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Abstract: Since their introduction, use cases (UCs) have become increasingly 
important for the specification of software requirements. Model driven 
development approaches like the Rational Unified Process base the whole 
software life cycle on UCs. Therefore, high quality UCs are a prerequisite for 
project success. Despite the high importance of their quality, UC driven 
approaches often lack systematic and integrated quality assurance techniques. 
Only ad-hoc recommendations, creation guidelines, and a few checklists for 
inspection are available in the literature. If at all, these techniques are developed 
and used seperately, so that one class of defects is addressed by several 
techniques and other classes are not addressed at all. In this paper, we present 
an integrated approach that combines UC creation guidelines, UC inspections, 
and simulation in a systematic way. The techniques are combined based on a 
classification of defects in UC development. Each technique is focused on a 
different set of defect classes. The integrated approach is systematically 
developed and thus more efficient in its application.  

1  Introduction 

 Since the introduction of the unified modeling language (UML) [BGJ99] as a de-
facto standard in industry software development, use cases (UCs) have become one of 
the most important techniques for specifying software requirements. As in the 
Rational Unified Process (RUP), UCs often drive the whole software development 
life cycle; that is, all development steps are based on UCs. A UC driven development 
approach encompasses several advantages. According to [Kru99], it is most important 
that the UCs link the requirements to other software artifacts such as design, 
implementation, and test cases. Thus, they help to synchronize the content of the 
various models. UCs provide a common basis for communication between the 
different stakeholders (users, customers, management, designers, and testers), which 
is fundamental for understanding the system and building it right. Moreover, UCs 
provide a means for project planning purposes such as iteration planning and effort 
estimation. There are several representations for UCs: text or sequence diagrams, or 



activity diagrams. In this paper, we concentrate mainly on textual UCs, as they are 
most common in industrial practice. 
However, specifying system requirements with UCs is not as easy as it might look. 
Common challenges are that the UCs do not represent the system behavior required 
by the customer (incorrect, not complete or inconsistent), that the UCs are 
incomprehensible to some stakeholders, that too much effort is spent on the UC 
specification (overspecification, unnecessary information), or that the set of UCs 
overlaps in the described behavior, i.e., different UCs are not clearly separated with 
respect to the described system functionality. If these challenges are not addressed, 
poor quality of the UCs threatens the whole software development process: In case 
that defects remain undetected in the UCs, they can propagate via analysis and design 
into the code and the final system. This causes undesired and incorrect behavior and 
results in costly rework activities. The cost of a defect (depending on its class) 
increases by a factor of 3 – 10 [Boe81], [BB01] per development phase. Thus, the 
detection and correction of defects in the UCs is one of the most cost-efficient quality 
assurance techniques [Kru99].  
Despite the importance of high-quality UCs, there are only few approaches that focus 
on quality assurance for UCs. Most common are creation guidelines for UCs that 
should ensure high quality in a constructive way [Coc01], [AM01], [BS03]. In 
addition, recommendations can be found in the literature on how to avoid certain 
quality flaws in the UCs [Lil99]. Also, some inspection approaches define checklists 
that can be used to detect defects in UCs [AS02], [Pet02]. All of these approaches 
address some, but not all defects. Furthermore, they are developed as if they were 
applied as the only quality assurance technique. In addition, developers are left alone 
with the question of when to use which technique. 
To overcome these problems, we developed an integrated quality assurance approach 
for UC-based requirements specifications. The main idea of our approach is that we 
analyzed common defects in, and challenges of UCs modeling. Based on this analysis, 
we developed different quality assurance techniques that address certain defects and 
challenges. We combined constructive UC creation guidelines with UC inspections 
and simulation in such a way that they form an integrated quality assurance approach. 
Integrated means that the different techniques focus on different quality aspects. The 
idea of our approach is that one technique is more efficient than the other in detecting 
certain classes of defects. For example, constructive guidelines are more appropriate 
to ensure structural aspects of the UC (e.g., naming conventions and use of active 
voice in the UC scenarios). On the other hand, inspections are appropriate for 
identifying subtle, logical defects in the UCs, which is almost impossible with 
creation guidelines. Applying simulation allows efficient identification of defects in 
the dynamic behavior, which would be extremely time-consuming in an inspection. 
Focusing the techniques on different defect classes increases the coverage and reduces 
the overlap (i.e., one quality aspect is addressed by one and only one technique). This 
increases the effectiveness and efficiency of the overall quality assurance approach; 
that is, more (major) defects can be found with less effort.  
 
The remainder of this paper is structured as follows. In Section 2, common defect 
classes in UC modeling are summarized. Section 3 describes the integrated quality 
assurance approach we developed and how this approach addresses the identified 



defects. The approach is discussed with respect to related work in this area. In Section 
4, some results of the evaluation of different aspects of our approach are presented. 
Section 5 gives a conclusion and briefly describes future work.   

2 UCs and Quality Challenges 

The focus of this section is the definition of quality criteria and common defects that 
affect UC quality and therefore should be addressed by a quality assurance approach. 
We define the most important quality criteria for requirements documents in general. 
Based on this definition, we present a defect classification scheme that is tailored to 
UCs. This schema summarizes the most common defects that have an impact on the 
defined quality criteria. In addition, we present challenges and common pitfalls in 
UCs modeling that prevent a requirements engineer from creating high quality UCs. 
We relate these to the defect classification. The defect classification then forms the 
baseline for the definition of our integrated quality assurance approach.  

2.1 Quality Criteria for UC Models 

The IEEE standard for requirements specification [IEEE] lists a general set of quality 
criteria for specifications, namely: consistency, completeness, correctness, 
unambiguity, verifiability (testability), changeability, traceability, prioritsation. The 
first four are general criteria for documents, the last four address specific concerns of 
developers using the specification: verifiability is important for the testers, 
changeability is important for maintenance, traceability for maintenance and project 
management, and prioritisation for project management. To cover all stakeholder 
concerns, we have extended this general scheme with comprehensibility (easy to read 
for all stakeholders) and feasibility (necessary for designers) as well as adequate level 
of detail (avoiding overspecification). Based on these quality criteria, we developed a 
defect classification scheme for UCs. Table 1 shows in the first column the defect 
class, which is a negation of the quality criteria. In the second column, a definition for 
the defect class is given that is specific for UCs, and the third column provides an 
example for a defect of the defect class. Note that incomprehensibility typically 
affects all other quality criteria. Also, we address traceability under 
comprehensibility, as both relate to structuring means. 
 

Defect 
Class 

Description Example  

In- 
correct-
ness 

The UC does not match  the expected 
or intended behavior; that is, the 
information presented in the UC is 
wrong and does not represent the user 
requirements. 

The flow of a UC does not 
represent the flow of activities 
expected by the user. 

Incom-
plete- 
ness 

The UC does not contain all necessary 
scenarios. The UC set does not contain 
all necessary UCs. Information that is 

An important exception is not 
specified, a certain actor is not 
considered.   



Defect 
Class 

Description Example  

required for subsequent activities is not 
present. 

Incon- 
sis-
tency 

A piece of  information of a single UC 
or of different UCs is described in at 
least two different, incompatible ways 
so that there is a contradiction between 
them. 

The quality constraints of a 
UC contradict the event flow. 
One user action in two 
different UCs requires 
contradictory system behavior.   

Ambi-
guity 

Elements of the UC can be interpreted 
in two or more ways. Thus, it is not 
clear which of the interpretations are 
true. 

A condition containing “and” 
and “or” does not explicitly 
state the required bracketing. 

Incom-
prehen-
sibility 
/in-
tracea-
bility  

The UC is difficult to understand and 
comprehend. The UC is not specified 
according to a template. 

The event flow described in 
the UC is too complex due to 
many “include” relationships. 
The template is not adhered to. 

Intest-
ability 

The behavior described in the UC 
cannot be validated by means of test 
cases due to logical or physical 
constraints. That means there is no way 
to check whether the system fulfills the 
UC. 

It is impossible to derive the 
system response to a certain 
user input. 

In-
change-
ability  

The UC is prone to change or difficult 
to change. 

Details of the user interface 
are mixed with essential 
behavior. 

Infeasi-
bility 

The behavior described in the UC 
cannot be implemented. 

It is not possible to derive an 
initial design of the system 
from the UCs. 

Over-
specifi-
cation 

The information given in the UC is 
irrelevant or too detailed in the sense 
that it prescribes an implementation. 

Details of internal system 
behavior  are described in the 
UC. An actor not necessary 
for the system behavior is 
described in the UC.  

Table 1: UC Defect Classification 

This detailed defect classification gives an initial overview of the potential defects 
that can occur in UC modeling (diagram and textual description). This overview is the 
starting point for a profound planning of quality assurance activities; that is, based on 
the defect classification, quality assurance activities most suitable to address a certain 
defect class can be identified. 
 
In the literature on UCs, pitfalls typical for UCs [Lil99], [Fir] are mentioned. In the 
following we map these pitfalls to the defect classes explained in Table 1. [Lil99] and 
[Fir] state the following examples: 



• For incompleteness: System boundary is not defined. Associations between 
UCs and actors do not fully describe who can do what with the system (e.g. 
only focus on objects or on user interface). UC modeling is stopped too early 
(difficult to determine when UC modeling is finished). 

• For inconsistency: System boundary varies for different UCs (that means 
UCs are on different abstraction levels). Actors are named inconsistently. 
UCs interfere with each other (as they have been developed focusing on 
single flows).  

• For incomprehensibility:  UCs are written from the system point of view, not 
the actors point of view; e.g., UC names describe system reactions, not actor 
goals. UC model looks like a dataflow or process model due to the use of 
‘extends’ and ‘uses’ relationships. Too many UCs because the actor goals 
are too fine-grained. Too many relationships between actors and UCs 
because the actor roles are too coarse-grained. Text too long because UC 
covers too many instances. UC contains too many if-branches and loops. 
UCs lack contexts. UC terminology is not adequate for users. 

• For inchangeability:  UCs are associated with user interface structure.  
• For overspecification: Steps of the UC describe internal functionality rather 

than interaction. 

2.2 Existing Quality Assurance Approaches for UCs 

The literature also gives hints on how to cope with these quality problems. It provides 
templates [Coc01], [Lil99], [Fir], guidelines for creating UCs [BS03], and checklists 
for inspecting UCs [AS02], [Pet02]. The recommendations are typical for guidelines 
and checklists. However, they do not cover all possible defects that can be dealt with 
through guidelines and checklists. For instance, guidelines or checklists that give 
advice on how to use natural language in an unambiguous way could address 
ambiguity defects. Also, the described techniques were developed independently from 
each other. Therefore, they often address similar or the same defects resulting in an 
overlap of the addressed defect classes. In order to improve the efficiency of quality 
assurance activities, this overlap should be reduced; that is, the different techniques 
should address different defects. Finally, the recommendations and guidelines at hand 
do not provide help for the prevention or detection of the really difficult defects like 
infeasibility, intestability, and serious inconsistency defects resulting from 
interference between UCs. Most of the guidelines and checklists focus on pure 
structural and syntactical defects. However, the real expensive defects are on a more 
subtle (logical) level. Thus, additional quality assurance techniques are required that 
address such defects. We show how to combine approaches that address structural 
defects with those that focus on more subtle defects in the next section. 

3 An Integrated Quality Assurance Approach 

The focus of this section is the description of specific UC quality assurance 
techniques and their integration. For each technique (creation guidelines, inspections, 



simulation) we briefly describe the basic concepts and show how the technique 
contributes to the quality of UCs with respect to the criteria described in the last 
section. In addition, we show how the quality assurance techniques are combined into 
an integrated approach.  

3.1 Guidelines for Creating UCs 

UC creation guidelines can mainly deal with the document and with structuring-
related quality criteria such as comprehensibility, unambiguity, and completeness. Our 
guidelines focus on UCs as part of the requirements specification. They are used as 
input for deriving a more refined system specification. In general, we do not 
recommend including all details of the system specification into the UCs, since they 
will get too long. In any case, one should make sure that the system details are 
separated from the main UC description. We have collected the guidelines from 
literature, e.g., [Coc01], [RA98], and from our experiences regarding requirements 
engineering projects. Guidelines that are reported in the literature are referenced. Due 
to space limitations, we can only sketch the guidelines for creating UCs; the full 
approach can be found in [DPB03]. Our guidelines comprise 4 main steps, which are 
briefly described in the following paragraphs based on the example of a door control 
unit for a car. The door control unit (DCU) allows several actors (driver, co-driver) to 
position their windows and their seats. Moreover, the DCU allows the driver to 
position the outside mirrors, and it controls the central locking system. Passengers in 
the back can also position their windows. Note that we use an embedded system 
example. This shows that our guidelines are not only valid for business systems, 
which is often the case for UC guidelines. 
 
Step 1: Identify Actors and their Tasks 
Identify the most important actors of the system. Actors are roles not persons. Identify 
the tasks of these actors. Tasks are characterized through goals that actors want to 
achieve. In order to capture the user’s point of view, it is important to abstract as 
much as possible from technical solutions. Tasks are visualized in UC diagrams. In 
contrast to ordinary UC diagrams, we distinguish two kinds of task visualizations: 
Those tasks that are mainly influenced by the user are visualized as bubbles crossing 
the border between system and environment. Tasks that mainly concern system 
reaction are shown inside the border. In this step, only the former are elicited. The UC 
diagram connects the tasks and the actors. 
 
Step 2: Identify the Input and Output of the System (i.e., its Context) 
Distinguish monitored and controlled variables. Controlled variables describe the 
system parts controlled in the UCs as well as system data created. Monitored 
variables capture the different possibilities actors have to trigger the system reaction 
as well as other system data needed in the UCs. Create a list of monitored and 
controlled variables, which captures the name and the description. Do not separate 
inputs that are needed to trigger one task (that is, both inputs are needed to trigger the 
same task). “Internal identification input”, for example, includes the selection of the 
“Position seat” function as well as the “Identification” given by the actor. Abstract 



from user interface details [Coc01], e.g., do not use “seat_position_button” unless it is 
required that this is a button (e.g., instead of a touch screen). These inputs and outputs 
help to delineate the system boundary [Lil99], but do not fix the details of the man – 
machine interface. It is important to keep these details separate from the UC 
description, because this often changes over time and between different releases. 
Thus, abstraction supports changeability of the UC description. 
 
Step 3: Refine the Tasks According to Variations  
Give special considerations to variations of the tasks. Variations are often due to 
slightly different handling of input and output. If the variation is quite likely and 
results in significantly different behavior of actor or system, then define new UCs for 
the different variations. These new UCs should be included in the general UC. If the 
variation is quite likely, but can easily be described as a case distinction, include this 
distinction in the UCs. If the variation is not likely, include it as an exception in the 
UCs. Avoid too many UCs in order to support comprehensibility of the UC model. 
 
Step 4: Fill in the UC Template   
We provide a template for the textual UC description to ensure their completeness. 
Figure 1 shows an excerpt of this template. In addition, the name of the UC, actors 
involved in the UC, the goal of the actor, and quality requirements related to the UC 
are collected. Name and actor can directly be taken from the UC diagram. Then, the 
name is elaborated with the actor’s goal. This goal is further detailed with the 
precondition and the postcondition. Preconditions capture conditions needed for 
successful execution of the UC and are typically established by other UCs. 
Postconditions define the system state after the UC has executed successfully; that is 
what is achieved when the UC scenario is performed without exceptions. Next, the 
monitored and controlled variables relevant for the UC are collected. They can be 
taken from the lists created in step 2. The explicit collection of monitored and 
controlled variables supports traceability  between UCs that overlap on variables.  

 

Window_PositionCont. Variables

Window_Position, Actor_Input: movement type (patially/total) and 
movement direction (up, down)

Mon. Variables

Window has new positionPostcondition

-Precondition

The system activates the “Safety opening” in the case that the 
actor moves the window upwards but no change of the window 
position is recognized. 

Rules

• 3.1 Partial movement: use case “Partial Movement”
• 3.2 Technical problem: System does not react completely
• 3.3. Safety Opening: System moves the window into its lower 

end position 

Exceptions

1. Actor totally moves the window into a certain direction 
2. System reacts accordingly

[Exception 3.1.: Actor moves the window partially] 
[Exception 3.2.: Technical problem]
[Exception 3.3.: Safety Opening]

Description

Window_PositionCont. Variables

Window_Position, Actor_Input: movement type (patially/total) and 
movement direction (up, down)

Mon. Variables

Window has new positionPostcondition

-Precondition

The system activates the “Safety opening” in the case that the 
actor moves the window upwards but no change of the window 
position is recognized. 

Rules

• 3.1 Partial movement: use case “Partial Movement”
• 3.2 Technical problem: System does not react completely
• 3.3. Safety Opening: System moves the window into its lower 

end position 

Exceptions

1. Actor totally moves the window into a certain direction 
2. System reacts accordingly

[Exception 3.1.: Actor moves the window partially] 
[Exception 3.2.: Technical problem]
[Exception 3.3.: Safety Opening]

Description

 
Figure 1: Excerpt of example of filled in UC Template 



The main step is to describe the normal course of interaction between actor and 
system in the description facet. Here, we use the essential UCs from [CL99]. To 
achieve completeness, we focus the requirements engineer on four types of exceptions 
resulting from:  

1. actor inputs outside of the UC (e.g., partial movement in Figure 1), 
2. boundary values of controlled variables such as  limit positions  
3. system behavior outside of the UC, but visible to it (e.g., safety opening in 

Figure 1), or 
4. problems in carrying out the system reaction (e.g., technical problem in Figure 

1) 
 

To support comprehensibility of the main flow, details of the system reaction are 
captured in the rules facet. The rules facet gives additional information to specific 
aspects in the main flow, for example, in which case the system will activate the 
safety opening of the window control (see Figure 1).  
The separation of the requirements into different facets is an important prerequisite 
for the efficient derivation of the system specification. 

3.2 UC Inspection 

Inspections are one of the most efficient quality assurance techniques. Moreover, 
inspections in the early life cycle are highly effective in adding new views on a 
software artifact by different stakeholders. Therefore, we use inspections as a second 
technique to ensure the quality of the UC. We use the perspective-based reading 
(PBR) approach [BGL96], [Lai00]. The idea of this inspection approach is that the 
UCs are inspected from the perspective of the most important stakeholders of the UC. 
Typical stakeholders of the UCs are: 

• test engineers who use them as input for test case creation,  
• designers who derive high level design diagrams from the UCs, 
• customers who take the UC as the main document to check whether all their 

requirements on the system are captured, 
• maintainers who have to perform changes on the UCs 

 
We chose these perspectives in order to complement the creation guidelines described 
in the last section. The perspectives focus on those defects that are difficult to address 
in a constructive way. The customer perspective addresses completeness and 
correctness in the sense that all requirements are captured in the UCs, as intended by 
the customers. We support testability with the tester perspective, as this perspective 
focuses on the possibility to derive test cases from the UCs. In the same way, we 
support feasibility and adequate specification level of the UCs with the designer 
perspective. This perspective ensures that it is possible to derive a reasonably high 
level design from the UCs. Finally, our maintainer perspective supports changeability 
of the UCs, as this perspective considers how potential changes of the requirements 
could be realized in the UCs. Other perspectives might also be useful, but in 
combination with the creation guidelines the above mentioned perspectives are the 
most valuable ones, since they address defects not considered in the guidelines.  In 



each project, the used perspectives need to be tailored to the specific project context, 
and in each project, the set of used perspectives needs to be checked. For example, 
dependent on the context, different customer perspectives are possible (like marketing 
department, users, management). In such cases, the different stakeholder needs must 
be considered in the PBR approach. 
In order to support the inspectors in detecting defects, the PBR approach provides 
reading scenarios that are tailored to the needs of the stakeholders [Lai00]. These 
scenarios give a step-by-step description of the activities an inspector should perform 
during the defect detection. A reading scenario consists of three main parts: 
introduction, instructions, and questions. 
In the introduction, the goal of the scenario is described and the quality aspects that 
are most important in the particular scenario are defined. Thus, the focus of the 
inspector is set; that is, it is clarified what should be inspected (on which aspects 
should the inspector focus).  
In the instruction, an inspector gets concrete guidance on how to perform the 
inspection in order to detect defects. The instructions define exactly which documents 
an inspector should use during the inspection, how to read them, and how to extract 
information from them. While identifying, reading, and extracting information, 
inspectors may already detect defects. One important aspect of the PBR approach is 
that the inspectors extract information in a way that can be reused in later activities.  
Therefore, the scenarios give guidance on how to perform typical activities of the 
assumed perspective. The result of these activities are then real work products of that 
stakeholder. For example, the PBR approach defines that an inspector who assumes 
the designer perspective should derive high level statecharts from the UCs. Then, the 
result of the inspection is not only the detected defects, but also a certain set of 
artifacts (in this example, some initial design diagrams) that can be used as a starting 
point later in the process when they need to be derived anyway.  Another example is 
the tester perspective, which asks the inspectors to derive test cases from the UCs. 
Again,, these test cases can then be used as an initial set of test cases during the 
acceptance test phase. Thus, no time is wasted in the inspection. As in many cases the 
inspections cannot cover all elements in the UCs (especially when the system is too 
complex), the derived artifacts must be viewed as an initial basis for later activities. 
The inspections cannot substitute these activities. 
The motivation for providing guidance for inspectors is three-fold [BL02]: First, the 
instructions help an inspector to gain a focused understanding of the UCs. 
Understanding involves the assignment of meaning to information in a particular set 
of document parts and is a necessary prerequisite for detecting more subtle defects. 
Second, the instructions require an inspector to actively work with the UCs rather 
than passively scanning them, which is a prerequisite for a profound understanding 
and which results in the creation of real artifacts that can be reused. Third, the 
attention of an inspector is focused on the information most interesting for a particular 
stakeholder. Thus, the inspector is not swamped with details irrelevant to his or her 
perspective.  
The third element of the reading scenarios are the questions. With the profound 
understanding gained during the performance of the reading scenario, the questions 
support the inspectors in judging whether the document fulfils the required quality 



properties. The inspectors should answer the questions while working with the 
document.  
In Figure 2, an excerpt of the reading scenario of the designer perspective is shown. 
 
Applying the PBR approach results in several benefits: Detecting subtle defects is the 
most important aspect of an inspection, as subtle defects are the most costly defects in 
a software system. By focusing the inspectors on specific aspects that are relevant for 
a perspective, the inspection becomes more efficient, as not all inspectors are 
searching for the same issues (as in checklist-based inspection). Also, the inspectors 
concentrate on those aspects that are most important for the perspective. Compared to 
other reading techniques, the inspectors produce documents during the defect 
detection. This allows a quality assurance responsible to judge whether an inspection 
was performed thoroughly or not, as it is possible to look at the produced documents 
and judge their quality. An additional advantage of this inspection technique (beside 
the early detection of defects) is that it supports the communication of different 
stakeholders of the UCs. Thus, we avoid incomprehensibility, by  bringing together 
the views of the important stakeholders.  
 

Questions
1. Which states do not occur in the statechart or the Use Cases, although they could 

occur? 
2. Which event flows are unclear?

Instructions
Build the statechart for the Use Cases. For each Use Case

1. Draw the initial state and the final state with great distance to each other
2. Find the precondition of the Use Case and draw a state that represent it 
3. Find the first action of the Use Case within the Use Case description. Starting from the 

state of the precondition, draw a state transition (arrow) to the state representing the 
result of the action, and from this to the state that represents the result of the next action 
and so forth, until the state of the post condition is reached

4. For each exception described in the Use Case insert a state and a state transition in the 
suitable place.....

Introduction
Imagine you are the developer. As part of your work you have to gain an overview of the use case 
document. It is very important for the success of your activity to be able to derive a state graph 
from the use case model. For you the main quality aspect of the use cases is the feasability of the 
single use cases
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document. It is very important for the success of your activity to be able to derive a state graph 
from the use case model. For you the main quality aspect of the use cases is the feasability of the 
single use cases

 
Figure 2: Excerpt of the Reading Scenario from the Perspective of a designer (in our case 

the creator of the high-level statecharts in the system specification) 



3.3 Simulation of Requirements 

The most difficult defects are inconsistency and interference issues. They could be 
detected by experienced inspectors (but only with some effort), but no detailed 
guidance can be given in the reading scenarios. Therefore, we integrate simulation as 
a further means of quality assurance that addresses such defects more efficiently. To 
apply simulation, textual UCs must first be transformed into a formal model. Here one 
can use sequence diagrams. However, this only allows the simulation of individual 
UCs. The typical formal model that allows for simulation of the complete system 
behavior are statecharts (SCs) [Har98]. Typical approaches for transforming UCs into 
SCs require already formal UCs in terms of sequence diagrams. To avoid using 
formal sequence diagrams as an intermediate between textual UCs and formal 
statecharts we have defined guidelines for deriving SCs directly from textual UCs. 
The SCENT-approach [RG99] also gives guidelines to derive Scs from textual UCs. 
However, the SCs are quite different from ours. The states of the SCs represent 
actions of an actor or the system. They do not describe the internal behavior of the 
system and the main focus is to check the completeness of one UC-description by 
integrating all scenarios belonging to one UC. In contrast our guidelines help to 
derive an integrated set of SCs representing the system behavior necessary to realize  
all UCs. The full guidelines are published in [DKK03]. Here we only sketch the main 
idea.  
To keep the guidelines simple we preserve the structure of the UCs in the SCs. So we 
map input and output as well as UCs to different classes and define SCs for each of 
these classes. The SCs for the variables are quite straightforward and reflect the major 
states of these variables (e.g., door locked, door open). The SCs for the UC start in an 
idle state and react to the trigger of the UCs. Exceptions and preconditions are 
reflected in this reaction. The main behavior reflects the different steps of the UCs. 
Exceptions lead back to the idle state and may trigger other UCs. 
On the formal SCs one can use simulation tools like Rhapsody [Rha] to validate the 
dynamic behavior of the system. On the one hand, this helps to detect incorrectness 
problems, as the user can directly see how the specified system behaves. Moreover, 
the transformation and simulation allows to check for inconsistencies in the SCs and 
thus in the UCs regarding the dynamic behavior. Inconsistency is often detected 
during transformation, as it is not possible to define a clear system reaction. Further 
inconsistencies are detected through simulation when the system does not react as 
expected. In particular, interference defects can also be detected, since with 
simulations it is easily possible to simulate several UCs concurrently by means of 
simulating their corresponding SCs. 

3.4 Summarizing the Integrated Approach 

By combining constructive and analytic quality assurance techniques, we are able to 
address all the quality criteria of the IEEE standard. In Table 2, we summarize how 
each of our techniques contributes to the fulfillment of a high quality requirements 
specification: 
 



 Creation Guidelines Inspections Simulation 
Incompleteness X (X)  
Incorrectness  X X 
Inconsistency  (X) X 
Ambiguity X (X) (X) 
Incomprehensibility X (X)  
Intestability  X (X) 
Inchangeability (X) X  
Infeasability  X  
Overspecification X X  

Table 2: Quality Assurance Technique - Defect Matrix 

An “X” in the table indicates that defects related to a certain quality aspect (as 
described in Table 1) are addressed with a quality assurance technique. An “(X)” 
indicates that defects are indirectly addressed with the quality assurance technique. 
One example here is the use of inspections. When searching for defects limiting 
feasibility or testability, the inspector will also identify defects related to other classes 
(e.g., completeness, ambiguity).  
 
Our integrated approach combines the techniques, so that the UC creation guidelines 
focus on structural aspects related to completeness (e.g., all important exceptions are 
considered, all template elements are filled in). Moreover, the guidelines address 
aspects related to the use of natural language (understandability of sentences, use of 
unambiguous terminology). The inspection focuses on those aspects that are difficult 
to address in creation guidelines, such as feasibility, testability, and changeability 
analysis. It also focuses on more subtle (logical) defects that are not necessarily 
related to structural aspects. Moreover, our inspection approach helps to involve all 
the important stakeholders of the UCs through tailored perspectives and, therefore, 
supports communication about and a common understanding of the requirements. 
Simulation is integrated so that serious correctness and consistency defects and 
especially defects resulting from interrelationships between UCs (interference 
aspects) are addressed. Such defects are extremely difficult to identify in an 
inspection. The combination of the different techniques in such a way is a promising 
approach to reduce quality assurance effort and achieve higher efficiency.  
 
Our approach for high-quality requirements also bears some risks for the development 
process. The development of the formal model requires some effort. This should only 
be spent if the risk of inconsistencies is high. Keeping the structure of the UCs and the 
SCs very simple is better suited for requirements engineering than a structure that 
focuses on design optimization. This results in redundancies, in particular in the SC 
models and the class diagram. Thus, it is necessary to restructure the class diagram 
and the SCs during system design. The reading scenarios of our inspection approach 
need to be tailored to the concrete development context and the specific stakeholders. 
It might happen that additional perspectives need to be considered or that the focus of 
the described perspectives needs to be changed. If stakeholders are not considered or 
the existing perspectives are not sufficient, the inspection would be inefficient and not 
effective. However, tailoring the perspective-based inspection approach is easily 



possible by carefully identifying the stakeholders of the UCs and analysing their 
quality needs. Another risk stems from a development environment in which tool 
support is not possible. In such a case, all defects that are addressed in our simulation 
approach should be captured in appropriate reading scenarios for inspection.  

4 Evaluation of the Approach 

We evaluated several parts of our quality assurance approach in case studies with 
students. So far, we have focused on the value of the single techniques; i.e., the 
guidelines, the inspection approach, and the simulation. We have not yet evaluated the 
integration of the different techniques into a combined approach. In the following, we 
present the results of our evaluation.  
 
We validated the UC creation guidelines and the UC inspection approach in a case 
study at the Technical University of Kaiserslautern. Both techniques were used in the 
practical course “Software Engineering 1” in the summer of 2003. In this course, the 
students had to develop a building automation system that regulates the temperature 
and the light in the rooms and floors of a university building. In the working 
description of the practical course, the system was separated into three sub-systems, 
namely, “Temperature Control” (Temp), “Light Control” (Ligh), and “User Interface” 
(UI). 12 students were involved in the case study, with a group of 4 people being 
responsible for each sub-system. The Temp system comprised 21 UCs and textual 
scenarios, the Light system 15 UCs and scenarios and the GUI system 34 UCs and 
scenarios.  We did not design an experiment with a control group who did not use our 
approach, as there is no other established approach ready for teaching. Thus a the 
control group would have used an ad-hoc approach. This would have contradicted the 
teaching goals of the practical course. In addition, this would have reduced the 
number of people giving feedback to our approach. Clearly, with a number of 12 
students we cannot provide any statistically significant evaluations. However, making 
students apply the approach and collecting their feedback is, in our view, an important 
step towards a more thorough evaluation.  
Based on the problem description, each group had to develop UCs for its sub-system 
with our UC creation guidelines. To evaluate usefulness, we used a questionnaire that 
was given to the subjects after they completed the UC creation. It was designed 
following the model recommended by Davis [Dav89]. The model evaluates the 
general usefulness of a certain technique by means of three basic categories: 
Perceived usefulness “the degree to which a person believes that using a particular 
technique would enhance his or her job performance”; Perceived ease of use 
(applicability) “the degree to which a person believes that using a particular 
technique would be free of effort”; Self-predicted future use “the degree to which a 
person would use a particular technique again in the future”. For each category, the 
students had to state their degree of agreement to certain statements (e.g., “the 
guidelines accelerate the UC creation or the guidelines improve the effectiveness of 
the UC creation”) on a scale from 1 (total disagreement) to 6 (total agreement). Thus, 
it is possible to evaluate the median for each category.  

 



Regarding applicability, three statements had to be rated. Thus, the maximum value 
(most positive case) is 18. We measured a median of 12. Therefore, the students 
perceive the guidelines as applicable, but there is still improvement potential, as we 
did not reach the maximum value. The second element of the evaluation model is the 
perceived usefulness of the guidelines. The summarized results again show a positive 
perception of the usefulness of the guidelines. Five statements had to be rated in this 
category (maximum value 30). We measured a median of 23 and therefore conclude 
that the subjects agree that the guidelines are useful for performing their task. 
Regarding the self-predicted future use, the subjects had to agree with one statement. 
10 out of 12 subjects (83.3%) agreed that they would use the guidelines again in a 
future project. To summarize, the overall impression of the guidelines is positive. The 
evaluation indicates that the guidelines are useful and applicable to create the UCs. 
Most of the subjects would use the guidelines again in a future project. However, the 
results also indicate that the guidelines can still be improved A more detailed 
presentation of the results can be found in [DPB03].  
After the students created the UCs, they had to perform inspections on the UCs. In 
this task the students used our perspective-based inspection approach. We evaluated 
the impact of the detailed descriptions provided by our inspection approach 
(usefulness of the reading scenarios). In detail, we analyzed the following hypothesis: 

Hypothesis H1—Team Effectiveness: Inspection teams find more defects with 
the help of the reading scenarios than with a comparable checklist  
Hypothesis H2—Team Efficiency: Inspection teams find more defects per time 
unit with the help of the reading scenarios than with a comparable checklist 
 

In addition, we analyzed the subjects’ perception regarding the support provided by 
the PBR approach, again using a questionnaire.   
The results of the study provide weak tendencies that our inspection approach results 
in more effective inspections and is perceived as very helpful to support individual 
defect detection. In detail, the study showed that: PBR finds between 23% and 40% 
more defects than a checklist approach for the Temp and GUI subsystems. For the 
subsystem Light, the checklist approach finds about 32% more defects than PBR. The 
results are statisticaly significant for the GUI system (p=0.08), but not for the other 
sub-systems. Regarding the efficiency the study showed that the checklist-based 
approach is more efficient for the Temp and the Light subsystems. One possible 
interpretation for this is that the effort spend in the PBR approach, which focuses on a 
profound understanding of the document under inspection, pays of only in more 
complex systems. As the GUI system was the most complex system (it contained the 
most UCs), the PBR approach performed best for this subsystem. In the two other 
subsystems the effort of the PBR approach was to high as they were not that complex 
(i.e., the checklist was sufficient to gain the understanding of the system). However, 
this is an hypothesis an needs to be validated in future research activities.   
 
The evaluation of the questionnaire showed that the PBR approach is perceived to be 
as applicable as the checklist-based approach but harder to understand. The subjects’ 
stated that the PBR approach is more useful compared to a checklist approach and 
that the reading scenarios, especially, are perceived as highly valuable. Eight out of 
eleven students (72.2%) agree that the reading scenarios are helpful in performing the 



defect detection. Even though we could not prove our hypothesis, the results indicate 
that our inspection approach is a valuable means for improving the quality of the UCs 
and that it is perceived more useful than traditional approaches. Further results of the 
inspection case studies can be found in [DCL04].   
 
In addition to this study, we evaluated the usefulness of the simulation approach in a 
seminar at the Technical University of Kaiserslautern. 4 students used the simulation 
to detect defects in UCs of the door control unit of a car. We got positive feedback 
regarding the simulation. The detection of more subtle defects and defects regarding 
the dynamic interaction of UCs are perceived as the main advantages.  
 
The presented results are (with one exception) not statistically significant. They can 
only serve as initial results that are a first step towards more formal empirical 
evaluations. In addition, the results are based on case studies with students, which 
limits their generalizability even more. However, in our project, the student case study 
was the only possibility to initially analyze our results, and we perceive this 
evaluation as a necessary step. In future activities the integrated approach has to be 
compared to an approach that does not combine the different techniques in a 
systematic way, and the techniques need to be analyzed in controlled experiments. 

5 Conclusion 

In this paper we have described an integrated quality assurance approach for UCs. 
The core aspect of our approach is the combination of constructive techniques (UC 
creation guidelines) with analytic quality assurance techniques (inspections and 
simulation) for UCs. The combination is based on a defect classification for UC 
models. This classification enables systematic combination such that guidelines, 
inspections, and simulation address different kinds of defect classes. We showed that 
guidelines are valuable for the prevention of structural and syntactic defects, and 
inspections are suitable for detecting subtle logical defects. Simulation is integrated so 
that serious consistency defects resulting from the interference between UCs can be 
efficiently detected. With this approach we hope to improve the overall efficiency and 
effectiveness of quality assurance. The evaluation of our approach gives first evidence 
that each part contributes to the overall quality improvement of the UCs. However, a 
detailed analysis of our integration approach needs to be performed in future 
empirical studies, particularly in industry. The aim of this study would be to show that 
the overlap of detected defects can be reduced with the combined use of the different 
techniques. The results of our evaluation motivate us to continue working in that 
direction. 
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