, development in monolithic applications
can become more complex with time; the service can have conflicting dependencies and
new features can have impact on existing features. Consequently, the scalability of
single-service architectures is relatively low.

The mircoservice architecture encapsulates the idea to split a large application into
smaller, independent services, which often only have a single concern. These microser-
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vices have no external dependencies, and can therefore be managed independently. The
communication between microservices is through well defined APIs, so as long as the
containers support those, they can easily be replaced. They are also highly scalable, as
they are completely independent from other services. This independency can also im-
prove speed, agility and consistency. A visualization of the monolithic and microservice
architecture can be observed in figure 2.3.

Fig. 2.3: The monolithic vs. microservice architecture1.

There are several advantages of the microservice architecture, including the use of dif-
ferent programming languages, frameworks and databases for different concerns. A
mircoservice for data analysis can be based on Python, whilst a frontend microservice
can use Javascript. The microservices are also usually more resilient, so that if one ser-
vice has an error, the rest of the application is not affected and can continue running.

The current mircoservice architecture used in the Feed.UVL project can be observed
in figure 2.4. The project is divided into different layers by concern, with every service
except the light blue ones already implemented. With this thesis, the light blue services
will be added, including the agreement functionality to the application layer, and the
TORE classification using a deep learning algorithm to the data analytics layer.

1https://dev.to/alex_barashkov/microservices-vs-monolith-architecture-4l1m, last ac-
cessed: 17.06.2022
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Fig. 2.4: The current architecture of the Feed.UVL project.

2.4.2 Most Relevant Functionalities

Feed.UVL is a tool for the collection and analysis of user feedback. The most relevant
features are implemented by the displayed services in figure 2.4, and include:

• The collection, upload and storage of forum data

• The analysis of the datasets with algorithms such as Latent Dirichlet Allocation
(LDA) [2], SeaNMF [15] which is a non-negative matrix factorization model, and
others

• The visualization of datasets and algorithm results

• The extraction and analysis of problem reports and inquiries from Twitter

• Annotation functionalities

Functionalities for annotations include the possibility to create an annotation for a
dataset, as well as the possibility of encoding one or more text passages with a word
code, a category or a relationship to another text passage. Further, for the encoding
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process an editor is provided, with which encodings for text passages can be assigned.
In a different view insights into the annotations are summarized, such as the number of
occurrences of a category, word code or relationship.

2.4.3 Docker & Jenkins

In order to realize the microservice architecture, two tools are used: One for container-
ization, one for continuous delivery and continuous integration.

Docker

Docker2 is a self-described “platform for developing, shipping and running applications,
and is a tool to support the containerization of applications”. Containers are small, iso-
lated environments, in which microservices can run. They are independent from other
containers, and are shipped as complete units, which are not changed while deployed. A
comparison between containers and Virtual machines (VMs) can be observed in figure
2.5. Virtual machines run instances of applications, and have their own complete oper-
ating systems. Containerized applications use the operating system of the host, making
the containers comparatively small.

Fig. 2.5: Containers vs. VMs3.

In Feed.UVL, Docker is used to run and manage the microservices.

2https://www.docker.com/
3https://www.docker.com/resources/what-container/, last accessed: 17.06.2022
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Jenkins

Jenkins4 is a tool used for continuous delivery and integration. In Feed.UVL it is used
to build microservices continuously, and it is configured to build and deploy all commits
on the master branches of the microservices’ Git-repositories.

2.5 Bi-LSTM

One of the goals of this thesis is developing a classifier based on a deep learning algo-
rithm. Many of these algorithms consist of neural networks, which are inspired by how
the human brain works. The idea is to simulate brain synapses and how they communi-
cate with each other. The basis structure of a neural network can be observed in figure
2.6.

Fig. 2.6: The basic structure of a neural network5.

The input layer is used to input the data, consisting of feature vectors, into the neural
network. There can be at least one hidden layer, which is trained using the training
data. Finally, the output layer forms the output for the feature vectors. Neural networks

4https://www.jenkins.io/
5https://www.ibm.com/cloud/learn/neural-networks, last accessed: 20.06.2022
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are trained using weight and bias, which determine which features should be weighted
more significantly than others.

Fig. 2.7: The basic structure of Bi-LSTM6.

Recurrent Neural Networks (RNNs) are neural networks, which remember the previous
words of a text document in order to predict the following words. This is also called Long
Short-Term Memory (LSTM), as previous words are taken into account in the prediction
of new words. Bidirectional Long Short-Term Memory (Bi-LSTM) is a combination of
two RNNs, which work in opposite directions. A corresponding illustration is provided in
figure 2.7. There are two RNNs, one is for forward memory, the other for the backward
memory, the combination of which determine the output for the input vectors. Bi-
LSTM networks tend to work well for instances, in which understanding the context is
useful, because for every word the previous as well as the following words are taken into
account.

6https://analyticsindiamag.com/complete-guide-to-bidirectional-lstm-with-python-codes/,
last accessed: 20.06.2022
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3 Literature Review

In this chapter, a literature review on the current state of the art in regards to developing
a deep learning algorithm for classifying forum data is summarized. In section 3.1, the
exact research question as well as some sub-questions in regards to the content of the
papers are stated. In section 3.2 the process of the full literature review is presented,
including criteria of relevance, the initial search terms and search results, and the result
after snowballing. Afterwards, in section 3.3, the chosen relevant sources are quickly
summarized and an explanation of their approach is presented. In section 3.4 a synthesis
is conducted, and the approaches in regards to the sub-research questions are evaluated.
The results of the evaluation are summarized in section 3.5. Lastly in section 3.6 the
most fitting method on which to base the approach of this thesis is chosen.

3.1 Research Question

As a basis for the relevance of papers, the following research question is used:

Research Question. Which approaches exist that automatically classify natural lan-
guage user feedback from online forums using deep learning, and which characteristics
do they have?

This question can be split up into multiple criteria, in order to establish search terms
for the literature review. It has to be mentioned that only user feedback regarding any
kind of software product is taken into consideration, so feedback about different fields
of study (e.g. education, health care, etc.) is explicitly excluded.
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In order to create benchmarks for later evaluation of the approaches, the following
sub-questions have to be answered:

Q1: Which categories for classification are used in the approaches?

Q2: Which deep learning methods are used for which steps of the classification process
in the approaches?

Q3: Which pre-processing steps are necessary in order to apply the approaches to the
forum data?

Q4: How large are the training datasets used in the approaches and what metadata is
necessary?

Sub-question Q1 is relevant, since the number as well as the kind of categories used
in the methods can differ from the categories chosen in this thesis. For example, an
algorithm that works well on a binary classification problem may not be applicable
to a classification with more than two categories. Sub-question Q2 can be important,
as different deep learning methods can have different strengths and weaknesses, which
may be taken into consideration. It is also important to consider sub-question Q3, as
pre-processing of the forum data may be extensive and complex. Lastly, sub-question
Q4 is relevant as it is important to determine the amount of forum data which has to
be annotated, and whether the necessary metadata even exists in the dataset.

3.2 Research Process

This section includes a detailed summary of the literature review process. The intro-
duction of the criteria of relevance in subsection 3.2.1 is followed by a summary of the
initially relevant results after a search-term-based literature search in subsection 3.2.2.
The results of snowballing are presented in subsection 3.2.3.
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3.2.1 Criteria of Relevance

In order to distinguish the relevancy of papers relatively quickly, some criteria has to
be established first. The criteria of relevance is listed as follows:

CoR1: The paper has to be either openly accessible or accessible using the university’s
credentials.

CoR2: The paper is not older than 7 years.

CoR3: The paper is written in English.

CoR4: The paper is a fully completed research article.

CoR5: Either title or abstract seem relevant in regards to the research question.

CoR6: The paper contains a deep learning method, and considers online forums in
which users give feedback for software.

CoR1 to CoR4 contain general criteria, mainly focusing on metadata of an article. This
thesis focuses on papers which are not older than seven years, as creating deep learning
algorithms to classify data from online forums is still a relatively well-research field,
giving a high probability that improvements have been made within the past few years.
Also, as many articles were marked as work in progress during the search, a criteria is
added necessitating the full completion of articles. CoR5 and CoR6 clarify the relevance
of the content of an article. For an initial review, at least either the title or the abstract
have to be relevant in regards to the research question, more specifically the article has
to contain information about online forums which contain feedback for software.

Using these criteria as a basis, the initial search-term-based approach is conducted.

3.2.2 Initial Search

The first important step in creating feasible search terms for an initial search is iden-
tifying synonyms, or terms frequently used as synonyms in the field of study, as well
as refinements of those terms. After some searches using IEEE and ACM, synonyms
and refinements were developed, as can be observed in table 3.1. Most of the refine-
ments specified are due to terms often used in initially relevant papers, such as Reddit
in contrast to a lesser known forum, or CNNs in contrast to for example RNNs.
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Table 3.1: The synonyms and refinements used for a search-term-based approach.

Base terms Synonyms and Refinements

classification text-labeling, requirement mining, feedback mining

natural language NLP

online forums Reddit, Stack-Overflow, software product forums,
bulletin boards, community question answering

deep learning AI, neural network, machine learning, CNN

Various combinations of those synonyms were used to create the most successful search
terms for the two corpora, IEEE and ACM. Initially, the search via IEEE yielded a
larger amount of results, especially when using relatively complex search terms. After
a while shorter terms could be used to extract new initially relevant articles.

First attempts of using ACM would prove to be relatively difficult, with searches yielding
either too many results, or no results at all. Broadly simplifying the search terms,
however, resulted in manageable amounts of articles and could therefore be easily used.
In summary, all search terms which yielded at least one new initially relevant result are
listed in table 3.2.

Many more combinations of search terms were used on both corpora, but as those
yielded no initially relevant results they are excluded here. Formatting differences are
due to the use of different query languages by IEEE and ACM. Using the search terms
on the two databases, the initially relevant results can be observed in table 3.3.

All papers deemed not relevant were excluded because of CoR5, as only the title and
abstract were used as determining factors. Most papers were excluded because they
did not use forum data about software, many others were excluded because they did
not use a deep learning approach. It has to be mentioned that some of the initial
search results may not be completely relevant to the research question, but may contain
valuable references which in turn may be relevant. Those are also used in the following
snowballing.

3.2.3 Snowballing

From the initially relevant sources extracted in the previous section, snowballing is
conducted. Forward snowballing includes inspecting all papers referencing the initially
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Table 3.2: The search terms that resulted in at least one new initially relevant result.

Name Term

S1

(“Document Title”:classification)
AND (“Document Title”:natural language)
AND (“Document Title”:user feedback) OR (“Abstract”:user feedback)
AND (“Document Title”:forum) OR (“Abstract”:forum)
AND (“Document Title”:deep learning)

S2
(“Abstract”:requirement) AND (“Abstract”:natural language)
AND (“Document Title”:feedback) OR (“Abstract”:feedback)
AND (“Abstract”:forum*) AND (“Abstract”:unsupervised)

S3

(“Full Text & Metadata”:requirement mining)
AND (“Full Text & Metadata”:natural language)
AND (“Full Text & Metadata”:user feedback)
AND (“Full Text & Metadata”:online product forum*)
AND (“Full Text & Metadata”:deep learning)
AND (“Full Text & Metadata”:classif*) AND (“Abstract”:feedback)

S4 (“Abstract”:feedback) AND (“Abstract”:stack overflow)

S5 (“Abstract”:forum) AND (“Abstract”:classif*) AND (“Abstract”:deep)

S6 [Abstract: deep learning] AND [Abstract: user feedback]
AND [Abstract: classification] AND [Title: forum]

S7 [Abstract: deep learning] AND [Abstract: user feedback]
AND [Abstract: requirement mining] AND [Title: forum]

relevant source using the criteria of relevance, while backward snowballing takes the
papers referenced by the initially relevant source as a basis. Both IEEE and ACM
provide functionalities to simplify that process, by providing lists of all citations and
references, as well as links to the papers.

Usually not all initially relevant sources are used for snowballing; first they are inspected
to establish their relevance, and they are only used in the snowballing if they could be
included in the synthesis. But in this review, there were some papers which after further
examining the full text did not appear to be completely relevant, but had the potential
to reference or be referenced by sources of high relevance. For example, a paper may fit
all criteria except for containing a deep learning algorithm, but that was only established
after reading the full text, and it used deep learning benchmarks for their comparison
or in their related work section. Such a source is not relevant for further analysis, but
may yield high quality sources, and is therefore included in this snowballing.
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Table 3.3: The initially relevant references after the search-term-based approach.

Library Term Date Results Initially
Relevant References

IEEE S1 08.03.2022 33 6 [10], [21], [22], [12], [19], [13]

IEEE S2 08.03.2022 8 1 [16]

IEEE S3 08.03.2022 19 2 [20], [4],

IEEE S4 12.04.2022 13 1 [28]

IEEE S5 12.04.2022 27 3 [9], [25], [23]

ACM S6 28.03.2022 14 1 [26]

ACM S7 04.04.2022 11 1 [13]

The results of snowballing can be observed in table 3.4. For each source, the forward
(denoted F ) and backward (denoted B) snowballing results are shown. All in all 15
papers were used as a basis for snowballing, but many of those ultimately did not
contain any new relevant references. Only those searches which yielded new results are
shown.

Most papers in the backward snowballing were filtered out because they were older than
seven years. Many others were deemed irrelevant to the research question because they
either only took app reviews, Github commits or Twitter into consideration, or because
they did not use deep learning methods. Some papers did not contain user feedback for
software.

After evaluating all initially relevant papers, either from the search-term-based search or
from snowballing, for their relevance, the results are shown in table 3.5. Reading through
the entire contents of the papers, only five seem to completely fulfil the criteria of
relevance. The classification methods and category types are relatively diverse, ranging
from correct answer prediction to malware detection, and using different kinds of forums
as a basis.

3.3 Review Results

An example of binary classification is done by Iftikhar et al. [10]. The dataset considered
consists of a combination of questions and answers from Stack Overflow with the goal
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Table 3.4: The new initially relevant references after snowballing.

Source Date F/B Number
of Articles

Initially
Relevant

New
Papers

[10] 04.04.2022 F 0 0

B 51 1 [29]

[22] 11.04.2022 F 9 1 [4]

B 50 0

[26] 05.04.2022 F 85 3 [14], [5]. [27]

B 52 1 [24]

[25] 15.04.2022 F 11 1 [18]

B 14 1 [8]

of predicting correct answers. The dataset is pre-processed using Natural Language
Processing (NLP) techniques, keywords are extracted and ranked using TextRank and
word embeddings are introduced to get text-based feature vectors. Finally, those vectors
are used to train a deep-learning-based ensemble model to predict correct answers, which
is based on CNNs as well as LSTMs. This algorithm achieves an accuracy of 84.39%, a
precision of 96.16%, a recall of 84.52% and an F1-score of 89.97%.

Xu et al. [26] formulate the problem of linking Stack Overflow posts as a multiclass
classification problem. The dataset again consists of questions and answers from Stack
Overflow, the goal is to establish relatedness of different posts via semantically linkable
knowledge, which is useful for tasks such as recommendation or duplicate detection. The
four classes Xu et al. chose to integrate are duplicate, directly linkable, indirectly linkable,
and isolated. They use word embeddings generated from data from Stack Overflow in
combination with Word2Vec, and train the deep learning algorithm, a CNN. Xu et al.
achieve an accuracy of 84.1%, a precision of 84.7%, a recall of 84.2% and an F1-score
of 84.1% overall.

Another problem is proposed by Li et al. [14], who use the Chinese Stack Over-
flow, CSDN, as the basis for their approach. Their goal is named-entity recognition
of software-specific entities, and the classification of those into six different software-
related categories. The dataset contains two different languages, Chinese and English,
which makes the classification process harder. Li et al. use Word2Vec to generate word
embeddings, and combine those with tags such as Beginning of class, End of class, etc.
Together they are used for a Bi-LSTM deep learning algorithm in order to generate the
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Table 3.5: The relevant sources after snowballing and filtering.

Authors Title Ref. Library Process

Iftikhar et al. Deep-Learning-Based Correct Answer
Prediction for Developer Forums [10] IEEE Search-Term

Xu et al.
Predicting semantically linkable
knowledge in developer online forums
via convolutional neural network

[26] IEEE
&ACM Search-Term

Li et al.
Feature-Specific Named Entity
Recognition in Software Development
Social Content

[14] IEEE Snowballing

Guo et al. Systematic Comprehension for
Developer Reply in Mobile System Forum [9] IEEE Search-Term

Grisham et al.
Identifying mobile malware and key
threat actors in online hacker forums
for proactive cyber threat intelligence

[8] IEEE Snowballing

named-entities and their classifications. The precision achieved by them is 74.805%, the
recall is 69.019% and the F1-score is 71.702%. The accuracy is not mentioned.

Guo et al. [9] study replies of developers to user reviews in Chinese mobile forums. The
goal is the analysis of the replies, including whether a user review is replied to at all,
as well as the reply time. The dataset consists of user reviews which are posted to the
forums, and the replies of developers if those are given. It is also completely in Chinese,
with the authors mentioning they translated non-Chinese words beforehand. There
are two types of classification involved: firstly, binary classification is used to determine
whether a review is to be replied to or not. Secondly. the predicted reply time is divided
into three classes, short, middle and long. Both problems are solved using Word2Vec
for pre-processing, and a CNN-based weak-supervision method for the classification.
The authors do not mention the accuracy of their method, but the average precision is
81.7%, the average recall is 82.9% and the F1-score ranges between 77.0% and 83.3%.

A different type of forum is studied by Grisham et al. [8]. They crawl data from hacker
forums, in order to find information about malicious hacks and hackers beforehand,
thereby increasing cyber security. Their goal is to identify mobile malware as well as
key hackers by classifying mobile hardware attachments of forum posts. The dataset
consists of the content of the post, title, some additional metadata and attachments, and
is crawled from four different kinds of forums in three different languages. The algorithm
used for the binary classification is an LSTM RNN classifier. After classification, the
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author build a network of all hackers who posted an attachment identified as mobile
malware, in order to find key actors. This identification, however, is completely separate
and not relevant to this paper. The authors achieve a precision of 95%, a recall of 81%
and an F1-score of 87%.

3.4 Synthesis

The basis for the synthesis are the research sub-questions as mentioned in section 3.1.
Synthesis criteria for comparison are established, in order to evaluate the characteristics
of the research questions.

RQ1 can be divided into two synthesis criteria, which are the type of categories and
the amount of those. As the forum data used as a basis in this paper is classified
into multiple categories, the number of categories used in the relevant sources may be
an important indicator as to whether the method could be used. In table 3.6 a short
summary of the types of categories can be observed for all sources.

Table 3.6: Comparison of categories for classification (Q1).

Source Number of
Categories Type of Category

[10] 2 Correct or incorrect answer for question

[26] 4 Degree and type of relatedness of questions

[14] 6 Software-related categories

[9] 2/3 Whether a review is replied to or not,
and how long a reply is predicted to take

[8] 2 Whether an attachment is a mobile malware or not

It can be seen that two sources, [10] and [8], only include binary classification. In both
cases, the distinguishing factor is whether an object has a certain property or not. Guo
et al. in [9] propose a method which has two different classification stages: First, there
is a binary classification process in order to decide whether a review is replied to at all,
which is similar to the before mentioned classifications. Second, a reply time is predicted
for those review, with three possible categories (long, middle, short reply time).

The sources that only include one classification process and more than two categories
for classification are [26] and [14]. In [26] the dataset consists of multiple software-
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related questions, and all of them are classified in relation to another. The categories
are whether they are duplicates, directly linked, indirectly linked or isolated, meaning
unrelated. [14] supports the largest number of categories, which are all software-related.
The dataset consists of forum posts that discuss software, and the categories include
Programming Language, Platform, API, Tool-library Framework, Software Standard and
Undefined Functions. Also, only the individual words or phrases are classified with this
method, as the goal is named-entity recognition.

All in all the number of categories is relatively small in all papers, with many of them
using binary classification. However, the classification types are very diverse across
the relevant papers, including correct answer, semantic relatedness, software category,
reply(-time) and mobile malware classification.

It is possible that multiple deep learning algorithms are used within one paper, or that
a deep learning algorithm is used in combination with a non-deep learning method.
Therefore it is important to distinguish not only between different kinds of deep learning
methods, but also between the steps in the classification approaches. To achieve this
analysis, the sub-question RQ2 is divided into three synthesis criteria, which are the
step of the algorithm for which any machine learning algorithm is used, which method
is used specifically, and lastly whether the method is a deep learning algorithm. The
comparison of the sources can be observed in table 3.7.

Table 3.7: Comparison of methods for classification (Q2).

Source Step of
Algorithm Type of Method Deep

Learning

[10]

Keyword-extraction TextRank No
Word embedding Word2Vec No
m-feature learning CNN Yes
k-feature learning LSTM No
t-feature learning LSTM No

[26] Word embedding Word2Vec No
Semantic-relatedness prediction CNN Yes

[14] Word embedding Word2Vec No
Classification Bi-LSTM Yes

[9]
Word embedding Word2Vec No

Reply classification
& Time regression CNN Yes

[8] Classification LSTM RNN Yes
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In [10], many different kinds of algorithms are used for various steps of classification. In
order to pre-process the data for the deep learning algorithm, TextRank and Word2Vec
are used for keyword-extraction and word embedding. With the help of those, metadata
features (m-features), keyword features (k-features) and word embeddings (t-features)
are established. They are used as the basis for CNN as well as LSTM learning. The
only deep learning algorithm used in this pipeline is the CNN, which uses the m-features
as a basis. [26] as well as [9] both use Word2Vec for developing text embeddings for
the data, and CNNs for the classification process itself. [9] includes one CNN for both
classification tasks, which outputs reply classification as well as time prediction.

In [14] Word2Vec is again used to create text embeddings, but the classification al-
gorithm is a Bi-LSTM deep learning algorithm. [8] is the outlier, as there is no pre-
processing algorithm explicitly mentioned. It only includes a deep learning algorithm
for the mobile malware classification, an LSTM RNN. All in all most methods used in
the sources include creating text embeddings with Word2Vec, and most include some
form of neural network. [10] utilizes many different kinds of algorithms, while all others
use at most two.

The approaches as presented in the relevant sources have widely varying pre-conditions
as well as datasets. Therefore it is necessary to use RQ3 in order to be able to apply
the approaches to the forum data. The necessary pre-processing steps can be observed
in table 3.8. The most detailed list of pre-processing steps are provided by [10] and
[9]. In [10], all pre-processing steps are explicitly mentioned as well as described, and
it includes an extensive amount of pre-processing steps. Firstly, many natural language
pre-processing steps are applied to the data directly, in order to normalize it and to
extract additional data. Then a keyword extraction, ranking algorithm and word em-
beddings are used to extract features that can be used in the learning pipeline. In [9]
there is also a detailed list included, and there are extensive descriptions of all processes
except the invalid character extraction. All text has to be translated into one language
for this approach to work, which in the paper is Chinese.

In [26] as well as [8], NLP or respectively data pre-processing is mentioned, but not
further evaluated on. Additionally, [26] uses word embeddings, and the data has to
be rearranged in such a manner that pairs of posts are created which have a certain
relationship. In [8], the length of sentences is reduced to 10,000 characters, as the
authors claim this speeds up the training process. Lastly, in [14] no natural language
pre-processing is mentioned at all, only word embeddings and the removal of any block
code in the data.

The last sub-question, RQ4, is necessary to determine the amount of data needed to
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Table 3.8: Comparison of necessary pre-processing for classification (Q3).

Source Necessary pre-processing

[10]
Data Cleaning, Spell Correction, Lowercase Conversion, Tokenization
Stop-Word Removal, Stemming, Lemmatization,
Keyword Extraction and Ranking, Word Embedding

[26] Natural language pre-processing (not further specified), Word Embedding,
Creation of pairs of posts with user-selected links

[14] Removing any block code, Word Embedding

[9]
Invalid Character Extraction, Stops Words Removal,
Translation of other languages into one language (Chinese),
Word Segmentation, Normalization, Word Embedding

[8] Data pre-processing (not further specified),
Cutting sentence length to 10,000 characters

successfully apply the approaches to the forum dataset. As shown in table 3.9, the only
synthesis criteria are the size and type of the dataset, as well as the necessary metadata.

Three of the sources have a relatively similar type of dataset, all consisting of posts
from either Stack Overflow or the Chinese version of Stack Overflow. [10] consists of
questions and related answers, and needs a comparatively large training dataset, with
91,500 questions and even more related answers. In return, the method only needs
one kind of metadata, which are the contained hyperlinks with the information on
whether an answer is accepted or not. [26], in contrast, only needs 6,400 pairings of
relatedness, meaning a certain amount of posts that create pairs annotated by their
semantic relatedness. The exact number of posts is therefor undetermined. The only
metadata necessary are the posts links of the Stack Overflow post.

In [14], the dataset consists of questions and answers, and entire sub-pages are crawled
and parsed to create this dataset. Therefore the amount of 100 web pages equals an
amount of 100 questions, each with additional answers. The metadata used in this
method is the solution for a question, which is the accepted answer.

A very different type of dataset is used in [8], with posts from four different hacker-
forums. The forums are again crawled, and text as well as attachment data is collected.
Only the posts with attachments are taken into account, and the size of the training
dataset consists of 6,000 of those posts (records). There is extensive metadata used for
this approach, because not the text, but the attached metadata is classified. Lastly,
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Table 3.9: Comparison of the datasets (Q4).

Source Size of
Dataset

Type of
Dataset

Necessary
Metadata

[10] 91,500 questions,
236,000 answers Stack Overflow Contained hyperlinks

(yes/no)

[26] 6,400 pairs,
of relatedness Stack Overflow Post links

[14] 100 web pages Chinese Stack Overflow Solution for a question

[9] Unknown Chinese Mobile Forum Reply information,
time tabs

[8] 6,000 records Hacker-Forums

Attachments, authors,
sub-forum name,
thread title, post content,
attachment name

in [9] the dataset consists of questions and answers from a Chinese mobile forum, with
reply information and time tabs as metadata. The size of the training dataset is not
mentioned.

A full summary of the synthesis results can be observed in table 3.10.
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Table 3.10: Results of the synthesis.

Source Number of
Categories Type of Category Necessary

pre-processing
Size of
Dataset

Type of
Dataset

Necessary
Metadata

Step of
Algorithm

Type of
Method

Deep
Learning

[10] 2 Correct or incorrect
answer for question

Data Cleaning,
Spell Correction,
Lowercase Conversion,
Tokenization
Stop-Word Removal,
Stemming,
Lemmatization,
Keyword Extraction
and Ranking,
Word Embedding

91,500 questions,
236,000 answers Stack Overflow Contained hyperlinks

Keyword-extraction
Word embedding
m-feature learning
k-feature learning
t-feature learning

TextRank
Word2Vec

CNN
LSTM
LSTM

No
No
Yes
No
No

[26] 4
Degree and type of

relatedness of
questions

NLP pre-processing
(not further specified),
Word Embedding,
Creation of pairs
of posts with
user-selected links

6,400 pairs,
of relatedness Stack Overflow Post links

Word embedding
Semantic-relatedness

prediction

Word2Vec
CNN

No
Yes

[14] 6 Software-related
categories

Removing any
block code,
Word Embedding

100 web pages Chinese
Stack Overflow

Solution for
a question

Word embedding
Classification

Word2Vec
Bi-LSTM

No
Yes

[9] 2/3

Whether a review
is replied to or not,

and how long a reply
is predicted to take

Invalid Character Extraction,
Stops Words Removal,
Translation of
other languages
into one
language (Chinese),
Word Segmentation,
Normalization,
Word Embedding

Unknown Chinese
Mobile Forum

Reply information,
time tabs

Word embedding
Reply classification
& Time regression

Word2Vec
CNN

No
Yes

[8] 2

Whether an
attachment is a
mobile malware

or not

Data pre-processing
(not further specified),
Cutting sentence
length to
10,000 characters

6,000 records Hacker-Forums

Attachments,
authors,

sub-forum name,
thread title,
post content,

attachment name

Classification LSTM RNN Yes
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3.5 Summary

In this section, the insights from the synthesis are summarized based on the research
questions.

Q1: Which categories for classification are used in the approaches?

Three of the five approaches use binary classification, although the type of category
varies between them. One of those approaches classifies the dataset using a different
category at the same time, which makes the model a bit more complex. Two of the
sources, [26] and [14], use more than two categories, with one classifying the degree and
type of relatedness of forum posts, and the other classifying words into software-related
categories. All in all, the types of categories are completely different, showing a high
diversity within the research field.

Q2: Which deep learning methods are used for which steps of the classification process
in the approaches?

All approaches seem to be relatively similar, excluding [8] for which there is not much
data available on the pre-processing of the data. The other NLP-based approaches
all use word embeddings with the method Word2Vec, and some kind of deep learning
algorithm for the classification, with most of them using a neural network. The first
source, [10], seems to be a bit more complex, as it utilizes different methods for different
features during the classification process. All in all there is not much of a difference
between the approaches.

Q3: Which pre-processing steps are necessary in order to apply the approaches to the
forum data?

All of the approaches require some kind of pre-processing. [10] requires the most, as all
pre-processing steps are explicitly listed. Three of the methods require natural language
pre-processing, while one needs data processing, and two of the processes are not further
specified in the sources. Four of the sources include the usage of word embeddings, while
the last, [8], does not.

Q4: How large are the training datasets used in the approaches and what metadata is
necessary?

The sizes of the datasets vary a lot, from a very large dataset in [10] to smaller sizes
for the rest of the approaches. The smallest dataset is used in [14], while no number is
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available for [9]. The types of the datasets are relatively similar, they are mostly based
on some form of Stack Overflow or a similar forum. There is only one different type of
forum, which is the hacker-forum. The primary concern of this paper is the classification
of attachments, which stands in contrast to the other classification methods, which
focus on either posts or words within a post. Finally, all approaches use some kind of
metadata, which is mostly not too hard to obtain.

3.6 Conclusion

Q: Which approach should be selected as the basis for this paper?

In this section, the relevant sources are evaluated based on the suitability of the ap-
proaches for the research question and the applicability to the forum dataset, and an
approach to base the method on is chosen.

Many of the approaches use binary classification as a basis for their research, which
can be problematic for this research question, as there are many different categories
involved. Applying a binary classification algorithm to support multiclass classification
can be complex. The sources [26], [14] and [9] are the only approaches offering a
classification with more than two categories, and may therefore be more applicable.
[14] seems to be most significant, as the type of categories is software-related, which is
very similar to the software-related categories evaluated in this paper.

The results of RQ2 show that there is not much variability in the kinds of methods used
by the sources. Most use Word2Vec to create text embeddings, and some kind of neural
network for the classification process. In [10], the model is relatively complex, because
different methods are used for varying concerns. The approach is the only one that uses
TextRank and LSTM for keyword-extraction and feature learning, respectively. The
outliers are formed by [14], which uses a Bi-LSTM model for classification, as well as
[8], which has no pre-processing algorithm mentioned and uses an LSTM RNN. This
source generally may not be well suited for the classification of the forum data, because
the dataset might gain from natural language pre-processing.

Analysing RQ3, the amount of pre-processing varies highly between the approaches,
and even after a lot of changes some of the algorithms would not be easily applicable.
Nearly all methods require some kind of natural language pre-processing. Additionally,
for some approaches there has to be some metadata added or some additional tagging
implemented, as the approach has a specific concern. For example for [10] to work, one
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has to manually create pairings of categories first, in order to find similarities. Similarly
with [26], as some semantic links between forum posts have to be created beforehand.

Some sources do not specify any pre-processing, namely [26] and [8], which may be
problematic. In [9] the primary language in Chinese, and all non-Chinese words are
translated. This could pose problems with the forum dataset, which is in English.

As can be seen from the analysis of RQ4, the sizes of the datasets vary a lot, from a
very large dataset in [10] to more reasonable sizes for the rest of the approaches. The
smallest dataset is used in [14], while the amount of training data needed is not available
for [9]. The types of the datasets are relatively similar, they are mostly based on some
form of Stack Overflow or a similar forum. There is only one different type of forum,
which is the Hacker-forum. As the main concern is primarily about the classification of
attachments, this type of dataset seems to be least relevant for the research question of
this paper. Finally, all approaches use some kind of metadata, which is mostly not too
hard to obtain.

After evaluating all sub-questions as above, the approach of Li et al. [14] seems to be the
most fitting as a basis for this research question. It already uses multiple classification
categories, needs just some additional metadata and pre-processing, has a relatively
small training dataset and has software-related categories.
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4 Inter-Rater-Agreement

In this chapter, the inter-rater agreement tool is presented. First, all requirements are
provided in section 4.1. Afterwards, the implementation of the requirements, including
frontend and backend services, are presented in section 4.2. In section 4.3 a test concept
is outlined and the quality of the implementation is assured. Lastly, the implemented
tool is evaluated using an informal usability test in section 4.4.

4.1 Requirements

In the following subsections all requirements regarding the inter-rater agreement func-
tionalities are provided. The coarse requirements, from which the functional and non-
functional requirements as well as the features were drawn, are presented in subsection
4.1.1. The persona for the coarse requirements is provided in subsection 4.1.2. In sub-
section 4.1.3 the functional requirements are outlined, followed by a visualization of the
relevant domain data in subsection 4.1.4. The non-functional requirements can be found
in subsection 4.1.5. Finally, the workspaces for the inter-rater agreement functionalities
can be found in subsection 4.1.6, and the corresponding UI-mock-ups are presented in
subsection 4.1.7.

4.1.1 Coarse Requirements

The requirements and implementation of the inter-rater agreement is based on the
following coarse requirements:

R1 Comparison of annotations: In Feed.UVL, an arbitrary number of annota-
tions for a dataset can be compared. On doing so, in the beginning users can
select all annotations of the same dataset which should be compared. Thereafter
a new encoding is created, which contains all codes of the previously selected an-
notations. Users are then able to choose for all text passages, which codes from
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the selected annotations should be accepted or declined. Additionally, users can
have all existing conflicts displayed as a table in another view. Here, a conflict
denotes a text passage which is assigned two different codes in two different anno-
tations. Moreover, from this view it is possible to navigate to the corresponding
text passage.

R2 Continued use of existing functionalities for encoding: The already exist-
ing views and functionalities in Feed.UVL regarding the encoding of datasets are
also used in the newly implemented functionalities for the comparison of annota-
tions. This especially refers to the annotation editor, which should also be used
for the comparison of annotations, in order to assign codes.

R3 Calculation of the inter-rater agreement: The newly implemented features
regarding the comparison of annotations enable users to calculate concrete values
(kappas), in order to find the consensus between annotators. Available choices
should include at least Cohen’s kappa, Fleiss’ kappa and the kappa of Brennan &
Prediger.

4.1.2 Persona

The persona relevant for the inter-rater functionalities is the researcher, which already
exists in the Feed.UVL project. The description of this persona already included needs,
frustrations and ideal features explaining the use of evaluation and visualization software
for natural language statements, which are extended to cover inter-rater agreement
requirements.

The biography and knowledge do not need to be changed, as both are already fitting.
The needs are extended to cover the requirements as posed in the coarse requirements in
section 4.1.1. Some frustrations are added regarding the inter-rater features, especially
regarding the UI. Some ideal features are added, which would make the comparison of
annotations easier for the researcher. The resulting description of the persona can be
observed in table 4.1, with the extended parts of the description in bold, and without
the irrelevant parts that already existed.

33



Table 4.1: The Researcher Persona.

P: Researcher

Biography

Age 34, doctoral degree in Computer Science, currently
researching the user view on software applications. Has
previously finished other research projects regarding requirements
from software users.

Knowledge Experience with using evaluation software for natural language
texts and using coding tools

Needs

A possibility for comparing multiple annotations,
accepting or declining codes from annotations and seeing
some insights into compared annotations. Wants to use
the compared annotations for further analysis. All
codes for a text passage can be compared, accepted
and declined.

Frustrations

All progress is lost when an error occurs. It is unclear
which encoded text passages have already been resolved
and which haven’t. It takes a long time to find
unresolved codes.

Ideal Features

Multiple annotations can be selected to compare
annotations. All codes for a text passage can be seen
and managed simultaneously. Kappa values are shown.
Resolved Comparisons can be exported as new
annotations in order to use existing annotation
functionalities.

4.1.3 Functional Requirements

The Functional requirements consist of user tasks, subtasks and system functions. User
tasks and subtasks are derived from the coarse requirements, and contain refined require-
ments for the researcher. System functions are functions which realize the requirements
of the researcher.

User Tasks and Subtasks

In Feed.UVL, there already exists a user task for the management of TORE annotations.
This user task is extended, in order to cover the tasks of the researcher. The new parts
of the user task can be seen in table 4.2.
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Table 4.2: The User Task.

UT: Manage TORE Annotations

The researcher compares multiple annotations to create an agreement.
The researcher resolves disagreements.
The researcher analyses the consensus between two annotations.
The researcher uses the compared annotations for further analysis.

The user task can be divided into three subtasks. Subtask UTS1 can be derived from
coarse requirement R1 and can be observed in table 4.3. Table 4.4 shows the subtask
UTS2, which is derived from a combination of coarse requirements R1 and R2. Lastly,
in table 4.5 subtask UTS3 can be seen, which is a combination of all three coarse
requirements R1, R2 and R3.

Table 4.3: UTS1: Manage Agreement

UTS1: Manage Agreement

1. Create agreement
The researcher selects a dataset, selects annotations for that dataset,
and picks a name in order to create an agreement.

SF12: Create new agreement

2. Inspect agreement
The researcher inspects all insights for the agreement, including codes,
disagreements and statistics.

SF3: Show Code View
SF4: Show Agreement Editor View

3. Save agreement
The researcher stores his/her progress.

SF13: Save Agreement

4. Delete agreement
The researcher deletes his/her progress.

SF14: Remove Agreement

5. Export Agreement
The researcher exports all results for an agreement.

SF15: Export Results as CSV
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6. Continue working on compared annotations
The researcher continues to work on the compared annotation after all
disagreements are resolved.

SF16: Create new annotation from resolved agreement

Table 4.4: UTS2: Inspect Agreement

UTS2: Inspect Agreement

1. Inspect results of classification algorithms
The researcher inspects results of classification algorithms such as
part-of-speech and algorithm results.

SF18: Highlight Algorithm Results
SF19: Highlight POS Tags

2. Calculate Kappa values
The researcher calculates initial and current kappa values.

SF5: Show Kappa Values
SF17: Update Kappa Values

3. Inspect resolved
The researcher inspects all resolved codes.

SF6: Show resolved codes
SF8: Navigate to occurrence

Table 4.5: UTS3: Resolve Disagreements

UTS3: Resolve Disagreements

1. Select a document
The researcher selects a document for which to resolve codes.

SF20: Show content of document

2. Inspect codes
The researcher inspects the codes for a text passage.

SF1: Show all codes view
SF7: Show unresolved codes

36



3. Accept code
The researcher accepts a code.

SF9: Accept code
3a: The researcher creates new code for a passage

SF10: Create new code
SF2: Show editor new code view

3p: The user accidentally accepts the wrong code.
Problem Solution: Revert accepting code
→Implemented in SF9

4. Reject Code
The researcher rejects a code.

SF11: Reject Code
4p: The user accidentally rejects the wrong code.

Problem Solution: Revert rejecting code:
→Implemented in SF9

System Functions

The system functions describe the system’s support for the tasks as described in the sub-
tasks. Some of the system functions, such as SF18: Highlight Algorithm Results, SF19:
Highlight POS Tags and SF20: Show content of document, are part of the annotation
editor, and therefore already exist. As one of the coarse requirements includes the reuse
of already existing annotation editor functionalities, only the new system functions will
be presented in this thesis.

Navigation functions

Many of the system functions are used for the navigation between different workspaces.
As the description of all those navigation functions are very similar, they are only briefly
listed in table 4.6.
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Table 4.6: All system functions used for the navigation between workspaces.

SF1: Show All Codes View
As a researcher, I want to see all codes for a text passage in order to resolve
disagreements.

SF2: Show Editor New Code View
As a researcher, I want to be able to select a category in order to create a new code.

SF3: Show Code View
As a researcher, I want to see all resolved and unresolved codes in order to get
an overview of the remaining disagreements.

SF4: Show Agreement Editor View
As a researcher, I want to see the documents in order to find disagreements in
the text.

SF5: Show Kappa Values
As a researcher, I want to see initial and current kappa values in order to inspect
the consensus between annotators.

SF6: Show Resolved Codes
As a researcher, I want to see all resolved codes in order to navigate to
the occurrence in the text.

SF7: Show Unresolved Codes
As a researcher, I want to see all unresolved codes in order to navigate to
the occurrence in the text.

SF8: Navigate to Occurrence
As a researcher, I want to navigate to the occurrence of a code in the text in
order to analyze the context of the text passage.
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SF9: Accept code

As a researcher, I want to accept a code in order to resolve a disagreement.

Table 4.7: SF9: Accept code

SF9: Accept code

Preconditions WS10.1: Agreement Editor All Code View or
WS9: Agreement Code Results View

Input Click on “Accept” for code

Postconditions WS10.1: Agreement Editor All Code View or
WS9: Agreement Code Results View

Output Code marked as accepted and colour is changed to green

Exception None

Rules None

Supports UTS3: Resolve Disagreements

SF10: Create new code

As a researcher, I want to create a new code for a text passage in order to find an
alternative for a disagreement.

Table 4.8: SF10: Create new code

SF10: Create new code

Preconditions WS10.2: Agreement Editor New Code View

Input Selected token, word code, category, relationships, other tokens

Postconditions WS10.1: Agreement Editor All Code View

Output The new code is created

Exception Creation of new code is cancelled

Rules (R1) Either a word code or a category has to be selected

Supports UTS3: Resolve Disagreements
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SF11: Reject Code

As a researcher, I want to reject a code in order to resolve a disagreement.

Table 4.9: SF11: Reject Code

SF11: Reject Code

Preconditions WS10.1: Agreement Editor All Code View or
WS9: Agreement Code Results View

Input Click on “Reject” for code

Postconditions WS10.1: Agreement Editor All Code View or
WS9: Agreement Code Results View

Output Code marked as rejected and colour is changed to red

Exception None

Rules None

Supports UTS3: Resolve Disagreements

SF12: Create new agreement

As a researcher, I want to select a dataset, select annotations for that dataset, and
select a name in order to create an agreement.

Table 4.10: SF12: Create new agreement

SF12: Create new agreement

Preconditions WS8: Agreement Master View

Input
Dataset, at least two annotations for that dataset,
a unique name, boolean for automatic acceptance of codes
without disagreements

Postconditions WS10: Agreement Editor View

Output An agreement containing all encodings of the annotations

Exception The name already exists

Rules (R1) At least two annotations have to be selected.

Supports UTS1: Manage Agreement
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SF13: Save Agreement

As a researcher, I want to save an agreement in order to store my progress.

Table 4.11: SF13: Save Agreement

SF13: Save Agreement

Preconditions WS9: Agreement Code Results View or
WS10: Agreement Editor View

Input Input to save annotation, optionally with boolean exit

Postconditions
WS9: Agreement Code Results View or
WS10: Agreement Editor View;
WS8: Agreement Master View if boolean exit is true

Output Agreement is saved

Exception None

Rules None

Supports UTS1: Manage Agreement

SF14: Remove Agreement

As a researcher, I want to remove an agreement in order to delete my progress.

Table 4.12: SF14: Remove Agreement

SF14: Remove Agreement

Preconditions WS8: Agreement Master View

Input Agreement

Postconditions WS8: Agreement Master View

Output List is without removed agreement

Exception Removal is cancelled

Rules None

Supports UTS1: Manage Agreement
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SF15: Export Results as CSV

As a researcher, I want to export my progress as a CSV-file in order to save my results
locally.

Table 4.13: SF15: Export Results as CSV

SF15: Export Results as CSV

Preconditions WS9: Agreement Code Results View

Input Click on export button for agreement

Postconditions WS9: Agreement Code Results View

Output CSV-file Download

Exception None

Rules None

Supports UTS1: Manage Agreement

SF16: Create new annotation from resolved agreement

As a researcher, I want to create a new annotation from a resolved agreement in order
to continue working on the annotation.

Table 4.14: SF16: Create new annotation from resolved agreement

SF16: Create new annotation from resolved agreement

Preconditions WS9: Agreement Code Results View

Input A unique name for the annotation, an agreement

Postconditions WS9: Agreement Code Results View

Output New annotation is created

Exception The name already exists

Rules None

Supports UTS1: Manage Agreement
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SF17: Update Kappa Values

As a researcher, I want to update the kappa values of an agreement in order to see the
current consensus between the annotations.

Table 4.15: SF17: Update Kappa Values

SF17: Update Kappa Values

Preconditions WS9: Agreement Code Results View

Input Click on update button for agreement

Postconditions WS9: Agreement Code Results View

Output The current kappa values

Exception None

Rules None

Supports UTS2: Inspect Agreements

4.1.4 Domain Data

The domain for the agreement functionalities in Feed.UVL is depicted in the domain
data model in figure 4.1. The agreement consists of two or more annotations and
resolved and unresolved disagreements, from which the kappa values can be calculated.
An annotation has codes, which has tokens that are based on text passages. The text
passages are part of a document, which can be analyzed by algorithms. The documents
are part of a dataset, on which annotations for the agreement are based.

4.1.5 Non-Functional Requirements

Functional requirements are requirements that define what the system should support.
They usually describe features that should be implemented in the system, and consist
of concrete definitions of functions. On the other hand, Non-functional requirements
(NFRs) describe how well the system supports what the user wants, or more generally
how well the system works. They are often related to the quality of the system. NFRs
often consist of requirements, for which functions and data are not well defined, never-
theless it should be possible to measure them in some form, in order to find out whether
they are fulfilled.
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Fig. 4.1: The Domain Data Model for Agreements in Feed.UVL

The standard for NFRs in this thesis is the ISO/IEC 25010 system and software quality
standard from [11]. It consists of categories with which to measure product quality,
which are themselves further divided into multiple sub-categories. In this thesis, four
of those categories are used: Performance, Usability, Maintainability and Functionality.
All following definitions are taken from this ISO standard1, all metrics are requirements
for the Feed.UVL system.

NFR1: Performance

This characteristic represents the performance relative to the amount of resources used
under stated conditions.

Time behaviour

Degree to which the response and processing times and throughput rates of a product
or system, when performing its functions, meet requirements.

1https://iso25000.com/index.php/en/iso-25000-standards/iso-25010, last accessed: 30.06.2022

44

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010


Metrics:

• When selecting a token in the WS10: Agreement Editor View, the WS10.1: Agree-
ment All Codes View is shown in less than 100ms.

• When creating a new code for a token, saving the new code takes less than 100ms.

• Creating an agreement without automatically resolving disagreements takes less
than 3 seconds per 1,000 tokens.

All performance metrics were tested and confirmed after the complete implementation
and quality assurance. The last metric was tested with a dataset containing 1,430
tokens, which took less than 3 seconds, and another dataset consisting of 13,775 tokens,
which took less than 40 seconds.

NFR2: Usability

Degree to which a product or system can be used by specified users to achieve specified
goals with effectiveness, efficiency and satisfaction in a specified context of use.

User error protection

Degree to which a system protects users against making errors.

Metrics:

• All system functions have stoppers, in order to protect from faulty user inputs.

• Deletion of an agreement takes at least two clicks.

Both metrics are assured with system tests, which are included in subsection 4.3.4.

Operability

Degree to which a product or system has attributes that make it easy to operate and
control.
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Metrics:

• When as user is in the agreement editor view, a code is able to be accepted or
rejected with at most two clicks.

• The user can navigate from the list of unresolved codes to the occurrence in the
dataset with one click.

The operability metrics are tested during the evaluation of the inter-rater agreement
tool, in section 4.4.

NFR3: Maintainability

This characteristic represents the degree of effectiveness and efficiency with which a
product or system can be modified to improve it, correct it or adapt it to changes in
environment, and in requirements.

Modularity

Degree to which a system or computer program is composed of discrete components
such that a change to one component has minimal impact on other components.

Metrics:

• The system is split into independent microservices, divided by well defined con-
cerns.

The modularity metric is assured through the implementation using microservices, as
documented in subsection 4.2.1.

NFR4: Functionality

This characteristic represents the degree to which a product or system provides functions
that meet stated and implied needs when used under specified conditions.

Functional completeness

Degree to which the set of functions covers all the specified tasks and user objectives.
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Metrics:

• The system functions are covering all the user tasks and subtasks. User tasks and
subtasks are based on the coarse requirements. The System functions are derived
from the subtasks, thus they can be traced back to them. Each subtask has at
least one system function that supports it.

The metric of functional completeness is already assured, as all user tasks and subtasks
are based on the coarse requirements as presented in subsection 4.1.1. All subtasks in
subsection 4.1.3 contain multiple system functions, which in turn have links to their
respective subtasks.

Functional correctness

Degree to which a product or system provides the correct results with the needed degree
of precision.

Metrics:

• Every system functions’ correctness is verified with system tests. If all system
tests pass for a system function, it indicates its correctness. Additionally, the
system functions are verified with an informal usability test.

The functional correctness is assured by the system tests as documented in subsection
4.3.4 and verified by the evaluation in section 4.4 using a usability test.

4.1.6 Workspaces

Workspaces (WS) are areas, in which system functions are grouped and tied into
a logical context. The UI-structure diagram, illustrated in figure 4.2, connects the
workspaces with each other and ties the functionalities together. Only system functions
and workspaces regarding agreements are discussed here.

The WS8: Agreement Master View is the main workspace. From here agreements can
be created, deleted and managed. Navigation to either the WS10: Agreement Editor
View or the WS9: Agreement Code Results View is possible, and navigation between
those two workspaces is also supported. In the WS9: Agreement Code Results View,
all statistics about the agreement, as well as lists of unresolved and resolved codes, are
given. In the WS10: Agreement Editor View all tokens are shown, navigation between
documents is possible, and tokens which are encoded can be selected.
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From the previous workspace navigation to the WS10.1: Agreement Editor All Code
View is possible. Here, all codes for a selected token are listed, and codes can be
accepted or declined. One can further navigate to the WS10.2: Agreement Editor New
Code View, where new codes for the selected token can be created.

Fig. 4.2: The UI-structure diagram for the agreement workspaces in Feed.UVL

48



4.1.7 Mock-Ups

Mock-ups are preliminary illustrations of the system, and are based on the workspaces
of section 4.1.6. They are used to get an idea of what the realization of the workspaces
and system functions may look like, and can be changed in the final implementation.

Figure 4.3 shows the mock-up for the creation of a new agreement, which corresponds
to part of WS8.

Fig. 4.3: The mock-up for the creation of a new agreement in WS8

In figure 4.3 an illustration of the list of agreements can be seen, from which the deletion
or the navigation to other workspaces can be triggered. This is also part of WS8.
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Fig. 4.4: The mock-up for the management of existing agreements in WS8

An illustration of the agreement editor with a corresponding list of codes can be observed
in figure 4.5. The view of the codes for a token in the final implementation looks very
different from this mock-up, which shows that this is only one idea for the realization
of the workspaces WS10, WS10.1, WS10.2.

Fig. 4.5: The mock-up of the agreement editor, including the list of tokens in WS10, WS10.1,
WS10.2

Lastly, in figure 4.6 an illustration of WS9 is shown. There are different kinds of tabs
which can be chosen from, as well as lists with resolved and unresolved codes.
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Fig. 4.6: The mock-up of the results view of an agreement in WS9

4.2 Implementation

In this section the implementation of the agreement functionalities into the Feed.UVL
system is presented. In subsection 4.2.1 the microservice architecture of the implemen-
tation is discussed. The data classes used in the microservices are outlined in subsection
4.2.2. In subsection 4.2.3 the new and extended backend services are shown, while the
frontend services are presented in subsection 4.2.4.

51



4.2.1 Architecture

The existing microservice architecture was already presented in section 2.4.1. Following
the NFR3: Maintainability, the microservice architecture is extended with the addition
of a new microservice called uvl-agreement. The new microservice is part of the ap-
plication layer, and handles everything related to building an agreement, including the
creation of agreements, the conversion to annotation and the calculation of kappas.

Additionally, the existing microservices ri-visualization, uvl-storage-concepts and uvl-
orchestration-concepts are extended. The service uvl-orchestration-concepts is used to
orchestrate the creation of agreements, and communicates with the uvl-agreement ser-
vice as well as the uvl-storage-concepts service. The database management system
MongoDB2 is running as a microservice itself, while the uvl-storage-concepts handles
the communication with the database, as well as saving and retrieving data. The ri-
visualization service handles the frontend, and is extended by the new agreement Views.

All of those microservices are written in the programming language Go3 except for
the frontend microservice ri-visualization, which is in Javascript4 and uses the VueJS 5

framework. All of them are deployed using Docker as a containerization tool, and
Jenkins, which automatically builds and deploys new commits from the respective Git
repositories.

4.2.2 Data Classes

The data classes implemented by the mircoservices are derived from the domain data
model in section 4.1.4, and can be observed in figure 4.7. The data model is used by all
services, but the implementation depends on the programming language, as the backend
services use Go, while the frontend service uses Javascript.

2https://www.mongodb.com/
3https://go.dev/
4https://devdocs.io/javascript/
5https://vuejs.org/
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Fig. 4.7: The data classes for all agreement functionalities.

To create an agreement, all selected annotations are compared and the data is merged.
The DocWrapper -class is the same for all annotations of a dataset, and can be carried
over from any of the annotations. The relevant fields of the Token-class for agreements
are index, name, lemma, and pos, which all stay the same for all annotations of a dataset,
while numNameCodes and numToreCodes are not used for the agreement implementa-
tion. Therefore the list of tokens can again be taken from any of the annotations, and
does not have to be merged or changed.

The Agreement-class is the most important class, as it links to all the relevant informa-
tion of an agreement. AgreementStatistics contains the name of a kappa and initial as
well as current kappa values. As of now, two types of kappas exist, but in the future
more can be added easily. TORERelationship contains all relationships of all annota-
tions, and is merged during agreement creation, by assigning unique indices. Similarly,
the Code-class contains all codes of all annotations and is created by merging during
creation and assigning unique indices. CodeAlternatives serves as a wrapper around the
codes, and carries information about the name of the annotation and the merge status
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of the code. A merge status can be either Accepted, Pending or Declined. If any pending
code is assigned to a token, the token has a disagreement.

4.2.3 Backend Services

Two of the already existing services supporting agreement functionalities in the Feed.UVL
project, which are the orchestration service and the storage service, are presented next.
Afterwards, the only newly created microservice, the agreement service, is shown. Since
all services are written in Go in which classes don’t exist, all classes in the subsequent
class diagrams are only abstract.

Orchestrator and Storage Service

The orchestration service serves as an API for the orchestration of new agreements, the
update of the current kappa values, and the export of an agreement as an annotation. All
incoming API calls are handled and sent to the responsible services via a RestHandler.
The storage service is responsible for storing, extracting and deleting data from the
database, MongoDB. Other services use API calls to communicate with the database
through this service. As both, the orchestrator and the storage service already existed
in the Feed.UVL project, only new functions are shown in figure 4.8. The RestHandler
is implemented in the orchestrator, while the MongoHandler is implemented in the
storage service.
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Fig. 4.8: The class diagram for the added functionalities in the uvl-orchestration-concepts and
uvl-storage-concepts microservice.

Agreement Service

The agreement service is responsible for all complex calculations regarding agreement
data. The main functions are the creation of a new agreement, the calculation of the
kappa values, and the export of agreements as annotations. It handles API calls which
are used by the orchestration service, and has a RestHandler to communicate with the
storage service in order to use the database. Tasks of the RestHandler includes getting
information about agreements, annotations, TORE categories and TORE relationships,
as well as storing newly created annotations. The class diagram of the annotation service
can be seen in figure 4.9.
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Fig. 4.9: The class diagram for the uvl-agreement microservice.

Instead of creating a new agreement service, the Annotator -microservice could have
been reused as an alternative, as the data structures behind the annotation and agree-
ment are relatively similar. The decision of creating a new microservice was made,
since the comparison of annotations is a different concern than simply creating a tok-
enization of a dataset. Additionally, the agreement service contains multiple features
regarding agreements, which justifies the creation of a new microservice. Last but not
least, by creating a new service another programming language can be used easily. In
order to stay consistent, Go is used for the agreement service instead of Python, as the
orchestration and storage services are both written in Go.
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4.2.4 Frontend Services

The realization of the workspaces are called views. The microservice ri-visualization
handles all functionalities related to the frontend, therefore all views have to be imple-
mented in this service.

Agreement Master View

The Agreement Master View realizes WS8, and consists of two major features. A dataset
can be selected, and a name can be entered. Afterwards a list of annotations for the
selected dataset is displayed, which can be seen in figure 4.10. When at least two of
those annotations are selected, the “+”-Icon is enabled, and the system function for the
creation of a new agreement can be used.

Fig. 4.10: The view for the creation of a new agreement.

While the design of the realization is different from the mock-up as presented in fig-
ures 4.3 and 4.4 in section 4.1.7, the basic functionalities remain in a relatively similar
position. One addition is the checkbox to automatically resolve all inter-rater concur-
rences, which is checked by default. This design decision was made, because it reduces
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the amount of work when comparing annotations, especially if the kappa values of the
inter-rater agreements are high. The alternative would have been an opt-in feature,
which, when forgotten about, leads to higher amounts of work or longer waiting times,
as creating an agreement can take some time. This could ultimately lead to frustrations
for users.

The second feature is the display of all agreements, as shown in figures 4.11. All existing
agreements are shown, with an option to delete the selected agreement or to show either
the code view or the editor view. The implementation looks very similar to the mock-up.

Fig. 4.11: The view of all existing agreements.

Agreement Code Results View

The Agreement Code Results View realizes WS9, and consists of a header and three
tabs, in which information about the agreement is displayed. The header of this View
is shown in figure 4.12, which contains the system functions to export the agreement
as a CSV. When an agreement is completely resolved, there is also the possibility to
convert the agreement to an annotation.
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Fig. 4.12: The header of the coding results view.

In figure 4.13 a list of unresolved codes is shown. It is possible to accept or decline
the codes, as well as to navigate to the occurrence in the text. The navigation is also
possible from the list of resolved tokens, which can be seen in figure 4.14. Lastly, the
code statistics including the kappa values as well as the possibility to update the kappa
values are shown in figure 4.15.

Fig. 4.13: The tab containing the unresolved codes.
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Fig. 4.14: The tab containing the resolved codes.

The realization of this View contains the functions to download one table, download
all tables and to export as annotation just as the mock-up in section 4.1.7, figure
4.6. However, the content of the tabs have changed a bit, because sorting by word
codes, categories and relationships did not seem fitting for the tasks the user wants
to achieve. Sorting by resolved and unresolved codes covers the main task, which is
resolving disagreements.

Fig. 4.15: The tab containing the agreement statistics.

One important design decision made in this view is the update of the kappa values. It
was decided that current kappa values are only updated, if the button “Refresh current
kappa values” is pressed. An alternative would have been to update kappa values after
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every save, however, this can happen very often, as Feed.UVL automatically saves the
agreement every 120 seconds. As the calculation of kappa values is computationally
expensive, and the current kappa values are rarely needed, updating them only when
necessary is sufficient.

Agreement Editor View

The Agreement Editor View realizes WS10. As can be seen in figure 4.16, the editor
consists of some highlight features, navigation between documents, and displaying text.
All tokens that have been encoded are coloured, if there is a disagreement they are
coloured red, otherwise green. The buttons for saving are also shown in the right top
corner. The basic layout of this view is very similar to the mock-up in figure 4.5 in
section 4.1.7.

Fig. 4.16: The view of the agreement editor.

Agreement Editor All Codes View

The Agreement Editor All Codes View realizes WS10.1, and is shown when an encoded
token is selected. The dialog, which can be observed in figure 4.17, consists of a list of
codes with all relevant information, as well as the ability to accept or reject the codes.
Accepted codes are coloured green, rejected codes are red and pending codes are not
coloured at all (not displayed). When clicking on the button “Create New”, the user is
navigated to the workspace WS10.2.
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Fig. 4.17: The view of all codes for one token.

This View looks completely different from the mock-up as presented in section 4.1.7,
figure 4.5, as there is only one list with each row containing a complete code. The
implementation of a comparison by word code, category and relationship proved to be
very complex because of several reasons. Firstly, the information on whether a word
code, category or relationship is accepted or rejected has to be stored not by code, but
by word code, category and relationship. Secondly, the export as an annotation would
have been more complex, as there would have been no code structure like the one used
in the annotation model, and it would not have been clear which word codes should be
associated with which categories or relationships, since multiple codes could have been
assigned to one token.

Agreement Editor New Code View

The Agreement Editor New Code View realizes WS10.2, and is displayed in figure 4.18.
It is possible to add a word code, a category, as well as relationships and other tokens.
The code is created when clicking on the creation button. This view did not exist in
any of the mock-ups, as the first ideas never included adding new codes to tokens. The
first concepts only included accepting or declining existing codes.

Fig. 4.18: The dialog for the creation of a new code for a token.
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The decision was made that a new code is only created when clicking “Add and accept”,
and all input is lost when clicking outside of the dialog. This decisions stems from the
implementation of creating new codes in the Annotation View of Feed.UVL, in which
codes are created automatically as soon as the dialog is opened. This implementation
can lead to frustrations, because codes can be created by accident, which leads to
disagreements when comparing the annotation to others. The decision was made to
require intentional acceptance of a new code by clicking on a button, and to not create
the code when clicking outside of the dialog. Additionally, clicking outside the dialog
removes all input, because it is interpreted as no code for the tokens should be created.
Otherwise it would have been frustrating if the input was persisted, and shown when a
new code was created for another token.

4.3 Quality Assurance

In this section, the quality assurance is summarized. The test concept is presented in
subsection 4.3.1. In subsection 4.3.2 the concept of test-driven development is intro-
duced, and it is explained how it was included in the development process behind this
thesis. The results of the static tests are provided in subsection 4.3.3. All system tests
for system functions as well as some of the NFRs are outlined in subsection 4.3.4. Lastly,
the most major problems and bugs found during the development or testing phases are
summarized in subsection 4.3.5.

4.3.1 Test Concept

There are some major problems with testing in the Feed.UVL project. First, the fron-
tend is relatively hard to test, because component tests are hard to implement. That
means everything is tested with system tests, even methods written in Javascript. Com-
bined with the missing development environment, the development of the frontend is
hard and only system tests on the production environment can be easily used for quality
assurance. Second, microservices based on Go are also inconvenient to test, because
dependencies are missing in the local versions. Therefore the microservices are again
only tested using system tests.

The first part of the test concept includes static tests for all microservices related to
the implementation of the agreement functionalities. This can be useful for detecting
bad smells, high complexity, or other problems with the code.
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The second part consists of thorough system tests that cover all possible inputs. The
system is assumed to be working correctly, when all system tests give the expected
results. The test concept for system tests can be observed in table 4.16.

Table 4.16: TC: Test concept for System tests with Agreement Functionalities

TC: Test concept for System tests with Agreement Functionalities

Test Object

All system functions that cover agreement functionalities. That
means all system function related to:
UT1S: Manage Agreement,
UT2S: Inspect Agreement and
UT3S: Resolve Disagreements

Test Coverage At least all functional requirements and NFR2: Usability

Idea
1. All system functions are tested manually
2. Not all possible permutations are tested, but at least all classes

of singular values -> minimal coverage of equivalency classes

Test Execution Manually

Test Results All tests are successful

4.3.2 Test-Driven Development

Test-Driven Development (TDD) is a part of agile development, and describes the de-
velopment of tests before implementing features or writing code. The idea is to develop
test cases and write tests before any implementation exists, and to use them as a basis
for further development. Using TDD in software projects tends to lead to more correct
code, because mistakes directly cause tests to fail. This in turn can lead to higher
quality code, and a reduction of bugs.

A form of TDD was used during the development of the agreement features in the
Feed.UVL project. If a new method or feature had to be developed, scratch files had
been used. Scratch files can serve as a small, independent development environment.
They can therefore be used to implement and test small features, methods or compo-
nents. The approach was the following:

First, all possible test cases, especially borderline or unusual cases, are developed. Using
those test cases, testdata is created and the result of processing the testdata through
the feature is specified, which can be used as an expected result to compare the actual
results to. Then the methods necessary to implement the feature are developed and
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implemented. When the results look as predicted, the developed code can be copied
from the scratch file to the actual system. From here on it is very likely that the feature
works correctly, because it was extensively tested.

This process has been done to develop methods with Javascript as well as Go, and
serves as a good alternative for component tests at least while developing, because
functionalities of methods can be tested and verified, and the rest can still be tested
with system tests. The disadvantage is that they are not real tests, and as such they
are not part of a test pipeline, meaning as soon as methods are changed by someone,
they can become faulty without warning.

4.3.3 Static Tests

The static code analysis has been performed using Codefactor6. The number of issues
in the different microservices can be observed in table 4.17. Only the ri-visualization
microservice has issues, two of them regard unused variables, two regard styling in a
css-file. The last issue is ignored, as the static code analysis recognizes a method as
having a high complexity, which is correct, but justified. All other issues have been
fixed.

Table 4.17: The results of the static code analysis

Microservice Numer of Issues

uvl-agreement 0
uvl-storage-concepts 0
uvl-orchestration-concepts 0
ri-visualization 5

4.3.4 System Tests

System tests are tests which verify whether requirements are correctly implemented,
which coincides with NFR4: Functionality, more specifically Functional Correctness in
section 4.1.5. This includes functional requirements as well as non-functional require-
ments. All system tests are derived by evaluating equivalency classes for inputs of the
system functions, and testing in such a manner that all classes were included in tests
at least once.

6https://www.codefactor.io/dashboard
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Navigation functions

All navigation functions were tested from all possible starting points. If the end point
of the navigation included showing a list, the list was tested containing minimal results
(either no results or the minimum number possible) as well as multiple results. In the
case of SF5: Show Kappa Values, the calculation of the initial kappa value was tested as
well. The system function SF8: Navigate to Occurrence included testing navigation to
the first and second document. As part of NFR2: Usability, it was also assured that the
navigation takes at most one click. Another metric of this NFR is tested by combining
SF1 with both, SF9 and SF11. Is it assured that codes can be accepted by at most two
clicks. A summary of all system tests for the navigation system functions can be seen
in table 4.18.

Table 4.18: All system tests for the system functions used for the navigation between
workspaces.

SF1: Show All Codes View

TCS1.1: Show all codes view with one code
TCS1.2: Show all codes view with multiple codes

SF2: Show Editor New Code View

TCS2.1: Show editor new code view

SF3: Show Code View

TCS3.1: Show Code View from Master
TCS3.2: Show Code View from Editor

SF4: Show Agreement Editor View

TCS4.1: Show Agreement Editor View from Master
TCS4.2: Show Agreement Editor View from Code View

SF5: Show Kappa Values

TCS5.1: Show Kappa Values with perfect agreement
TCS5.2: Show Kappa Values with perfect disagreement
TCS5.3: Show Kappa Values with some agreements some disagreements

SF6: Show Resolved Codes

TCS6.1: Show resolved codes, no resolved
TCS6.2: Show resolved codes, multiple resolved

SF7: Show Unresolved Codes

TCS7.1: Show unresolved codes, no unresolved
TCS7.2: Show unresolved codes, multiple unresolved
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SF8: Navigate to Occurrence

TCS8.1: Navigate to occurrence from resolved to first document
TCS8.2: Navigate to occurrence from unresolved to second document

SF9: Accept code

Table 4.19 shows the system tests. Accepting codes can be done from two different
workspaces, which are both tested.

Table 4.19: System tests for SF9: Accept code

TCS9.1: Accept code from Code View

Preconditions At least one agreement a exists, and at least
one unresolved code c

Preconditions GUI WS9: Agreement Code Results View

Test Steps 1. Click on button “Accept” for the unresolved code c

Expected Result GUI WS9: Agreement Code Results View, the code c is accepted
and no longer in the unresolved table

Expected Exception None

Postcondition System Code c is accepted

TCS9.2: Accept pending code from Editor

Preconditions At least one agreement a exists, and at least one
pending code c for token t

Preconditions GUI WS10.1: Agreement Editor All Code View

Test Steps 1. Click on button “Accept” for the pending code c

Expected Result GUI WS10.1: Agreement Editor All Code View, and the code c
is accepted and coloured green

Expected Exception None

Postcondition System Code c is accepted

TCS9.3: Accept declined code from Editor

Preconditions At least one agreement a exists, and at least one
declined code c for token t

Preconditions GUI WS10.1: Agreement Editor All Code View

Test Steps 1. Click on button “Accept” for the declined code c
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Expected Result GUI WS10.1: Agreement Editor All Code View, and the code c
is accepted and coloured green

Expected Exception None

Postcondition System Code c is accepted

SF10: Create new code

The system tests for this system function are listed in table 4.20. It is tested whether
creating a code with only a word code or a category is possible. Additionally adding
one or multiple tokens, as well as adding one or multiple relationships, is tested.

Table 4.20: System tests for SF10: Create new code

TCS10.1: Create new code with one word code

Preconditions At least one agreement a exists. A token t is selected.

Preconditions GUI WS10.2: Agreement Editor New Code View

Test Steps 1. Enter the word code “Some word”
2. Click “Add and Accept”

Expected Result GUI WS10.1: Agreement Editor All Code View, and the code
is accepted and coloured green

Expected Exception “Cancel” is clicked or user clicks outside of the dialog

Postcondition System A code is created for token t, with word code “Some word”
and no category. The code is accepted.

TCS10.2: Create new code with one category

Preconditions At least one agreement a exists. A token t is selected.

Preconditions GUI WS10.2: Agreement Editor New Code View

Test Steps 1. Select category “Activity”
2. Click “Add and Accept”

Expected Result GUI WS10.1: Agreement Editor All Code View, and the code c
is accepted and coloured green

Expected Exception “Cancel” is clicked or user clicks outside of the dialog

Postcondition System A code is created for token t, with category “Activity”
and no word code. The code is accepted.
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TCS10.3: Create new code with word code, category, one relationship,
one added token

Preconditions At least one agreement a exists. A token t is selected.

Preconditions GUI WS10.2: Agreement Editor New Code View

Test Steps

1. Enter the word code “Some word”
2. Select category “Activity”
3. Click on “New Relationship” and select the adjacent

token t1, select the relationship type “works with”.
4. Click on “Add other tokens” and select token t2

adjacent to previous token t1.
5. Click “Add and Accept”

Expected Result GUI WS10.1: Agreement Editor All Code View, and the code c
is accepted and coloured green

Expected Exception “Cancel” is clicked or user clicks outside of the dialog

Postcondition System

Another code is created for token t, with word code
“Some word”, category “ Activity”, a relationship
“works with” to token t1 and one added token t2.
The code is accepted.

TCS10.4: Create new code with word code, category, two relationships,
two added tokens

Preconditions At least one agreement a exists. A token t is selected.

Preconditions GUI WS10.2: Agreement Editor New Code View

Test Steps

1. Enter the word code “Some word”
2. Select category “Activity”
3. Click on “New Relationship” and select adjacent

token t1, select relationship type “works with”.
Repeat once with token t2 adjacent to t1.

4. Click on “Add other tokens” and select token t3
adjacent to token t2 . Repeat once with token t4 adjacent
to token t3.

5. Click “Add and Accept”

Expected Result GUI WS10.1: Agreement Editor All Code View, and the code c
is accepted and coloured green

Expected Exception “Cancel” is clicked or user clicks outside of the dialog

Postcondition System

Another code is created for token t, with word code
“Some word”, category “Activity”, two relationships
“works with” to tokens t1 and t2, and two added tokens
t3 and t4. The code is accepted.
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SF11: Reject code

Table 4.21 shows the system tests. Rejecting codes can again be done from two different
workspaces, which are both tested.

Table 4.21: System tests for SF11: Reject code

TCS11.1: Reject code from Code View

Preconditions At least one agreement a exists, and at least
one unresolved code c

Preconditions GUI WS9: Agreement Code Results View

Test Steps 1. Click on button “Reject” for the unresolved code c

Expected Result GUI WS9: Agreement Code Results View, the code c is rejected
and no longer in the unresolved table

Expected Exception None

Postcondition System Code c is rejected

TCS11.2: Reject pending code from Editor

Preconditions At least one agreement a exists, and at least one
pending code c for token t

Preconditions GUI WS10.1: Agreement Editor All Code View

Test Steps 1. Click on button “Reject” for the pending code c

Expected Result GUI WS10.1: Agreement Editor All Code View, and the
code c is rejected and coloured red

Expected Exception None

Postcondition System Code c is rejected

TCS11.3: Reject declined code from Editor

Preconditions At least one agreement a exists, and at least one
accepted code c for token t

Preconditions GUI WS10.1: Agreement Editor All Code View

Test Steps 1. Click on button “Reject” for the accepted code c

Expected Result GUI WS10.1: Agreement Editor All Code View, and the
code c is rejected and coloured red

Expected Exception None

Postcondition System Code c is rejected
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SF12: Create new agreement

The creation of a new agreement contains multiple inputs which have to be tested.
Firstly, the user can select at least two annotations for a dataset. Here, it is tested
whether the comparison of two and three annotations is working as expected. Addi-
tionally, the user can choose to automatically merge all text passages which have no
disagreements, which has to be tested as well.

The output is also different depending on the codes in the annotations. The correct
comparison of word codes, categories, relationships and tokens has to be included. Also,
if an annotator has not assigned any code to a text passage which others have encoded,
it has to be tested that there is still a disagreement. The combination of all of those
concerns results is the system tests as listed in table 4.22.

Lastly, in order to quality-assure the NFR2: Usability, it is tested that it’s not possible
to create an agreement with only one annotation, or to use an agreement name that
already exists.

Table 4.22: System tests for SF12: Create new agreement

TCS12.1: Create new agreement with three annotations, perfect
agreement, automerge

Preconditions Three annotations a1, a2, a3 for dataset d exist. All of
them have a perfect agreement on multiple tokens.

Preconditions GUI WS8: Agreement Master View

Test Steps

1. Select Dataset d
2. Enter agreement name “NewAggrX” and fill “X” with

a number such that the name is unique
3. Select the three annotations a1, a2, a3
4. Click “Create New Agreement”

Expected Result GUI WS10: Agreement Editor View

Expected Exception None

Postcondition System The agreement is created, with no disagreements

TCS12.2: Create new agreement with three annotations, automerge

Preconditions

Three annotations a1, a2, a3 for dataset d exist. There are
at least the following tokens: one token t1 with a perfect
agreement, one token t2 with two annotators agreeing and
the last having no code, t3 with two annotators agreeing
and the last not agreeing, t4 with all not agreeing, t5 with
three same codes from one annotator
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Preconditions GUI WS8: Agreement Master View

Test Steps

1. Select Dataset d
2. Enter agreement name “NewAggrX” and fill “X” with

a number such that the name is unique
3. Select the three annotations a1, a2, a3
4. Click “Create New Agreement”

Expected Result GUI WS10: Agreement Editor View

Expected Exception None

Postcondition System The agreement is created, with a resolved disagreement
at t1, and unresolved disagreements at t2, t3, t4, t5

TCS12.3: Create new agreement with two annotations, perfect
agreement, automerge

Preconditions

Two annotations a1, a2 for dataset d exist. There is a
perfect agreement, and there are the following tokens:
t1 both annotations have only a word code, t2 both
annotations have only a category, t3 both annotators
have a word code, category, one relationship, t4 both
annotators have a word code, category, two relationships,
t5 both annotators have a word code, category, one
added token, t6 both annotators have a word code,
category, two added tokens

Preconditions GUI WS8: Agreement Master View

Test Steps

1. Select Dataset d
2. Enter agreement name “NewAggrX” and fill “X” with

a number such that the name is unique
3. Select the two annotations a1, a2
4. Click “Create New Agreement”

Expected Result GUI WS10: Agreement Editor View

Expected Exception None

Postcondition System
The agreement is created, with no unresolved
disagreements and all codes for tokens t1 to t6 with one
code accepted and rejected each

TCS12.4: Create new agreement with two annotations, perfect
agreement, no automerge

Preconditions Same as TCS12.3

Preconditions GUI WS8: Agreement Master View
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Test Steps

1. Select Dataset d
2. Enter agreement name “NewAggrX” and fill “X” with

a number such that the name is unique
3. Unselect “Automatically resolve all inter-rater

concurrences”
4. Select the two annotations a1, a2
5. Click “Create New Agreement”

Expected Result GUI WS10: Agreement Editor View

Expected Exception None

Postcondition System The agreement is created, there are only unresolved
disagreements

TCS12.5: Create new agreement with two annotations, perfect
disagreement, automerge

Preconditions

Two annotations a1, a2 for dataset d exist. There is a
perfect disagreement, and there are the following tokens:
t1 both annotations have different a word codes, t2 both
annotations have different categories, t3 both annotators
have the same word code and category, but each one
different relationship, t4 both annotators have the
same word code, category, each one different added token

Preconditions GUI WS8: Agreement Master View

Test Steps

1. Select Dataset d
2. Enter agreement name “NewAggrX” and fill “X” with

a number such that the name is unique
3. Select the two annotations a1, a2
4. Click “Create New Agreement”

Expected Result GUI WS10: Agreement Editor View

Expected Exception None

Postcondition System
The agreement is created, with only unresolved
disagreements and all codes for tokens t1 to t6 with
only pending codes

TCS12.6: Create new agreement with two annotations, one empty
annotation, automerge

Preconditions

Two annotations a1, a2 for dataset d exist. one annotator
has annotated nothing, and the other has the following
tokens: t1 only a word code, t2 only a category, t3 a word
code, category, one relationship, t4 a word code, category,
two relationships, t5 a word code, category, one added
token, t6 a word code, category, two added tokens

Preconditions GUI WS8: Agreement Master View
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Test Steps

1. Select Dataset d
2. Enter agreement name “NewAggrX” and fill “X” with

a number such that the name is unique
3. Select the two annotations a1, a2
4. Click “Create New Agreement”

Expected Result GUI WS10: Agreement Editor View

Expected Exception None

Postcondition System
The agreement is created, there are only unresolved
disagreements and all codes for tokens t1 to t6 with
one code pending

TCS12.7: Create new agreement with one annotation

Preconditions An annotation a for dataset d exists.

Preconditions GUI WS8: Agreement Master View

Test Steps

1. Select Dataset d
2. Enter agreement name “NewAggrX” and fill “X” with

a number such that the name is unique
3. Select the annotation a

Expected Result GUI WS8: Agreement Master View, button
“Create New Agreement” is disabled

Expected Exception None

Postcondition System None

TCS12.8: Create new agreement with name that already exists

Preconditions At least one agreement a with agreement name “MyAggr”,
and two annotations an1, an2 for dataset d exist.

Preconditions GUI WS8: Agreement Master View

Test Steps
1. Select Dataset d
2. Enter agreement name “MyAggr”
3. Select the annotations an1, an2

Expected Result GUI WS8: Agreement Master View, button
“Create New Agreement” is disabled

Expected Exception None

Postcondition System None
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SF13: Save Agreement

Saving an agreement can be done from two different workspaces, and is implemented on
the GUI either as a single “Save” or as a combination of “Save & Exit”. Therefore two
system tests are derived, one containing the first workspace and the “Save”, the other
containing the other workspace and the “Save & Exit”. The system tests can be found
in table 4.23.

Table 4.23: System tests for SF13: Save Agreement

TCS13.1: Save Agreement from Editor and Close

Preconditions At least one agreement a exists

Preconditions GUI WS10: Agreement Editor View

Test Steps 1. Click on button “Save and exit”

Expected Result GUI WS8: Agreement Master View

Expected Exception None

Postcondition System Agreement a is saved

TCS13.2: Save Agreement from Code View and do not Close

Preconditions At least one agreement a exists

Preconditions GUI WS9: Agreement Code Results View

Test Steps 1. Click on button “Save”

Expected Result GUI WS9: Agreement Code Results View

Expected Exception None

Postcondition System Agreement a is saved

SF14: Remove Agreement

Table 4.24 contains the system test for this system function. There is only one kind of
input possible, therefore there is only one system test. As part of NFR2: Usability, the
inability to remove an agreement with less than two clicks is implicitly tested.
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Table 4.24: System tests for SF14: Remove Agreement

TCS14.1: Remove Agreement

Preconditions At least one agreement a exists

Preconditions GUI WS8: Agreement Master View

Test Steps 1. Click on button “Delete Agreement” for agreement a
2. Click on button “Confirm”

Expected Result GUI WS8: Agreement Master View, agreement a is not shown

Expected Exception Clicking on button “Cancel”

Postcondition System Agreement a removed

SF15: Export Results As CSV

On the GUI, there are two different buttons: The first for downloading one table, the
second for downloading all tables. As inputs, only empty or non-empty tables are tested.
The system tests are listed in table 4.25.

Table 4.25: System tests for SF15: Export Results As CSV

TCS15.1: Export Results As CSV, all tables

Preconditions At least one agreement a exists, there are some
disagreements, some resolved codes

Preconditions GUI WS9: Agreement Code Results View

Test Steps 1. Click on button “Download all”

Expected Result GUI WS9: Agreement Code Results View

Expected Exception None

Postcondition System Three csv-files containing tables of the three tabs are
generated and ready for download

TCS15.2: Export Results As CSV, single non-empty table

Preconditions At least one agreement a exists, there are resolved codes
Preconditions GUI WS9: Agreement Code Results View

Test Steps 1. Navigate to tab “Resolved”
2. Click on button “Download this table”

Expected Result GUI WS9: Agreement Code Results View
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Expected Exception None

Postcondition System A csv containing a non-empty table with resolved codes is
generated and ready for download

TCS15.3: Export Results As CSV, single empty table

Preconditions At least one agreement a exists, there are no disagreements

Preconditions GUI WS9: Agreement Code Results View

Test Steps 1. Navigate to tab “Unresolved”
2. Click on button “Download this table”

Expected Result GUI WS9: Agreement Code Results View

Expected Exception None

Postcondition System A csv containing an empty table is generated and ready
for download

SF16: Create new annotation from resolved agreement

As the input of the function is an agreement, there are many different equivalency
classes, contained in table 4.26. The most relevant factors are whether an agreement
contains no codes, and if it contains codes, whether word code, categories and relation-
ships are correctly transformed to an annotation. It is also important to test whether
codes with multiple tokens are transformed correctly. Additionally, as part of NFR2:
Usibility, it is tested that choosing an annotation name that already exists is not pos-
sible.

Table 4.26: System tests for SF16: Create new annotation from resolved agreement

TCS16.1: Create new annotation from resolved agreement with no codes

Preconditions At least one agreement a exists, without any codes

Preconditions GUI WS9: Agreement Code Results View

Test Steps
1. Enter annotation name “AnnoX”, with X a number such

that the name is unique
2. Click button “Export as annotation”

Expected Result GUI WS9: Agreement Code Results View, tip
“Agreement is exported an annotation”

Expected Exception None

Postcondition System The annotation is created, containing no codes
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TCS16.2: Create new annotation from resolved agreement with all
encoding types

Preconditions

At least one agreement a exists that is completely resolved,
with exactly the following accepted codes:
c1 with just a word code, c2 with just a category, c3 with
a word code, category, one relationship, and one connected
token, c4 with a word code, category, two
different relationships and two connected tokens

Preconditions GUI WS9: Agreement Code Results View

Test Steps
1. Enter annotation name “AnnoX”, with X a number such

that the name is unique
2. Click button “Export as annotation”

Expected Result GUI WS9: Agreement Code Results View, tip
“Agreement is exported an annotation”

Expected Exception None
Postcondition System The annotation is created, containing exactly c1, c2, c3, c4

TCS16.3: Create new annotation from resolved agreement with an
already existing name

Preconditions At least one agreement a that is completely resolved and
an annotation with name “MyAnno” exists

Preconditions GUI WS9: Agreement Code Results View

Test Steps 1. Enter annotation name “MyAnno”

Expected Result GUI WS9: Agreement Code Results View, the button
“Export as annotation” is disabled

Expected Exception None
Postcondition System None

SF17: Update Kappa Values

This system function describes the calculation of the current kappa. The system tests
can be found in table 4.27, and describe the expected value of the kappas.

Table 4.27: System tests for SF17: Update Kappa Values

TCS17.1: Update Kappa Values with no change

Preconditions At least one agreement a exists, no changes have been
made after creation
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Preconditions GUI WS9: Agreement Code Results View

Test Steps 1. Navigate to tab “Statistics”
2. Click on “Refresh Current Kappa Values”

Expected Result GUI WS9: Agreement Code Results View, with current kappa
values unchanged

Expected Exception None

Postcondition System None

TCS17.2: Update Kappa Values with resolved agreement

Preconditions At least one agreement a exists, all disagreements have
been resolved

Preconditions GUI WS9: Agreement Code Results View

Test Steps 1. Navigate to tab “Statistics”
2. Click on “Refresh Current Kappa Values”

Expected Result GUI WS9: Agreement Code Results View, with current kappa
values equal to 1

Expected Exception None

Postcondition System Current kappa values are set to 1

TCS17.3: Update Kappa Values with one code resolved

Preconditions At least one agreement a exists, one code has been resolved

Preconditions GUI WS9: Agreement Code Results View

Test Steps 1. Navigate to tab “Statistics”
2. Click on “Refresh Current Kappa Values”

Expected Result GUI WS9: Agreement Code Results View, with current kappa
values higher than before

Expected Exception None

Postcondition System Current kappa values are recalculated

4.3.5 Major Bugs and Issues

During the implementation of the project, some major issues occurred and slowed down
the development process immensely.

It is possible to accept multiple codes for any token. In general, there should be
the possibility to accept multiple codes for one token, because a token could be assigned
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multiple categories. This leads to a problem with the calculation of kappa values, as
one code could have multiple different encodings, and therefore the set of codes for one
token has to be taken into consideration during the calculation.

The missing development environment. There are many irrelevant commits on
the git branches, making tracking of the features hard. Also, developing new features
takes a longer time because of the high build durations in the production environment.

The uvl-annotation container was offline because of a problem with Jenkins.
During the implementation period, the uvl-annotation container was offline for some
time. As the agreement functionalities depend on a running uvl-annotation microser-
vice, it was not possible to test some agreement functionalities during that time. The
problem stemmed from the deployment of another microservice using Jenkins, and only
happened because some deployment configurations had been copied and not correctly
changed.

Additionally, during the testing phase of the project and especially while executing the
system tests, some bugs were found and fixed. The documentation of the bugs as well
as their solutions are detailed in table 4.28.

Table 4.28: The bugs found while executing system tests

B: When creating a new code, relationships cannot be added

Description When creating a new code for a token, the button for the creation
of new relationships is always disabled.

Steps to
Reproduce

1. Create any agreement with at least one encoded token.
2. Select that token, click on “Create new”.
3. Select a category that supports relationships (e.g. Activity).

Solution The button for the creation of relationships did not recognize whether
a category supports relationships. This was added.

B: Agreement cannot be exported as annotation, if “%” is in its name

Description If the agreement name contains some special character, such as
“%”, the agreement cannot be exported as an annotation.

Steps to
Reproduce

1. Create any agreement with “%” in its name.
2. Resolve the agreement.
3. Click on “Export as annotation”.

Solution
The agreement name is a query parameter in some of the
communication between the microservices. Encoding the
agreement name when used as a query parameter is sufficient.
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B: Text Passages have no colour directly after creating agreement

Description
Directly after creating an agreement, there is no colour shown for
the tokens. When the agreement is selected again after saving
and exiting, the colours are shown.

Steps to
Reproduce

1. Create a new agreement with at least one code.

Solution

There was a problem with the page for AgreementAlternatives. If
no relationships exist, the index is set to null, which means the
page cannot be correctly initialized. Solution is setting the index
to 0 if no relationship exists.

B: Agreement cannot be created when an annotation is empty

Description A new agreement cannot be created when at least one of the
selected annotations is completely empty.

Steps to
Reproduce

1. Select a dataset and annotations in create agreement dialog.
One of the annotations should not contain any codes.

2. Click on create.

Solution Kappa values are not calculated correctly, and are set to NaN. In
this case, set kappa values to 0.

B: Export Agreement as annotation not working

Description The export is not working at all, no data is produced.

Steps to
Reproduce

1. Create any agreement.
2. Resolve agreement.
3. Click on “Export as annotation”.

Solution
Agreement name is not decoded correctly when containing
whitespaces. Addition of correct decoding of
the query parameter “agreementName” solved the problem.

B: Relationships can be empty or null

Description A relationship of an annotation can be empty or null, when it
is deleted.

Steps to
Reproduce

1. Create an annotation.
2. Add any relationship to a token.
3. Remove that relationship.
4. Create agreement with that annotation.

Solution This stems from a bug with the annotations. When creating an
agreement, remove all relationships which are null or empty.
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4.4 Usability Evaluation

In this section the implementation of the inter-rater agreement is evaluated. The execu-
tion on an informal usability test is documented in subsection 4.4.1. In subsection 4.4.2
an evaluation of the features based on the results of the usability test is conducted, and
possible improvements are outlined.

4.4.1 Usability Test

For the evaluation of this implementation, an informal usability test was conducted by
two master students of applied computer science. One of the students had developed
the agreement tool, the other had never worked with the tool before. A dataset was
provided, and the goal was to completely annotate the dataset using comparisons of the
annotations. The annotation process consisted of stages, which would repeat until all
documents were annotated and compared:

1. Both annotators annotate a certain amount of documents. The amount in the
first loop was 3 documents, and 10%, 30%, 50%, 100% of the documents in later
loops.

2. In each step an agreement is created with both annotations contained.

3. All disagreements are resolved by one person at a time. This includes accepting
and rejecting codes, as well as creating new codes.

4. Two annotations are created from the resolved agreement.

5. The new annotations are used for subsequent loops.

The creation of new codes works a bit differently than the implementation in the an-
notation tool, so some difficulties were to be expected. One of the more significant
differences is the design decision that clicking outside the dialog causes the new code
not to be saved, so first time using this feature all input was lost.

4.4.2 Evaluation of Usability

During the usability test, some features proved to either be very convenient or work
well. Firstly, the feature to automatically resolve all tokens without disagreements was
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very convenient. It reduced the amount of work immensely, as the same code would
have had to be compared again and again, while the work on exported annotations
continues. It would have been very frustrating to resolve the codes every single time,
especially because it is clear that there cannot be any disagreements. Therefore, this
feature is vital for comparing a large amount of data.

Secondly, the possibility to create new annotations from resolved agreements proved to
be essential for a longer annotation process with multiple annotation-comparison loops.
When creating a new annotation, all comparisons are not lost. Step-by-step a complete
annotation, consisting of accepted codes from all annotations, can be established, while
the annotators develop a better understanding of the categories and how to apply those
to the dataset.

Lastly, it was convenient to be able to navigate to occurrences from the list of unre-
solved codes. When saving and exiting an agreement and in order to continue working
at another time, finding the last document someone has worked on is very helpful. Also,
when dividing work between multiple users, it is convenient to see the remaining docu-
ments, and when one annotator is unsure about the correct code, some disagreements
can be left for discussion with another annotator. The list of unresolved codes can be
used for finding those codes.

On the other hand, some design decisions and features posed some problems or caused
frustrations. Firstly, the table containing all resolved codes was not used at all, and
therefore did not have much of a purpose, as the only action possible from this view is
the navigation to the occurrence in the text. This view could be removed completely,
as it is at most barely needed, and the removal could improve the performance of the
agreement tool.

Another frustration was caused by the WS10.1: Agreement Editor All Code View, which
shows a list of all codes for any selected token. If there exist two codes for sets of
overlapping tokens, all codes which are part of the disagreement are only shown when
selecting tokens which are part of both codes. For example, suppose there is a sentence
“The audio file contains no data”, and there is one code c1 for tokens “audio file”, and
another code c2 for the token “file”. This is a disagreement, because the tokens are
different, but at the same time they are overlapping. When selecting “audio”, only
the code c1 is shown, because that is the only code assigned to the first token. Only
when selecting “file”, both codes are shown, and all codes of the disagreement have the
possibility to be resolved simultaneously.

This can be frustrating, because users have to search for all codes for a set of tokens,
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and if more than two codes are involved it may not even be possible that all codes
are shown simultaneously. For example, if there was another code c3 for this example
above, and this code is for token “audio”, there exists no view that shows all codes
for this disagreement, as it is interpreted as two separate disagreements. Users may
have to accept or decline one of the codes first, in order to see which tokens still have
disagreements, which can be frustrating.

One design decision that caused frustrations is the implementation of the WS10.2:
Agreement Editor New Code View. The dialog can be closed by clicking outside, and
all previous input is removed. This was intentionally designed this way, because a new
code should only be created when explicitly creating the code by clicking a button.
Nevertheless, it can be frustrating for users, as a misclick can cause all input to be
lost. Additionally, sometimes it was simply forgotten to accept the code by clicking the
button, and all input has to be entered again.

During the usability test, one possible improvement of a feature was proposed. Before,
only pending codes could be accepted or declined. The idea was to add the possibility
of being able to accept and decline all codes. In practice, misclicks are possible, and
the option to reverse a choice is very convenient and necessary. This improvement was
implemented.

As the usability test was only informal, users were not asked to give feedback. Therefore,
this evaluation is also only informal, and contains just a subjective discussion of the
most convenient and most frustrating features. In the future, a formal evaluation could
be conducted, by using questionnaires, interviews or surveys.
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5 Classifier

In this chapter, the deep-learning-based classifier for the automatic classification of the
forum data is outlined. In section 5.1, the dataset for the training of the classifier is
presented, the annotation process is summarized and some statistics about the anno-
tated training dataset are included. The implementation of the classifier is provided
in section 5.2, including pre-processing, the Bi-LSTM model and the training phase.
Lastly, in section 5.3 the classifier is evaluated using an annotated test dataset.

5.1 Dataset

In this section, the training dataset for the classifier is presented. In subsection 5.1.1,
the extraction and form of the forum dataset is provided. The annotation process of the
dataset is summarized in subsection 5.1.2, and the main issues during the comparison of
the annotations are discussed. Lastly in subsection 5.1.3, the results of the annotation
are provided.

5.1.1 Data

The forum used for the extraction of data is Reddit1, an online forum in which users
can create posts, which other users can comment on. Users can also comment on other
comments, giving them a hierarchical structure. The site is divided into communities,
also called Subreddits, which consist of posts regarding different topics, some of which are
software-related. For example, a subreddit called java will contain posts and questions
about the programming language Java.

In Feed.UVL there is a Reddit-Crawler implemented, with which posts can be crawled
and a dataset can be established. If the names of subreddits are provided, the crawler
will crawl posts from these subreddits that were published within a specified time frame,

1https://www.reddit.com/
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and convert them into datasets that can be used in Feed.UVL. A single document of this
dataset contains the title, the content of the post and all comments up to any desired
hierarchical level. The title, content and comments are separated by the separator
“###”, an example of which is the following:

Is it possible to mute all other tabs except for the active tab? ###I can’t find any
settings or extensions that do this ### Is what I use which has > Mute all except
current one - Alt+Shift+N ###Try right click on tab and select Mute site.

Two comments existed for this post, both of them are separated with the “###”-
separator. All posts used in the dataset are taken from three different subreddits, which
are Chrome, a commonly known browser, Komoot, an app for planning and navigating
outdoor activities like hiking or biking, and VLC, a player for videos and movies. The
total number of posts is 98, of which 40 are about Chrome, 20 about Komoot and 40
about VLC. The Reddit-crawler removes all URLs and emojis within the posts, and can
skip posts which are too short or contain words on a pre-configured blacklist.

5.1.2 Annotation Process

Various functionalities of Feed.UVL were used for the annotation process: the Reddit-
Crawler was used to crawl and upload the un-annotated training dataset, the Annotator
was used for the annotation of the data, and the Agreement-tool was used to compare
the annotations and create a new encoding, which in turn is used to train the Bi-LSTM
classifier. The annotation was performed in multiple stages, in which the dataset was
encoded with TORE-categories, as demonstrated in section 2.3.

The stages consisted of an annotation and a subsequent comparison phase. During the
annotation phase, the work of all annotators is independent, with only the description
of the TORE-categories serving as guides. Afterwards in the comparison phase, anno-
tations are compared and disagreements are resolved such that all tokens have at most
one code. The result of the comparison phase serves as a starting point for the anno-
tation phase of the next stage. For each stage, an increasing amount of documents is
annotated and compared, until all documents are fully encoded with the codes accepted
during the comparison.

In this thesis, two annotators, both master students of applied computer science, were
asked to annotate the data. The whole process took about 20 hours per person, over
the span of some weeks. The stages consisted of the annotation of three documents,
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then of 10%, 30%, 50% and 100% of the data, the kappa values of which can be seen in
table 5.1.

Table 5.1: The kappa values of the annotation stages.

Kappa of 3 Docs 10% 30% 50% 100%
Brennan & Prediger 0.4824 0.5244 0.7218 0.5793 0.7036
Fleiss 0.4700 0.5090 0.7180 0.5670 0.6994

The first two stages still contained many disagreements, mainly due to different annota-
tion conventions between the annotators and due to the fact that not as many resolved
codes from previous stages were included. Some of those problems were resolved by
discussions between the annotators, but due to the complexity of the TORE-categories
and the ambiguity of the context in which tokens occur, the kappa values remained
relatively low through the different stages, with the exception of the third stage. The
most common issues encountered during the comparison are the following:

• It is unclear, whether a text passage is an Activity or an Interaction.
Suppose the documents contain a post about Komoot, an application used for
route planning and navigation. The text passage “planning a route” is usually
annotated as an Activity, because is can be done without the software, and it is
one of the main activities of a user. Nevertheless, in some cases it can also be an
Interaction, especially if the context implies the use of Komoot while planning a
route.

• The amount of tokens that have to be included in a code is ambivalent.
All annotators were to reduce the amount of tokens for each code as far as possible,
which led to some disagreements regarding not the category, but the amount
of tokens. For example, the text passages “work” and “work offline” can both
be activities; in most cases only “work” can be annotated as it is a sufficient
description of the activity, while sometimes in context it is important to annotate
“work offline”. Additionally, there are text passages for which the meaning of a
word could be changed. Consider the text passages “get” and “get up”; the meaning
of both verbs is completely different, and the word “up” should be included in the
code.

• It is unclear whether to assign the category Workspace or Interaction
Data. Sometimes it is unclear whether a user means a UI-element or the data
behind it when talking about an interaction. In documents which contain posts
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about VLC, a “song” can either refer to the song as data, such as “playing a song”,
or to a UI-element representing that song, such as an icon.

5.1.3 Annotation Results

The fully annotated training dataset consists of 98 documents, of which 40 are about
Chrome, 20 about Komoot and 38 about VLC. The total amount of tokens is 13,775
divided into 774 sentences, and the number of codes is 2,036. The distribution of the
categories over all tokens can be observed in table 5.2.

Table 5.2: The distribution of categories over all tokens.

Category Number of
Occurrences

Number of
Appearances

Percentage of
Annotations

Activity 85 38 3.48%
Domain Data 280 61 11.47%
Goals 0 0 0.00%
Interaction 572 91 23.42%
Interaction Data 443 82 18.14%
Internal Action 53 29 2.17%
Internal Data 58 23 2.38%
Software 567 87 23.22%
Stakeholder 33 20 1.35%
System Function 5 3 0.20%
Task 1 1 0.04%
Workspace 345 47 14.13%
None 11,333

The “Number of Occurrences” refers to the occurrences of the code in the text, while the
“Number of Appearances” reference the number of documents in which the code appears
at least once. An additional category, None, is introduced and assigned to all tokens
which have not been assigned any code. All in all, the vast majority of the tokens, about
82%, is not assigned any code. The last column of the table shows the percentage of
categories used in the code when excluding all tokens that are not annotated. It can be
seen that some categories are assigned very rarely or not at all, such as Goals, System
Function and Task. Only three categories, Interaction, Interaction Data and Software,
appear in over 85% of the documents.
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5.2 Implementation

In this section the implementation of the classification algorithm is presented. In subsec-
tion 5.2.1, the coarse requirement is presented, and the deduced requirements are briefly
mentioned. The pre-processing and the word embedding pipelines of the datasets are
provided in subsection 5.2.2 and subsection 5.2.3, respectively. In subsection 5.2.4 the
implementation of the Bi-LSTM model is provided, while the configuration and training
of the model is presented in subsection 5.2.5.

5.2.1 Requirements

The implementation of the classification algorithm is based on the following coarse
requirement:

R4 Algorithm for the TORE classification: Feed.UVL offers an algorithm for
the automatic classification of natural language datasets into TORE-categories
through the use of deep learning. A corresponding algorithm is found through
the literature review and is implemented as agreed upon with the advisor. The
newly implemented algorithm uses the existing views and functionalities for the
management of classification algorithms in Feed.UVL. This applies to the man-
agement of the algorithm itself, as well as the management of the results of the
automatic classification.

All requirements relevant to classifiers already exist in the Feed.UVL project, and are
therefore not documented again. The paper used as a basis for the implementation of
the algorithm is Li et al. [14], which is the result of the literature review in chapter 3.

5.2.2 Pre-processing

The training dataset has the format of an annotation as implemented in Feed.UVL, and
has to be transformed in order to be used as an input for the deep learning model. The
annotation object is already tokenized, and contains a list of tokens, which consist of
the fields Index containing the position of the token in the dataset, Word containing
the word, Lemma containing the lemmatized word, POS containing the POS tag, and
the additional fields NumberNameCodes and NumToreCodes, which are used for the
optimization of annotations in Feed.UVL. The lemmas are chosen as representatives of
the words, as all of them are transformed into word embeddings in the next step, in
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section 5.2.3. The index is used in order to find the correct position of a word in the
dataset after the prediction of tags using the model. All other fields are ignored, as
they are irrelevant for the classification algorithm.

Additionally, the annotation contains a list of codes, which carries information on the
tokens the codes apply to, as well as the TORE categories. The relevant fields of the
list of tokens are combined with the relevant fields of the list of codes, forming a list
containing all relevant information for all tokens, henceforth referred to as the modified
list of all tokens. The training dataset also has a list of all documents, in which the
start- and end-index for all documents is provided. The modified list of all tokens is
split into documents, and further split into sentences. The separators chosen for the
datasets include “.”, “?”, “!” and “###”, which is the separator of all forum data parsed
by the Reddit-crawler in Feed.UVL.

At first, stop-word removal and the removal of punctuation in the dataset were imple-
mented, since those pre-processing methods tend to lead to better results when using
deep learning algorithms for the classification of natural language datasets. However,
the results during the configuration of the training pipeline showed that the accuracy
increased when not using these data cleaning methods. Therefore the methods were
removed.

It has to be mentioned that datasets used for the prediction of categories as implemented
in Feed.UVL have a different format compared to the training dataset, and are generally
not tokenized. However, all datasets can be tokenized using NLTK 2 with the same
configurations as done in the Annotator mircoservice in Feed.UVL, and parsed into
the structure as used in the modified list of tokens. Therefore a similar pre-processing
pipeline can be applied.

In order to create a map containing all available categories, the categories are directly
taken from Feed.UVL, and another category called None is added for all tokens which
do not have a category.

5.2.3 Word Embedding

Word embeddings are used in NLP to create semantically meaningful representations
of words, in the form of word vectors. Similar words are supposed to have similar word
vectors, which would give them similar outputs when evaluated by a machine learning
model. Word embedding models can be implemented and trained from the ground up,

2https://www.nltk.org/
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but that requires large amounts of data and a large vocabulary, which are both not
present in this thesis. However, a pre-trained word embedding model can be used for
the creation of word vectors, as long as it is similar enough to the texts in the training
dataset.

Li et al. [14] create a word embedding model with a dimension of 128 using the Gensim
library3, which is why one of the pre-trained models of this library is chosen for this
thesis. The list of all pre-trained models provided by Gensim can be seen in table 5.3.
The most fitting pre-trained model in terms of the words which might occur in the
vocabulary is based on Twitter, and the closest dimension of the pre-trained models is
100. Therefore the model for the creation of word embeddings in this thesis is glove-
twitter-100 4. The kind of speech used on Twitter should be similar enough to the
language used in online forums, and the model should contain most words and fitting
similarities as the words used in the forum data, although it might lack the software
relevancy that the crawled Reddit dataset contains. The dataset the word embedding
model is based on contains 2B tweets, 27B tokens and a vocabulary of 1.2M words.

Table 5.3: All pre-trained models of the Gensim library.

Model Source of Dataset Dimension
fasttext-wiki-news-subwords-300 Wikipedia 300
conceptnet-numberbatch-17-06-300 Multiple Different 300
word2vec-ruscorpora-300 Russian National Corpus 300
word2vec-google-news-300 Google News 300
glove-wiki-gigaword-50 Wikipedia 50
glove-wiki-gigaword-100 Wikipedia 100
glove-wiki-gigaword-200 Wikipedia 200
glove-wiki-gigaword-300 Wikipedia 300
glove-twitter-25 Twitter 25
glove-twitter-50 Twitter 50
glove-twitter-100 Twitter 100
glove-twitter-200 Twitter 200

In order to transform the extracted sentences from the pre-processing pipeline into
the correct input for the Bi-LSTM model, all sentences are padded or truncated to a
specified sentence length, which through various optimizations is set to 80, and word
vectors are generated for all sentences through the look-up of individual words in the
word embedding model. If the word is not found in the model, all dimensions of the

3https://radimrehurek.com/gensim/models/word2vec.html
4https://nlp.stanford.edu/projects/glove/
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word vector are set to 0. After this step, all sentences have the same size, which is
80x100. All the tags from the previous step are also padded or truncated to the correct
size, and another category, “_”, is added to signal the padding. All tags are mapped to
numerical values and then one-hot-encoded, in order to use them in the model.

5.2.4 Bi-LSTM Model

For the creation of the Bi-LSTM model, the Tensorflow-Keras5 library is used. The
model consists of an input layer, two hidden bidirectional layers with a dropout layer
in between, and an output layer. The shapes of the layers can be observed in table
5.4. “None” is a value used by Keras which represents a value of a dimension that is
not fixed, and is replaced by the batch size used for the training data. The input layer
has the shape of the batch size, the length of the sentence which is set to 80, and the
dimension of the word embeddings, which is 100. There is no embedding layer used in
this model, because the word embeddings are generated in a previous step.

Table 5.4: The input and output shapes of the Bi-LSTM layers.

Layer Input Shape Output Shape
Input (None, 80, 100) (None, 80, 100)
Bidirectional Hidden (None, 80, 100) (None, 80, 200)
Dropout (None, 80, 200) (None, 80, 200)
Bidirectional Hidden (None, 80, 200) (None, 80, 100)
Output Layer (None, 80, 100) (None, 80, 14)

The hidden layers are used to reduce the dimensions of the LSTM layers, but as they are
bidirectional, the dimension of the output shapes are doubled. The first hidden layer
consists of two LSTM-layers with a dimension of 100 each, the second hidden layer
consists of two LSTM-layers with a dimension of 50 each. This reduction of dimensions
is consistent with the idea of Li et al. [14]. The dropout layer between the two hidden
layers is used to reduce overfitting of the model, and the output layer reduces the
dimensions to the correct size, which is a one-hot-encoding of the predicted tags for all
words.

The model is configured to use an Adam optimizer with the default configuration, which
includes a learning rate of 0.001; Categorical Cross-Entropy as a loss function, as the
problem is a multi-class problem; and the metric Accuracy.

5https://www.tensorflow.org/api_docs/python/tf/keras
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5.2.5 Training

The training phase of the model is executed on the annotated training dataset as de-
scribed in section 5.1. The raw data has the structure of an annotation, and a modified
list of tokens is generated as described in subsection 5.2.2. The modified tokens are
then grouped into documents, and sentences are extracted further. An example of the
relevant fields of tokens that form a sentence are the following:

[{‘index’: 0, ‘name’: ‘Chrome’, ‘lemma’: ‘chrome’},

{‘index’: 1, ‘name’: ‘double’, ‘lemma’: ‘double’},

{‘index’: 2, ‘name’: ‘click’, ‘lemma’: ‘click’},

{‘index’: 3, ‘name’: ‘bug’, ‘lemma’: ‘bug’},

{‘index’: 4, ‘name’: ‘issue’, ‘lemma’: ‘issue’},

{‘index’: 5, ‘name’: ‘still’, ‘lemma’: ‘still’},

{‘index’: 6, ‘name’: ‘a’, ‘lemma’: ‘a’},

{‘index’: 7, ‘name’: ‘thing’, ‘lemma’: ‘thing’},

{‘index’: 8, ‘name’: ‘in’, ‘lemma’: ‘in’},

{‘index’: 9, ‘name’: ‘2022’, ‘lemma’: ‘2022’},

{‘index’: 10, ‘name’: ‘?’, ‘lemma’: ‘?’},...]

These tokens are combined with the categories of the codes if encoded, the rest is
provided with the category None, resulting in the following representation of a sentence:

[(‘chrome’, ‘Software’, 0),

(‘double’, ‘Interaction’, 1),

(‘click’, ‘Interaction’, 2),

(‘bug’, ‘None’, 3),

(‘issue’, ‘None’, 4),

(‘still’, ‘None’, 5),

(‘a’, ‘None’, 6),

(‘thing’, ‘None’, 7),

(‘in’, ‘None’, 8),

(‘2022’, ‘None’, 9)]

The sentences are further padded or truncated to a fixed length, and the pre-trained
word embedding model presented in section 5.2.3 is used to generate word embeddings
with a dimension of 100, resulting in a representation of 80 word vectors of size 100
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for each sentence. The tags are mapped to numbers and one-hot-encoded, resulting in
a vector of length 14 for all words. The word embeddings and the encoded tags are
used as an input for the Bi-LSTM model as presented in section 5.2.4. The model is
fitted using the word and tag vectors, with a batch size of 32 and 50 training epochs.
Additionally, there is a validation split of 0.1 from the training data. The accuracy
and loss of the training with this configuration can be observed in figure 5.1 and figure
5.2, respectively. The accuracy of the model for the validation set stays at about 96%,
while the loss for the validation stays under 0.2. The training of the model with this
configuration took about half an hour with an Intel(R) Core(TM) i7-8850H CPU @
2.60GHz processor.

Fig. 5.1: The accuracy over all epochs.
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Fig. 5.2: The loss over all epochs.

An overview of all the classifier pipeline can be observed in figure 5.3. All green parts
represent steps exclusively used in the training pipeline, the rest are also using for the
prediction of tags. The data for the prediction is not tokenized, which is why a tokenizer
has to be used first. The pre-processing, sentence extraction and word embedding steps
works the same for both, the prediction and training phase. During the training phase,
all categories have to be translated into numerical tags and one-hot-encoded. Lastly,
during training the output of the Bi-LSTM model is used to improve the model, while
the output during prediction are the predicted tags.
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Fig. 5.3: Overview of the Bi-LSTM classifier.

In order to optimize all parameters, some additional configurations were executed as
well. Firstly, it was tested whether the data cleaning methods, the stop word removal
and the removal of punctuation, had a positive influence on the accuracy of the test
dataset, which was not the case. In fact, data cleaning reduced the accuracy on the
test dataset, which is why it was completely removed. Secondly, the length of the sen-
tences and the number of epochs were changed and tested, resulting in the configuration
described above. The accuracies of the models when evaluated on the test dataset as
presented in the following section 5.3.1 can be seen in table 5.5. The accuracy was cal-
culated on all predictions, as well as only predictions on tokens which are not assigned
the tag None. The dimensions of the hidden layers of the model were also changed and
tested, which is not included here.
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Table 5.5: The accuracies of the different configurations.

Sentence
Length

Number of
Epochs Is filtered? Accuracy with

None (in %)
Accuracy without

None (in %)
40 25 Yes 70.48 29.95
40 50 Yes 72.85 36.65
60 25 Yes 70.53 33.72
60 40 Yes 71.42 35.91
60 50 Yes 72.82 37.95
60 70 Yes 71.08 34.68
80 25 Yes 69.46 27.37
80 25 No 83.96 34.83
80 50 Yes 71.19 35.38
80 50 No 85.26 39.95

5.3 Evaluation

This section contains the evaluation of the deep learning classifier. In subsection 5.3.1,
the test dataset is presented. The results of the evaluation of the classifier on the test
dataset are provided in subsection 5.3.2. In subsection 5.3.3 the most important results
are summarized and discussed.

5.3.1 Test Dataset

The test dataset was created and annotated similarly to section 5.1, but the annotation
process was not divided into several phases. The dataset consists of 12 documents,
containing four documents for each, Chrome, Komoot and VLC. The total amount
of tokens is 1,430, the number of sentences is 73, and the number of codes is 222.
Table 5.6 shows the distribution of categories in the test dataset. The categories Goals,
Stakeholder, System Function and Task have no occurrences, Activity, Internal Action
and Internal Data have very few, with a combined percentage of less than 5%. Only
three categories, Interaction, Interaction Data and Software appear at least once in all
or almost all documents.
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Table 5.6: The distribution of categories over all tokens for the test dataset.

Category Number of
Occurrences

Number of
Appearances

Percentage of
Annotations

Activity 5 2 2.25%
Domain Data 18 6 8.11%
Goals 0 0 0.00%
Interaction 81 12 36.49%
Interaction Data 49 11 22.07%
Internal Action 2 2 0.90%
Internal Data 2 2 0.90%
Software 37 11 16.67%
Stakeholder 0 0 0.00%
System Function 0 0 0.00%
Task 0 0 0.00%
Workspace 28 9 12.61%
None 1,157

5.3.2 Results

The test data from the previous section 5.3.1 is used to evaluate the trained deep
learning model. After the prediction of the tags and through the comparison with the
true tags, the precision, recall and F1-scores is calculated for each TORE-category.
The results of the prediction per category can be observed in table 5.7. The categories
Goals, Stakeholder, System Function and Task are all evaluated at 1.0, as there are no
occurrences of the categories in the test dataset, and the model’s prediction did not
contain the categories as well. Therefore, by definition, the categories were predicted
perfectly, setting all metrics to 1.0. Similarly, the categories Internal Action and Internal
Data are wrongly predicted, but both categories are contained in the test dataset, which
leads to all metrics being 0.0.
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Table 5.7: The precision, recall and F1-score of all categories, all values are in %.

Category Precision Recall F1-score
Activity 12.50 20.00 15.38
Domain Data 36.36 46.15 40.67
Goals 1.0 1.0 1.0
Interaction 70.42 60.97 65.35
Interaction Data 49.09 36.48 41.86
Internal Action 0.00 0.00 0.00
Internal Data 0.00 0.00 0.00
Software 63.82 66.66 65.21
Stakeholder 1.0 1.0 1.0
System Function 1.0 1.0 1.0
Task 1.0 1.0 1.0
Workspace 77.41 64.86 70.58
None 92.30 94.11 93.20

All metrics regarding the category Activity are relatively bad, which could be due to
the small number of occurrences in the test dataset. The low precision further points
to the existence of an imbalance, and a high number of false positives. The predictions
of the category Domain Data are better than those for Activity, however the precision
is comparatively low. The reason behind this could be the similarity of Domain Data
and Interaction Data, as in some cases the difference is only a previous or following verb
describing either an activity or an interaction. The model may not be able to distinguish
between the two categories, and therefore predict the category as easily. On the other
side, Interaction Data has a relatively high precision and a relatively low recall, which
means the number of false negatives is higher, and supporting the idea of the similarity
between the categories.

Interaction, Software and Workspace are all predicted relatively well, with F1-scores of
more than 60%. As all of them have a relatively high number of occurrences in the
training as well as the test dataset, the model might have been trained better on these
categories, making the prediction easier. Additionally, Interaction is the most dominant
category containing verbs with the largest number of occurrences and appearances;
Software generally contains a very small pool of words, such as “Chrome”, “Komoot”,
“app”, “phone”, etc. The category Workspace also has a smaller number of words, and,
as a contrast to most other categories, can have adjectives.

The high metrics of the category None are probably due to the large amount of data in
the training set, as well as the large number of words which are completely unrelated to
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the encoded tokens, which gives them a completely different representation as a word
embedding.

Generally, the Bi-LSTM model predicts more false negatives than false positives, as
can be seen in table 5.8. This holds true for most categories in this evaluation, and
gives an indication that the model predicts too few occurrences of the category. The
category Interaction Data, for example, has 28 false positives and 47 false negatives,
which could be interpreted as the model not assigning Interaction Data often enough.
The categories Internal Action and Internal Data only have false negatives, and as only
two occurrences of these categories each exist in the test data, both are completely
missed. There are some categories which have slightly more false positives than false
negatives, namely Activity and Domain Data. Both categories have significantly more
occurrences relative to the total amount of codes in the training data than in the test
data, so the model might have expected to encounter those more often. The category
None also seems to have more false positives, pointing to the classifier assigning the
category more often than others.

Table 5.8: The number of false positives and false negatives per category.

Category False Positive False Negative
Activity 7 4
Domain Data 21 14
Interaction 20 32
Interaction Data 28 47
Internal Action 0 2
Internal Data 0 2
Software 17 15
Workspace 7 13
None 80 60

Depending on whether the categories which are not included in the test dataset are
incorporated and whether the category None is included as well, the overall metrics
can change. An overview of the overall evaluation metrics is provided in figure 5.9.
Precision and recall are relatively similar in all considerations. The overall metrics are
always higher when the category None is included, and even higher if the categories
which are not used in the test dataset are incorporated as well. The most interesting
consideration is most likely the last entry in the table, as it is important to recognize
that the model did not predict any occurrence of categories, which were not present in
the test data. Therefore, the missing categories should be included in the consideration,
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while the high number of occurrences of the category None may distort the metrics.
All in all, the accuracy of the model can be evaluated at about 85.38% when including
None, and 52.74% when excluding it.

Table 5.9: The overall accuracy, precision, recall and F1-score, all values are in %.

Category Accuracy Precision Recall F1-score
Categories in prediction,

including None 85.38 40.19 38.93 39.23

All categories,
including None 85.38 57.28 56.38 56.59

Categories in prediction,
excluding None 52.74 34.40 32.79 33.23

All categories,
excluding None 52.74 54.59 53.47 53.78

5.3.3 Discussion

The implementation and evaluation of the deep learning classifier has several problems,
starting with the training dataset. Firstly, the amount of data necessary to train a
Bi-LSTM algorithm for the classification of a multi-class problem is very likely higher
than what was provided as the training dataset. The amount of categories used in the
TORE-classification is relatively high, while the total number of codes divided between
all 12 categories is only 2,036. In the future, the number of categories could be adjusted
by using TORE-levels instead of TORE-categories, which would reduce the number of
categories to three. Secondly, the training data is very imbalanced, since some categories
have a high amount of occurrences, while others occur either rarely or not at all. A
more balanced training dataset could possibly have helped, or, if there were more data,
techniques like over- or under-sampling. One category, Goals, did not occur at all in
the dataset, and can therefore not be predicted by the model at all.

The test dataset embodies the next problem. Four of the 12 categories did not appear at
all, which makes the prediction and evaluation of these categories impossible. Some have
a low number of occurrences, making the dataset imbalanced. The category Activity,
for example, has a relatively low number of five occurrences, with the words being “go”,
“take”, “take”, “navigate”, “remember”. At least three of those are very general without
context, making the prediction harder for the deep learning model.
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The pre-processing of the dataset also has some flaws. Usually in NLP, some data
cleaning is used to optimize the dataset for the training phase of the model. Popular
techniques include stop word removal and the removal of punctuation, which is why
those techniques were implemented at first. However, since the Bi-LSTM model uses
backward and forward memory, the removal of stop words may lead to a decline of
accuracy of the trained models, which is why the data cleaning was removed. Since
backward and forward memory involves using words directly surrounding a word in the
classification process, there are cases in which the context is completely removed. For
example, the sentence “Is this still an issue with you guys?” is reduced to “still issue
guy”, which could be hard for a Bi-LSTM model to classify. The stop word removal
could have lead to a more balanced model overall, as not as many tokens with category
None would have been included. Some further work may be necessary for a more fitting
pre-processing.

Some more problems are introduced with the use of a pre-trained word embedding
model. As there was not sufficient data to train a new word embedding model on
the Reddit-forum data, a pre-trained model had to be chosen. The model ultimately
used is based on tweets from Twitter, which though it is based on natural language
similar to the one used in online forums, is not specifically about software and may not
contain all relevant words in the domain. For example, the training dataset contains
1,828 different words, which is a very small vocabulary. Of those, 209 words used
in 363 occurrences could not be found in the pre-trained word embedding model at
all. Most of them contain either special characters or numbers, nevertheless there
are some words which were annotated in the training dataset, including word such as
“double-clicking”, “overwrote” and “mouse-over”. As those words do not occur in the
word embedding model, they are mapped to a vector containing only zeros, which has
multiple consequences: Firstly, the model learns to assign categories which are not a
placeholder to the zero-vector. In the prediction on the test dataset, the model assigns
the placeholder-tag “_” to a word from the dataset, which should not happen. Secondly,
the model learns that some zero-vectors can have categories which are not None or
the placeholder-tag. Thirdly, as Bi-LSTM uses forward and backward memory, using
zero-vectors has consequences for the surrounding words, as the input can consist of
sentences, which appear to have a “hole” in the middle of them. This could make the
classification of all other words harder.

Lastly, the evaluation of the metrics as done in section 5.3.2 shows the difference of the
prediction metrics between the different categories. Some categories are not included
in the dataset at all, meaning they cannot be predicted, while others are predicted
completely wrong leading to metrics of 0.00%. The categories with a higher number
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of occurrences seem to be classified more accurately, while categories with lower num-
bers of occurrences have lower F1-scores. The overall accuracy of the model is about
52.74% when excluding the category None, which, again, points to the many flaws as
discussed above. As of now, it is questionable whether the classifier can be used for
the classification of TORE-categories in general, especially if the datasets are from dif-
ferent forums or on different software topics than Chrome, Komoot or VLC. However,
the accuracy of the classifier is not much worse than the kappa values achieved by the
human annotators, as documented in subsection 5.1.3. As the first attempt at using
deep learning for the classification of natural language user feedback from online forums
into TORE-categories, the results are promising and motivate further research.

103



6 Summary & Future Work

This chapter concludes the thesis by providing a short summary of all results in section
6.1, and presenting possible future work for the inter-rater agreement in section 6.2 and
the classifier in section 6.3.

6.1 Summary

An inter-rater agreement tool supporting the comparison of multiple annotations is
implemented in Feed.UVL. The tool lets users create and manage inter-rater agreements
from multiple annotations of datasets, and supports the possibility to inspect agreements
and to resolve disagreements. Once the agreement is resolved, the tool supports the
further use of annotation functionalities, by creating a new annotation from the resolved
agreement. The inter-rater agreement tool supports the calculation of initial and current
kappa values, and reuses many functionalities and views of the already implemented
annotation. The tool is quality assured through the use of extensive system tests,
as well as static code tests and the use of TDD during the implementation phase.
The agreement tool is evaluated on an informal usability test, to ensure the functional
correctness and completeness, as well as to cover all coarse requirements as presented
in subsection 4.1.1.

A deep-learning-based classifier for the classification of forum data into TORE-categories
is implemented and evaluated, and reuses the existing views and functionalities for the
management of classification algorithms in Feed.UVL. The classifier is trained, and the
accuracy, precision, recall and F1-score are evaluated using a test dataset. The overall
recall and precision of the classifier are relatively similar, with the accuracy being about
52.74%. As the evaluation metrics are generally not the best, with a precision of 54.59%,
recall of 53.47% and F1-score of 53.78%, the model only presents a starting point for
further research into automatic TORE classification even if it is not applicable by itself
yet. Further, the evaluation itself is problematic, with questions on whether categories
that do not occur in the test dataset should be taken into account. Another evaluation
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of the classifier should be conducted in the future, in order to find out whether the
classifier can successfully classify all categories of the forum data.

6.2 Future Work: Inter-Rater Agreement

The implementation of the inter-rater agreement can be improved on multiple levels.
Firstly, the possibility to undo the last step could be added. While it is possible to
change the status of all codes to Accepted and Declined, it is not possible to change the
status back to Pending. This can lead to a situation, in which a disagreement is resolved
by one person by mistake, even though the person is unsure of the correct code. As soon
as the code is resolved, it is hard to find the occurrence in the text, which could lead to
a long search or a wrongly assigned label. The possibility to undo such a mistake and
set a code back to the Pending status could help.

Further, solutions for the frustrations of users as mentioned in subsection 4.4.2 can be
found and implemented. For example, the creation-dialog of a new code could be turned
to a modal dialog, which requires users to either accept or decline the newly created
code, making it impossible to loose the input by accident. It could also be implemented
that for all tokens which are part of overlapping codes, the list of all codes always shows
all overlaps, no matter whether the token itself is part of all the overlapping codes.

Secondly, more statistics could be added to the inter-rater agreement. In addition to the
existing kappa values, more kappa values or correlation coefficients could be added. If
the dataset contains documents on multiple software topics, it could also be interesting
to see the kappa values for each individual topic. For example, the training dataset
used for the classifier as presented in section 5.1 is based on three different kinds of
software, Chrome, Komoot and VLC. It would be interesting to observe the values of
the inter-rater agreement for all software products individually.

Lastly, in order to evaluate the inter-rater agreement tool properly, a formal usability
test should be conducted, with proper preparation, documentation and evaluation. Ad-
ditionally, a questionnaire or interviews could be conducted on multiple users, in order
to evaluate the usability on different user groups.
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6.3 Future Work: Classifier

The datasets used for training as well as testing can be improved in the future. The
training dataset should contain a higher amount of documents, and include more software-
related topics, in order to diversify the vocabulary learned by the Bi-LSTM model. It
should also include all TORE-categories, and have more occurrences of categories, which
appear only rarely. Similarly, the test dataset should contain all categories in order to
evaluate the model properly. As of now, the evaluation of the model has many flaws
as presented in subsection 5.3.3, which makes a complete reevaluation of the model
necessary.

A word embedding model for software-related categories in online forums could be
developed by crawling large amounts of data and training a word embedding model.
This could improve the calculation of similarities between words used in software-related
contexts, and lead to better word representations and fewer zero-vectors for the datasets.
The reduction of words which cannot be found in word embedding models can be
especially significant, as the Bi-LSTM has forward and backward memory. The pre-
processing steps of the training pipeline could be improved on as well, as some kind of
pre-processing seems to be necessary to clean the data and make it more balanced, but
the chosen methods lead to a reduction of accuracy.

Another idea which can be tested in the future, but only in combination with a larger
dataset, is the inclusion of BIO-tagging of the dataset. As of now, it is possible for a
code to be assigned to multiple tokens, but the code can only be represented as the
same category being assigned to multiple tokens individually. The introduction of a
start- and end-tag to a code increases the amount of tags significantly, but is a more
correct representation of codes spanning multiple tokens, and could further increase
accuracy. On the other hand, if there are only small amounts of data, the classification
of TORE-categories could be reduced to the classification of TORE-levels, as this would
reduce the number of categories from 12 to three. The classification of datasets into the
levels could still be helpful for requirements engineers, and the accuracy may increase
for the classification algorithm.
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Glossary

Accuracy The ratio of correctly predicted items to the total number of items. 21

Annotation A version of an annotated dataset that is created by an annotator1. 2

Backend All parts of a software that are not seen by users. 32, 51, 52

Bug An imperfection or deficiency in a work product that impairs its intended use. 63,
64, 80

Classifier An algorithm which categorizes datasets. 2

Code An identifier that is assigned to a text passage. 2

Container Small, isolated environments, in which instances of applications can run. 10,
12, 80

Continuous Delivery An automated process, with which software changes can auto-
matically be tested and published to a repository. 12

Continuous Integration An automated process, with which changes from multiple de-
velopers can be merged and tested. 9, 12

Dataset A collection of documents that are related in some way. 2

Deep Learning A type of machine learning, which uses neural networks with input,
output and hidden layers. 4

F1-score The weighted average of Precision and Recall. 21

1This pdf-File was used for many requirement-related definitions: https://www.ireb.org/content/
downloads/1-cpre-glossary-2-0/ireb_cpre_glossary_de_2.0.1.pdf
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Frontend All parts of a software that users can see, like the user interface. 10, 32, 51,
52, 57, 63

Functional Requirement A requirement concerning a result or behavior that shall be
provided by a function of a system. 32, 34, 43, 65

Mock-up A medium-fidelity prototype that demonstrates characteristics of a user in-
terface without implementing any real functionality. 32, 49, 57

Natural Language A language that people use for speaking and writing in everyday
life. 2, 8, 33, 89, 102

Neural Network Networks consisting of artificial neurons, which can be used for deep
learning algorithms. 13, 18

Non-functional Requirement A quality requirement or a constraint. 32, 43, 65

One Hot Encoding A representation of categorical data as numerical data, in which
categories are converted to vectors which are as long as the number of categories,
and contain only one 1 . 92, 94, 95

Precision The ratio of correctly predicted positive items to the total number of positive
items. 21

Recall The ratio of correctly predicted positive items to the total number of correctly
predicted positive and incorrectly predicted negative items. 21

Requirement A documented representation of a need, capability or property. 1

Requirements Engineer A person who – in collaboration with stakeholders – elicits,
documents, validates, and manages requirements. 1, 106

Snowballing Using reference or citations of sources, in order to find new papers.. 15,
16, 18

Text Passage A cohesive unit of speech of variable length, which contains relevant
information for an annotator. 2
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Virtual Machine Independent environment, which runs instances of applications and
has its own complete operating system. 12
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Acronyms

ACM Association for Computing Machinery. 17, 19

AI Artificial Intelligence. 18

API Application Programming Interface. 10, 24, 54

Bi-LSTM Bidirectional Long Short-Term Memory. 4, 14, 21

CNN Convolutional Neural Network. 17, 18, 21

CSDN Chinese Software Developer Network. 21

GUI Graphical User Interface. 75, 76

IEEE Institute of Electrical and Electronics Engineers. 17, 19

LDA Latent Dirichlet Allocation. 11

LSTM Long Short-Term Memory. 14, 21, 92

NFR Non-Functional Requirement. 43, 63

NLP Natural Language Processing. 18, 21, 25, 29, 90, 102

POS Part of Speech. 37, 89

RNN Recurrent Neural Network. 14, 17

SeaNMF Semantics Assisted Non-negative Matrix Factorization. 11
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TDD Test-Driven Development. 64, 104

TORE Task-Oriented Requirements Engineering. 1

UI User Interface. 1, 5, 32, 33, 47

VM Virtual Machine. 12

WS Workspace. 47
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