

Electronic version of an article published as IJSEKE, Vol. 16, Issue 6, 2006, pp. 917-950

[doi:10.1142/S021819400600304X]

© [Copyright World Scientific Publishing Company]

http://www.worldscinet.com/ijseke/ijseke.shtml

1st Reading
December 21, 2006 11:20 WSPC/117-ijseke 00304

International Journal of Software Engineering1

and Knowledge Engineering
Vol. 16, No. 6 (2006) 1–343

c© World Scientific Publishing Company

ICRAD: AN INTEGRATED PROCESS FOR THE SOLUTION OF5

REQUIREMENTS CONFLICTS AND ARCHITECTURAL DESIGN∗

ANDREA HERRMANN† and BARBARA PAECH‡7

Software Engineering Group, Faculty of Mathematics and Computer Science,
University of Heidelberg, 69120 Heidelberg, Germany9

†herrmann@informatik.uni-heidelberg.de
‡paech@informatik.uni-heidelberg.de11

http://www-swe.informatik.uni-heidelberg.de/

DAMIAN PLAZA13

Institut für Medizinische Biometrie und Informatik,
University of Heidelberg, 69120 Heidelberg, Germany15

http://www.biometrie.uni-heidelberg.de
Interdisziplinäres Uveitiszentrum Heidelberg, 69120 Heidelberg, Germany17

http://www.uveitiscenter.de

In order to solve requirements conflicts when developing or enhancing an IT system,19

it is essential to understand its architecture. Frequently, the costs for the realization of
certain requirements are a decision criterion. Requirements negotiation and architectural21

design must be treated together, as conflicts cannot be solved before the architecture
has been designed. So far, no integrated process exists which clearly defines input and23

output among these activities, and which takes into account a variety of different types
of dependencies among requirements and between requirements and architecture.25

In this paper, we develop a detailed iterative process named ICRAD (Integrated
Conflict Resolution and Architectural Design). ICRAD integrates requirements negoti-27

ation and architectural design and takes into account nine types of dependencies. We
define three types of requirements conflicts. We also present a case study.29

Keywords: Requirements engineering; requirements conflicts; requirements negotiation;
requirements decisions; architectural design; design decisions.31

1. Introduction

The route from the requirements of an IT system to its architectural design is called33

the route from problem space (also called requirements space) to solution space.

Along this way, conflicts among requirements must be solved and architectural35

∗This work is the result of the research project SIKOSA, which is funded by the Ministry for
Science, Research and Art of Baden-Württemberg, Germany (Ministerium für Wissenschaft,
Forschung und Kunst Baden-Württemberg).

1

1st Reading
December 21, 2006 11:20 WSPC/117-ijseke 00304

2 A. Herrmann, B. Paech & D. Plaza

alternatives must be compared with each other. This signifies a complex decision-1

making process.

We define the interface between requirements and solution space like this: Re-3

quirements are wishes. They might contradict each other or not be realizable. They

are specified relatively independent of each other. The architectural design describes5

a realizable solution. Whether it satisfies all of the requirements has to be evaluated.

According to this definition, even architectural requirements derived during the re-7

quirements elicitation are requirements, although they describe desirable parts or

properties of an architectural design. Still they are wishes which might be unre-9

alistic or contradicting. Seen from the perspective of the requirements engineer,

architectural design is also a negotiation activity, which detects and solves feasibil-11

ity conflicts among requirements.

The solution of requirements conflicts and architectural design depend on each13

other more strongly than is usually considered in the literature. Only a few re-

quirements conflicts can be solved within the requirements space. The architectural15

design provides information about the feasibility and the costs of requirements,

which should be put into the negotiation of requirements conflicts as important de-17

cision criteria. Therefore, it is neither sufficient nor possible to solve all requirements

conflicts before the architectural design is set up.19

We developed a systematic, iterative process, where requirements conflicts are

translated into architectural decisions, and the decision-making in the solution21

space also has to solve the requirements conflicts. When making architectural deci-

sions, several types of interdependencies among requirements have to be taken into23

account. Architectural decisions lead to new, changed or improved requirements,

which then are the basis for a more detailed design. Following these principles, the25

activities, methods and concepts of many other authors are integrated.

Our work is not focused on architectural design per se, but on the solution of27

requirements conflicts based on architectural knowledge. Thus, we do not discuss

different architectural styles, patterns, solutions or methods in designing IT ar-29

chitecture. We leave this to architecture specialists. We describe a process which

systematically allows the use of architecture design knowledge in decision-making.31

It can be used in the development of a system from scratch or in the enhancement

of a system.33

Section 2 presents related work and Sec. 3 deals with the form of requirements

we assume when they are put into our process. In Sec. 4, we identify various types35

of requirements conflicts, and in Sec. 5 we name the steps, activities, and methods

of our process. Section 6 illustrates this process with a case study. Section 7 sum-37

marizes our work and contains the conclusions. Finally Sec. 8 sketches our plans

for future work.39

1st Reading
December 21, 2006 11:20 WSPC/117-ijseke 00304

ICRAD: Solution of Requirements Conflicts and Architectural Design 3

2. Related Work1

We were looking for a systematic process which integrates the solution of require-

ments conflicts and architectural design, and solves requirements conflicts where3

necessary within the solution space. The process should also take into account sev-

eral other types of requirements dependencies. We analyzed many approaches but5

found none which did use architectural design knowledge for solving requirements

conflicts as comprehensively as we thought it necessary.7

There is one work we want to mention because it has a similar goal like ours.

Poort and de With [1] also develop a process for the detection and solution of9

conflicts and for high-level architectural design. Their process comprises similar

steps like ours, but follows a different strategy: Requirements conflicts are solved11

in the problem space by splitting requirements groups. The authors justify their

process by their daily experience and do not derive it systematically. We also want13

to mention that they do not discuss their criteria for prioritization and decision-

making. Therefore it is not clear whether they use architectural knowledge for the15

solution of conflicts. We suspect that the authors, as it is usual in practical work,

have integrated design and requirements engineering without being aware of it and17

that during the solution of requirements conflicts, architectural knowledge is used

implicitly, as it becomes necessary. Therefore, their work does not contradict ours,19

but the integration of both aspects is not as radical as we wanted it to be.

Therefore, we derived a detailed process which explicitly uses architectural21

knowledge for the solution of requirements conflicts and which takes into account

several other dependencies which are often neglected. In a first step, we identified a23

set of standard activities. To do so, our three main sources finally were: Sommerville

[2] concerning validation of requirements, Robinson, Pawlowski, and Volkov [3] for25

conflict solution, and Bruegge and Dutoit [4] describing architectural design. Some

other architectural design processes [5–14] and architectural analysis works [15–21]27

served as a source for activities and concepts of our process. We would like to dis-

cuss why one well-known example did not serve our purpose. ATAM (Architecture29

Tradeoff Analysis Method) [19] focuses on the decision-making during architectural

design. It identifies decisions to be taken, evaluates the consequences of a decision,31

e.g. by a risk analysis, but: The prioritization of requirements is done by voting.

No clear decision criteria are defined. It is not described how the initially proposed33

architectural design is built. Requirements conflicts are not explicitly solved, and

only “functional dependencies” among requirements (corresponding to our feature35

bundle, see Sec. 5) are considered.

In other sources, very often the initial architectural outline is derived from the37

functional requirements, while the satisfaction of the non-functional requirements

is used as a decision criterion for evaluating alternatives and incrementally im-39

proving the architecture [5, 8, 9]. Instead, we treat functional and non-functional

requirements equally.41

1st Reading
December 21, 2006 11:20 WSPC/117-ijseke 00304

4 A. Herrmann, B. Paech & D. Plaza

At the beginning of this section, we mentioned publications which describe pro-1

cesses and methods that cover more than one of our activities. The rest of this

section discusses alternative methods for single activities of the process. The crite-3

rion for choosing a method was that its input fits the output of former activities

and its output to the following activities; the order of the activities depended on5

where these inputs and outputs are produced and needed. The relationships among

the activities are presented in Sec. 5. Here, alternatives from the literature are7

discussed.

2.1. Requirements review and detection of requirements9

contradictions

The criteria for a requirements review are defined by the Standard IEEE Std. 830-11

1998 [22].

Many authors advise that we concentrate on the core requirements only.13

Among them are Ruhe, Eberlein and Pfahl [23], who call them “mandatory re-

quirements”.15

Zave and Jackson [24], treating consistency checking among different specifi-

cations, write: “We believe that the most practical consistency checking must be17

formulated at the same conceptual level as the specification languages used, and

that algorithms for consistency checking will be specialized for particular languages19

and styles of decomposition.” This reflects our own experience: For the detection

of requirements inconsistencies and contradictions we could not use the de-21

tailed rules proposed for conflict detection by van Lamsweerde et al. [25]. They

are only applicable to the formal and goal-oriented KAOS notation which they23

were designed for. Robinson, Pawlowski and Volkov [3] name the following methods

for detection of requirements dependencies: classification-based, patterns-based, AI25

planning, scenario analysis, formal methods, runtime monitoring. We chose a clas-

sification based approach to detect conflicts by bundling requirements (also called27

separation of concerns or viewpoints [26–28]) and looking for the inconsistency types

defined by van Lamsweerde et al. [25] and Grünbacher et al. [29], being generally29

more applicable to different forms of requirements. Clustering requirements for doc-

umenting dependencies is common practice, as reported by Dahlstedt and Persson31

[30] from an industry survey: “the requirements were clustered, usually with re-

spect to which requirement that should be implemented together” (comparable to33

our “feature bundle”, see Sec. 5). Based on a literature survey, the same authors

[30] identify two main types of requirements interdependencies: structural depen-35

dencies (requires, explains, similar to, conflicts with, influences), and cost/value

interdependencies (i.e. one requirement increases or decreases the value or cost of37

another requirement). These dependencies are considered in our work in different

steps: by requirements bundles, conflicts and cost and benefit estimations based on39

a reference system.

1st Reading
December 21, 2006 11:20 WSPC/117-ijseke 00304

ICRAD: Solution of Requirements Conflicts and Architectural Design 5

2.2. Solution of requirements conflicts within requirements space1

If inconsistent and contradicting requirements (definition in Sec. 4) are exclusive,

then a clear decision has to be taken. In other cases, we refer to the conflict3

(“divergence”) resolution strategies for partially conflicting requirements defined

by van Lamsweerde et al. [25]. To solve requirements inconsistencies we can also5

refer to Robinson et al. [3] who name six strategies: relaxation (generalization or

value-range extension), refinement specialization, compromise, restructuring (al-7

tering assumptions, reinforcement of a precondition to be satisfied, replanning),

postponement, abandonment. These cover those defined by van Lamsweerde et al.9

[25]. As for solving conflicts among stakeholders and their inconsistent goals and

requirements, the WinWin method is state of the art [29, 31, 32], and there are fur-11

ther works based on WinWin [33, 34]. Robinson et al. [3] propose the prioritization

of decisions during the solution of requirements conflicts.13

The idea of characterizing conflicts by their degree of conflict stems from Yen

and Tiao [35]. They give a mathematical definition for this degree, but we prefer15

to simply estimate them.

2.3. Identification of logical components17

Logical components bundle requirements according to architectural criteria, thus

reducing the complexity of the requirements and also preparing the architectural19

design.

To identify logical components, the CBSP (Component-Bus-System and21

Properties) approach of Egyed and Gruenbacher [11, 36] could be used for clas-

sifying requirements according to the six CBSP dimensions. However, the method23

turned out to be highly recursive: Before attributing a requirement to a (logical)

component, the logical components must be known. The CBSP output in its total-25

ity is not needed for the following steps of our process, and CBSP led to the same

logical components as our approach.27

2.4. Architectural design

As we said in the introduction, we did not want to compare architecture design29

methods, i.e. to discuss which parts an architectural design must have and in which

order they must be derived. Our process can be combined with any design method.31

We based our work on Bruegge and Dutoit [4] which is consistent with the 4+1 view

model of software architecture of Kruchten [37] (see their comparison in Sec. 5).33

Mapping between requirements space and solution space: To do so, one can

use a matrix [38] (our choice), graphical presentation [39, 40], or a special notation35

[41].

Evaluation of an architectural design: Alternatively to criteria benefit, cost,37

risk and complexity, one can measure the satisfaction of goals [42], or the satisfaction

1st Reading
December 21, 2006 11:20 WSPC/117-ijseke 00304

6 A. Herrmann, B. Paech & D. Plaza

of high-level quality attributes like “performance” (see CBAM [43, 44]), or the1

weighted sum of how many scenarios are supported (see SAAM [45, 46]). However,

the authors do not discuss their criteria for prioritization of these quality attributes3

and scenarios in detail.

The detection/prediction of requirements conflicts (feasibility con-5

flicts) in a technical solution demands architectural experience. Often observed

conflicts of non-functional requirements, i.e. experience like “security and compu-7

tational efficiency, often conflict”, is gathered by Egyed and Gruenbacher [47, 48],

and also by Sutcliffe and Minocha [49].9

The trade-off between alternatives in general and their documentation has

been treated by a variety of researchers in the field of rationale. An overview over11

IBIS, PHI (Procedural Hierarchy of Issues), QOC (Questions, Options and Crite-

ria), and DRL (Decision Representation Language) is given by Dutoit et al. [50].13

Decisions can also be supported and documented by softgoal graphs [51, 52]. These

methods allow arbitrary decision criteria. But as we managed to restrict the set15

of decision criteria on the benefit and (different types of) cost of requirements, we

prefer our own documentation of negotiations in the template which is shown by17

Table 3. It allows a more comparable documentation.

Requirements conflict with other requirements, but also with project constraints19

like budget. The budget trade-off is a special case which can be treated in many

ways. Ruhe, Eberlein and Pfahl [23] do so by maximizing the system value re-21

specting the constraints of fixed effort, duration and quality by stepwise relaxation.

(Remark: For them, technical feasibility is no criterion and cost is expected to be23

constant for each requirement, therefore architectural design needs not be consid-

ered explicitly.) The SQUARE project maximizes system value at a fixed project25

budget [53].

Review of Design and Identification of New Architectural Alternatives27

and Open Conflicts: Detailed questions for a design review can be found on page

281f of Bruegge and Dutoit [4].29

3. Form of the Input Requirements

We assume that before our process starts, a requirements elicitation has been per-31

formed. The resulting requirements contain functional, non-functional, and archi-

tectural requirements. In this paper, we describe the functional requirements in33

terms of business goals, actors, use cases, data managed by the system and services

(atomic and modular system functions). Non-functional requirements are usually35

associated with functional requirements (e.g. time-efficiency of a service). If they

are not, they should be factorized further (e.g. using MOQARE, see below). The37

architectural requirements describe desired architectural components and architec-

tural constraints. They are often derived by a misuse analysis or by using ar-39

chitectural patterns which translate high-level requirements into more detailed

requirements.41

1st Reading
December 21, 2006 11:20 WSPC/117-ijseke 00304

ICRAD: Solution of Requirements Conflicts and Architectural Design 7

In our own work, we use TORE [54] to elicit functional requirements and1

MOQARE (Misuse Oriented Quality Requirements Engineering) to elicit non-

functional requirements. Both also produce architectural requirements. MOQARE3

is a method for elicitation and documentation of requirements from vaguely de-

fined business and quality goals by a misuse analysis (similar to a risk analysis).5

This method is described in detail in a technical report [55] and less detailed in a

workshop publication [56].7

The MOQARE misuse analysis identifies business goals of the system and

business damages threatening them. Potential misuses causing these business dam-9

ages are identified as well as countermeasures which detect, prevent or mitigate the

misuses. Countermeasures can be all types of requirements. Although these princi-11

ples stem from the security domain, we could show [55] that they work equally well

for all types of non-functional requirements.13

To solve requirements conflicts, the requirements must be characterized by sev-

eral attributes such as their source, benefit and cost, complexity (cost) and risks. As15

not all requirements will be satisfied, we need a realization attribute with the pos-

sible values “totally/partly/impossible/postponed”. They will be explained during17

the process as they are defined.

Although our process is tailored to the TORE and MOQARE notation of re-19

quirements as input, we believe that it can also be adapted to other requirements

notations.21

4. Types of Requirements Conflicts

The requirements derived by the requirements elicitation are usually conflicting as23

long as their consistency has not been checked, especially when several stakeholders

are involved. Research about requirements conflicts rarely defines exactly what a25

conflict is, e.g. van Lamsweerde et al. [25] observed: “In fact, there is no common

agreement on what a conflict between requirements does really mean. The lack of27

precise definition is a frequent source of confusion.” We distinguish three main types

of requirements conflicts: requirements inconsistency, requirements contradiction,29

and feasibility conflict.

Requirements inconsistency: We define requirements to be inconsistent when31

their conflict can be detected within the requirements space and the solution of this

conflict does not signify a decision between solution alternatives. Such inconsisten-33

cies might be terminology problems. Several types of requirements inconsistencies

are identified by van Lamsweerde et al. [25], like inconsistency between different35

levels of description, if one real-world concept has different names or different struc-

tures in the requirements specification, or if one name in the requirements specifica-37

tion designates different real world concepts. Another classification of Grünbacher

et al. [29] names these types: unclear terms/statement or missing information, in-39

correct statement, unverifiable statement, ambiguous term. Such inconsistent re-

quirements are specified by different stakeholders [57] or arise due to requirements41

1st Reading
December 21, 2006 11:20 WSPC/117-ijseke 00304

8 A. Herrmann, B. Paech & D. Plaza

specification deficiencies. They can be detected by a requirements document review1

and can be solved within the requirements space, because their solution does not

depend on realization considerations. Their detection is supported by grouping the3

requirements according to the requirements concept(s) they refer to.

Requirements contradiction: Some requirements contradict each other, and the5

solution of this conflict signifies a decision between solution alternatives. Such a

contradiction usually means that two requirements refer to the same requirements7

concept (e.g. a use case, data group, service, or a concept of the architectural

requirements), but demand contradicting values of the same attribute (see also the9

definition of Egyed and Gruenbacher [47]). Example: “R1: Report X shall show

all patient address data” and “R2: Report X shall show only name and postal11

code” (requirements concept = report X, attribute = report content). Requirements

contradictions mostly need to be solved in the solution space, because the decision13

criteria cost and risk depend on the chosen solution and can only be estimated

here. But sometimes, cost and risk are not important. Typically this is the case15

for standard functionalities like reporting, because they are an essential part of the

system and different configurations usually do not differ too much in cost.17

Requirements contradictions — like the requirements inconsistencies — can also

be detected by a review of the requirements document and by grouping the require-19

ments according to the requirements concept(s) they refer to.

Feasibility conflict: Even requirements which do not conflict in the requirements21

space, may not be realizable in any of the available architectural solutions at the

same time or equally well. We define: “Two or more requirements have a feasibility23

conflict with each other when they cannot be realized all in the same architectural

design.” Feasibility conflicts can only be detected when analyzing architectural25

designs and they demand a decision between alternative solutions. In our case study,

such a feasibility conflict occurred among these requirements: “R4: users must be27

able to edit the items of some of the value lists”, “some value lists must not be

ordered alphabetically (R5)” and “R3: data which are entered via value lists have29

to be comparable” although the system offers the value lists in different languages

(R7). This conflict was caused by technical constraints of the software chosen.31

Not all conflicts mean that the two (or more) conflicting requirements cannot

be realized at the same time, i.e. exclude each other completely. Requirements can33

also conflict partially, if one of them can be satisfied partially. This is possible

especially with “imprecise requirements”, also called “softgoals” elsewhere, with35

cross-cutting requirements applying to many concepts, or when the conflict only

occurs in special cases. Yen and Tiao [35] define: “A requirement is imprecise if it37

can be satisfied to a degree.” Two imprecise requirements conflict when “an increase

in the satisfaction degree of one requirement decreases the satisfaction degree of the39

other.” This applies to contradictions and feasibility conflicts.

1st Reading
December 21, 2006 11:20 WSPC/117-ijseke 00304

ICRAD: Solution of Requirements Conflicts and Architectural Design 9

5. ICRAD: Steps, Activities and Methods1

Requirements negotiation and architectural design mean decision-making, like solv-

ing requirements conflicts and choosing that architectural design which satisfies the3

requirements best. In Sec. 2, we identified several requirements validation, negoti-

ation and architecture design activities, which we now group into seven steps. For5

each activity, one method was chosen. We set the following criteria for the choice

among alternative methods: The input and output must fit the other activities’7

input and output (i.e. level of detail, notation, etc.). We preferred the most general

and simplest method. If needed, it can be replaced by a more specific, more complex9

method. Our goal was an ensemble of simple, flexible and practicable methods with

clearly defined input and output.11

Inputs to the ICRAD process are requirements as described in Sec. 3. After

several iterations, we get a process output of improved, conflict-free, realizable13

requirements with a realistic estimation of their feasibility, benefit and cost, plus

the architectural design which was the basis for this estimation. This means that15

the requirements negotiation cannot be finished before the architecture is designed.

Before describing the steps in detail, we give a short overview:17

0 Requirements Specification: We specify the requirements with the meth-

ods TORE and MOQARE and get requirements in the form as described in Sec. 3.19

A first estimation of benefit or identification of mandatory requirements is also

necessary to identify the most important (core) requirements later on.21

A Requirements Review and Negotiation in the Requirements Space:

Here, dependencies among requirements are detected and documented in the form23

of requirements bundles (feature bundles, concept bundles). These bundles help

to identify requirements inconsistencies and contradictions. Requirements incon-25

sistencies are solved in this step. Some requirements contradictions are solved as

well.27

B Identification of Logical Components: The identification of logical com-

ponents (another bundling) helps to reduce the complexity of the requirements.29

C Design of and Identification of Architectural Alternatives: Here a

draft of the high-level architecture is designed. Doing so, open architectural de-31

cisions and alternatives are identified. Requirements contradictions also lead to

alternatives.33

D Negotiation in the Solution Space: Architectural alternatives are nego-

tiated on the basis of the benefit of the requirements they realize, also considering35

benefit, cost, complexity and risks of alternatives. Feasibility conflicts are detected

here. Finally, the architectural decisions are taken.37

E Review of Design and Identification of New Architectural Alter-

natives and Open Conflicts: Here, we check whether the architectural decisions39

taken in step D solved the requirements contradictions and feasibility conflicts, or

1st Reading
December 21, 2006 11:20 WSPC/117-ijseke 00304

10 A. Herrmann, B. Paech & D. Plaza

whether they created new ones. These requirements conflicts then lead to new open1

architectural decisions. As long as requirements conflicts are open, the process is

repeated from step A.3

Z Low-level Design: On the basis of the high-level design, which now realizes

conflict-free requirements, the low-level design are designed.5

The concepts involved in ICRAD are:

a. requirements b. core requirements
c. feature bundles d. requirements concept bundles
e. requirements inconsistencies f. requirements contradictions
g. logical components h. complexity of requirements
i. architectural decisions and alternatives j. architectural bundles
k. feasibility conflicts l. benefit, cost and risk of requirements
m. high-level design n. requirements realization + project scope
o. low-level design

Table 1 summarizes the seven steps and which concepts are put in (i) or put7

out (o) or changed (c) by which step. For instance, the review of the requirements

document (A) does not produce the requirements (a), but it will probably change9

them by solving requirements inconsistencies.

Table 1. Relationships between steps and concepts.

a b c d e f g h i j k l m n o
0 o
A c o o o o o
B i i o o
C i i i i o
D c i i i i o o o o
E i i o o o i c o
Z i o

Now we describe the full process without step 0 and Z.11

A Requirements Review and Negotiation in the Requirements

Space13

This step includes the review of the requirements, identification of core require-

ments, bundling of requirements according to user view (feature bundle) and15

according to which requirements concept they refer to (concept bundle), detec-

tion of requirements inconsistencies and contradictions, and finally solution of17

inconsistencies.

For the review of the requirements document, we propose general inspec-19

tion methods [58] and the criteria defined by the Standard IEEE Std. 830-1998

1st Reading
December 21, 2006 11:20 WSPC/117-ijseke 00304

ICRAD: Solution of Requirements Conflicts and Architectural Design 11

[22]: correct, unambiguous, complete, consistent, verifiable, ranked for importance1

and/or stability, modifiable, traceable. For each requirement, the source is required,

i.e. the stakeholder who defined it or other sources (like document analysis, misuse3

analysis).

The requirements are bundled according to two criteria:5

Feature bundles: From the user point of view, one requirement might make no

sense to be realized without another. For instance, the management of a certain7

type of data makes no sense when they are not reported on. The feature bundle

groups together such requirements which from the user point of view only make9

sense when being realized together.

Requirements concept bundles: Requirements are grouped according to the11

requirements concept which they refer to, like a use case or a data group.

To illustrate this method, we assume a simple system with three requirements:13

I, II and III, where I has the highest benefit for the system. Requirements I and II

form a feature bundle, and II and III belong to the same requirements concept.15

Identification of core requirements: When the system is very complex and

is described by many requirements, it makes sense to concentrate on the so-called17

core requirements during the first iteration(s) of the process. The core requirements

are identified by asking the stakeholders, which feature bundles or requirements19

are mandatory. As feature bundles are requirements which must be implemented

together, the core requirements must contain whole feature bundles, even if the21

stakeholders name single requirements. In our example, the mandatory requirement

is I, but as it forms a feature bundle with II, the core requirements are I & II.23

We detect requirements inconsistencies and contradictions by looking

at the requirements concept bundles. We check for the inconsistency types listed in25

Sec. 4 and whether these requirements demand inconsistent/contradicting values of

the same attribute in the same concept. We characterize a conflict by its estimated27

degree of conflict (total/partially, or in percent).

Solution of requirements inconsistencies and contradictions: Requirements29

inconsistencies can be solved within the requirements space, as they are caused by

a mere problem of wording. Requirements contradictions are also solved in the31

requirements space, if cost and risk are no decision criteria or can be expected

to be approximately equal to the alternative solutions. These conflicts have to be33

solved by the stakeholders who have originated the inconsistency or contradiction

and who are documented as the requirements’ sources.35

B Identification of Logical Components

If the system is complex and may not be realizable at the given cost, in the first37

iteration, only the core requirements are analyzed here and in steps C and D.

This step identifies logical components, which belong to the requirements space.39

Logical components are bundles of dependent data and services (and requirements

1st Reading
December 21, 2006 11:20 WSPC/117-ijseke 00304

12 A. Herrmann, B. Paech & D. Plaza

which refer to them), which serve as a first draft of later architectural components,1

but are defined independently of any realizable solution. The first step to identify

logical components is grouping data and services together to form data groups and3

service groups. Data groups can be identified on the basis of an entity-relationship

diagram of the data managed by the system: Data which belong to the same data5

group have a 1-1-relationship. Service groups can be defined as a group of services

which manipulate or use one data group. Then, starting with the concept bun-7

dles referring to data and services, all requirements are attributed to the logical

components (data groups or services groups) which they refer to. The mapping of9

requirements to logical components is done in a matrix (for an example see Table 4).

Later on, it will help to identify dependencies among requirements. In our example,11

we assume that three logical components are identified (X, Y, Z): I belongs to X

and Y, II to X and Z, and III to Z.13

C Design of and Identification of Architectural Alternatives

This step maps the logical components to architectural components, and identifies15

architectural decisions and alternatives. Their negotiation follows in step D.

By depicting the dependencies among the logical components in a Design Struc-17

ture Matrix (DSM) [59], logical components can be grouped together to high-level

architectural components. A DSM (Design Structure Matrix) is a quadratic ma-19

trix in which all non-zero matrix elements denote a dependency. Different types

of dependencies can be supported. The matrix reads (see example in Table 2)21

like this: “Component Y depends on component X via a dependency of type 1”.

Dependency types can, for instance, describe whether one component needs data23

from the other (e.g., dependency of a service group of a data group) or call each

other (e.g., dependencies among services).25

Table 2. Example DSM for logical components.

Component X Component Y Component Z

Component X —

Component Y 1 — 2

Component Z 2 —

The goal is to identify groups of logical components which have high cohesion

(i.e., many dependencies) within the group, but low coupling with the other groups27

(i.e., few dependencies among requirements which belong to different groups). Of-

ten, blocks are visible in the matrix or can be created by varying the order of the29

lines and rows. In Table 2, you can see that Y depends on Z and vice versa. Iden-

tifying such blocks of mutually dependent logical components helps to group them31

into architectural components. Here, Y and Z form architectural component y, and

X is mapped to x.33

1st Reading
December 21, 2006 11:20 WSPC/117-ijseke 00304

ICRAD: Solution of Requirements Conflicts and Architectural Design 13

In this step, the high-level architecture is (probably only partly) designed1

top-down. Each time when different choices are possible during the design, this is

noted as an architectural decision which is defined by two or more alternatives (i.e.3

alternative architectural solutions). Here, in step C, they are identified, in step D the

alternatives will be compared and the decisions made. Alternatives do not necessar-5

ily describe the architectural realization of the whole system, but usually describe

alternative choices like “use Oracle” or “use FileMaker”. Furthermore, require-7

ments contradictions are considered in this step and can define further architectural

decisions.9

We use the high-level design concepts according to Bruegge and Dutoit [4].

Their modeling is consistent with the 4 + 1 view model of software architecture of11

Kruchten [37]. In the following we set the names according to Bruegge and Dutoit

[4] in bold, and add the names according to the 4 + 1 view in brackets and italic.13

(Remark: Scenarios and the development view of the 4 + 1 view are described by

the requirements.) The design of the high-level architecture is done top-down in the15

following order:

The identification of architectural components (also called “subsystem17

decomposition” [4]) is supported by the DSM as described above. Here, architec-

tural styles are chosen such as: layer (e.g. OSI model), repository architectural style,19

model/view/controller, client/server, peer-to-peer, three-tier, four-tier, pipe and

filter (their advantages and disadvantages are discussed by Bruegge and Dutoit21

[4] on pages 238ff), see also Bengtsson et al. [15] and Bass, Clements, Kazman [60].

(logical view)23

Map architectural components to hardware/software resources and

also software to hardware.25

Which persistent data are stored on which component (choose also among

flat files, relational database, object-oriented dababase)? (physical view)27

Design the global data and control flow (process view). There are three

possible control flow mechanisms: procedure-driven control, event-driven control29

and threads. (Their advantages and disadvantages are discussed by Bruegge and

Dutoit [4] on pages 275–277.)31

During this top-down design of a system, many decisions have to be taken. High-

level decisions define which alternatives one will get on a lower level of design, e.g.33

the decision for either FileMaker or Oracle has far-reaching consequences. Therefore,

the goal of step C is not to identify all decisions at once, but to start with the35

identification of architectural components, and when all decisions on this level are

identified, to proceed to step D and make the decisions. Decisions on lower levels37

are identified during the following iterations of the process.

In our example, let us assume that when mapping architectural components to39

hardware, there are the following two alternatives: Alternative 1 supports architec-

tural components x and y with the same hardware, and in alternative 2 one own41

hardware device is chosen for each of the two architectural components.

1st Reading
December 21, 2006 11:20 WSPC/117-ijseke 00304

14 A. Herrmann, B. Paech & D. Plaza

D Negotiation in the Solution Space1

After having identified the architectural alternatives in step C, the following ac-

tivities are performed here: mapping of requirements to architectural components,3

prioritization of decisions, feasibility check, negotiation between architectural alter-

natives, requirements update.5

Architectural bundles: Requirements depend on each other when they are being

realized by the same architectural component. Therefore, in a matrix we map the7

requirements to those architectural components by which they are being realized,

as far as this is known by now. Often it is sufficient and more efficient to do this9

indirectly by mapping logical to architectural components. These mappings help

to identify the requirements which can be realized by an architectural design, but11

also to show the impact of architectural decisions on architectural components and

thereby on logical components and requirements. Dependencies between require-13

ments which are realized by the same architectural component become visible, not

forgetting that it supports traceability and change management between require-15

ments and design, during later phases of the system life cycle (not treated here).

In our example, architectural component x influences the logical component X17

and therefore the requirements I and II. Also, y influences Y and Z, and therefore

all three requirements. The decision between alternatives 1 and 2 defined in step19

C affects both architectural components and therefore all requirements. For larger

systems with more requirements, often not all requirements are being affected by a21

decision.

As some design decisions have a higher impact than others, and as the result23

of one negotiation will influence the alternatives available for other decisions, it is

essential to prioritize decisions, and to make the one with the highest impact25

first. For each decision, the affected architectural components are determined, and

these — via the architectural bundling — lead to the affected logical components27

and requirements. Other decisions affected are those which concern the same archi-

tectural component or logical component. The more elements a decision affects, or29

the more important these are, the higher the priority of the decision. In our exam-

ple, decisions concerning architectural component y should be made before those31

concerning x.

To document the prioritization of decisions and the order in which they have33

been made, the decisions can be sorted in a list in the order of their priority or — if

complexity demands it — presented hierarchically in a graph, as Bass et al. propose35

[61]: “At this point we have identified two useful graphs to help to understand why a

system is the way it is. The first is a causal graph that shows design as a sequence of37

decisions, with which we can trace the genealogy of a design decision. The second is

a structural graph which presents design as the structure of the software (the result39

of applying a decision), with which we can trace the genealogy of an architectural

element.” We suggest to do so for complex systems.41

1st Reading
December 21, 2006 11:20 WSPC/117-ijseke 00304

ICRAD: Solution of Requirements Conflicts and Architectural Design 15

Requirements contradictions have already been identified in step A (require-1

ments review) and in step C architectural decisions have been defined for solving

them. As decisions in the solution space usually affect more than one requirement or3

requirement conflict, we do not solve requirements conflicts in pairs in the solution

space, but in part from open architectural decisions and evaluate the alternatives5

according to all their consequences.

The following feasibility check and negotiation between alternatives will be done7

for one decision after the other, starting with the most important one. If a decision

has significantly changed the architectural design or requirements, then a design9

review (step E) should be inserted and a new iteration started.

Before describing the feasibility check, we have to make some remarks on the11

benefit and risk estimation. We estimate the benefit of a requirement on a relative

scale of 0 to 3 points. Any other scale is possible, also rating benefit in Function13

Points or a currency; however, the latter is more difficult. To negotiate architectural

alternatives, relative values are sufficient, but they should ideally be comparable to15

cost in order of magnitude. The benefit measures not only financial value, but also

reputation and customer or end-user trust.17

Assuming that total benefit, cost and risk of a system depend on all requirements

which are being realized by it, the additional benefit, risk and cost in realizing a19

further requirement depends on the fact of which requirements have already been

realized before. In a recent work [62], we discuss that benefit, cost and risk of a21

given requirement are no fixed requirement attributes, which can be estimated once

for all times, but must be estimated relatively to a reference system design, which is23

clearly defined by the requirements which are being realized by it. A requirement’s

benefit relative to a reference system is equal to the gain in system benefit, when this25

requirement is being realized additionally, and its cost the corresponding additional

cost. Benefit, cost and risk are not summable, i.e. the total benefit of a system is27

not equal to the sum of the individual requirements’ benefits.

The benefit is estimated top-down, starting with the business goals. We distin-29

guish three cases to estimate the benefit of single requirements:

• Some requirements were requested explicitly by the stakeholders, because they31

directly support the business goals. Their benefit is estimated by asking which

benefit — relative to these business goals — would be gained, if this requirement33

was being realized. This benefit is reduced by risks of misuses which threaten the

benefit of this requirement (risk estimation is described below).35

• Some requirements support other requirements (e.g., non-functional requirement

on use case or service or architectural constraints). Their benefit is estimated by37

asking: How much benefit does this non-functional requirement add to the use

case or service or architecture, if being realized? Its benefit is also reduced by39

risks. If a use case has benefit 2.0 with the performance demanded, but only 1.0

without, then the benefit of its performance requirement is 1.0.41

• Some requirements are countermeasures, i.e. they detect, prevent or mitigate a

1st Reading
December 21, 2006 11:20 WSPC/117-ijseke 00304

16 A. Herrmann, B. Paech & D. Plaza

misuse. We use risk estimations to estimate a countermeasure’s benefit. A misuse1

has causes and consequences. Using the MOQARE concepts, we say that the

causes of a misuse are a misuser A and maybe a vulnerability B. These might3

lead to the threat C (an action) to take place, and this eventually leads to damage

D, which means that the benefits of requirements or satisfaction of business goals5

are threatened. This loss of benefit is called l(D). The risk of a misuse is measured

by probability times damage (e.g., see ISO standard [63]). According to the rules7

of probability calculation, this makes:

risk = p(A ∩ B) · pA∩B(C) · pA∩B∩C(D) · l(D) (1)9

The conditional probability pA∩B(C) denotes the probability that threat C hap-

pens if both A and B are given. The estimations of the probabilities and the11

expected damage depend on whether countermeasures are supposed to be real-

ized in the reference system.13

The benefit of a countermeasure is equal to the misuse’s risk if the countermea-

sure prevents the misuse totally. Otherwise it is proportional to its effectiveness.15

If the countermeasure reduces the probability of the misuse by 30%, then the

benefit of the countermeasure is 30% of the misuse’s risk.17

The feasibility check evaluates which requirements can be realized by which al-

ternative, at which cost, complexity and risk. Here, only those requirements which19

are affected by this decision are analyzed, and for complex systems only the af-

fected core requirements. The reference system can be different for each decision,21

as it is modified by the decisions made before. For each architectural alternative,

the following values are estimated by an architecture specialist:23

• Realization of the requirements concerned by the alternative; values of this at-

tribute are: “totally/partly/impossible/postponed”.25

• Benefit of the alternative, which is not equal to the sum of the benefits of the

realized requirements, but depends on which requirements or feature bundles are27

being realized totally or partly or not at all. The benefit of the alternative is esti-

mated as the benefit added to the reference system by choosing this alternative,29

estimated on a scale of 0 to 3 points.

• The risk of an architectural alternative summarizes different types of misuses:31

— Misuses, provoked by risky requirements which are being realized by this

alternative or misuse, provoked by the architectural solution described by the33

alternative.

— Misuses, provoked by not realizing some requirements.35

Risks are calculated from probability and damage estimates as defined in Eq. (1).

The risk of an alternative is only measured by the sum of the risks of all these37

misuses, if they are independent. Dependent risks must be treated as one.

• Cost of implementation. It must be estimated in the same unit as the benefit. The39

alternative’s cost is the additional cost caused by implementing it additionally

1st Reading
December 21, 2006 11:20 WSPC/117-ijseke 00304

ICRAD: Solution of Requirements Conflicts and Architectural Design 17

to the reference system.1

• Complexity includes architectural and organizational complexity and will lead to

maintenance and other costs which add to the implementation cost. For being3

comparable to the other criteria, complexity must be transformed into complexity

cost. Complexity metrics usually predict maintenance cost and therefore a de-5

fined period of time is needed for this transformation, e.g. the expected lifetime

of the system or the planned time until breakeven. Usually, architectural analysis7

methods measure the complexity of an architectural design by the strength of

the coupling of its components, i.e. by stating how many requirements are sup-9

ported or influenced by one component and how many components are affected

by one requirement (see SAAM [45, 46] and SAAMCS [63]). The complexity of11

the integration of an IT system into its environment can also contribute to the

maintenance cost.13

• Feasibility conflicts of requirements (definition see Sec. 4). Conflicts are charac-

terized by their degree of conflict. Conflicting requirements can either be mutually15

exclusive (conflict degree 100%) or partially conflicting.

It is not easy to estimate these values on the basis of an architectural draft.17

Bosch and Molin [5] name four approaches to assess how well requirements are

being realized by an architecture: scenarios, simulation, mathematical modeling19

and experience-based reasoning. We leave it to the architecture specialist to choose

the right method for the feasibility check.21

The feasibility check is done for both (all) alternatives of the same decision. In

our example, alternative 1 has benefit B1, cost C1, complexity cost CC1 and total23

risk R1, Alternative 2 is described by benefit B2 (here higher than B1 assuming

requirement II is realized better), but cost C2 and complexity cost CC2 are higher25

because more hardware is needed and there is an additional interface between the

two hardware devices. This interface can also provoke additional risk, so finally risk27

R2 > R1. Now, how to decide? If the more expensive solution has a lower benefit,

then it is logical to choose the cheaper and better solution. However, very often,29

the alternative with the higher benefit is the more expensive one, as is the case in

this example.31

To negotiate architectural alternatives, means to evaluate the alternatives

with one or more decision criteria and then to choose the most favorable alternative.33

Yen and Tiao [35] describe a negotiation like this: “. . . we should explore a feasible

requirement [here: architectural design] that maximizes the overall degree of satis-35

faction.” Possible factors of such a satisfaction value are benefit, cost, complexity

and risks, which we determined by the feasibility check.37

To combine these factors, several derived values are calculated: the total benefit

and total cost of an alternative, its net value and benefit-cost-ratio. We also calcu-39

late these values for the difference between two alternatives, plus the ratio of the

benefit and cost differences We refer to formulae from the SQUARE project [53]41

and CBAM [43, 44].

1st Reading
December 21, 2006 11:20 WSPC/117-ijseke 00304

18 A. Herrmann, B. Paech & D. Plaza

Usually, one defines the total benefit of a system to be the sum of all benefits

of all realized requirements minus the risks (see Eq. (2)). The total cost must

include the complexity cost (see Eq. (3)).

Total benefit = Σ (benefit of realized requirements — risks) (2)

Total cost = Σ (cost of realized requirements + complexity cost) (3)

Here, we must remind ourselves that strictly speaking benefits, risks and cost must1

not be summed to calculate total benefit and total cost. However, it is an approxi-

mation frequently used, and as we have no equally simple formula to offer, we use3

it, keeping in mind that, when necessary, dependencies among requirements and

risks must be taken into account, e.g. by estimating the benefit of a whole feature5

bundle or treating dependent risks as one.

From total benefit and total cost we derive two further satisfaction criteria:7

• the net value of an alternative = total benefit minus total cost

• Benefit-cost-ratio = total benefit/total cost9

Both criteria have their advantages and disadvantages, and therefore we use them

both. Advantage of the net value: Additional risks reduce the benefit of an alterna-11

tive [43, 44, 53], but one also could say that they increase the expected cost. The

net value does not depend on whether risks are counted on one or the other side.13

In our example, alternative 2 represents requirement II better than alternative 1,

but also has additional risk ∆R = R2−R1 and additional cost ∆C = C2−C1. The15

net value of alternative 2 relative to alternative 1 is (∆B − ∆R) − ∆C, assuming

that risk reduces the total benefit. If we say that risk adds to the total cost, we17

get ∆B − (∆C + ∆R), i.e. the same value. The benefit-cost-ratio, though, leads to

different values: (∆B − ∆R)/∆C or ∆B/(∆C + ∆R).19

Advantage of the benefit-cost-ratio: We work with estimated values with an

arbitrary unit of measure. The orders of magnitude of cost and benefit can be21

different in scale, if 3 cost points do not correspond to 3 benefit points. This can be

neglected when comparing benefit-cost-ratios, as the relative error (expressed by a23

multiplication factor) is the same for the ratios of all alternatives.

To document the negotiation of two or more alternatives, we introduce25

the template which is shown in Table 3. The value [(B2−R2)− (B1−R1)]/[(CC2−

CC1) + (C2−C1)] in the table field on the lower right (= ratio of the total benefit27

and total cost differences) is independent of both of the effects discussed above. To

interpret this value, different cases have to be distinguished (we write ∆TB for the29

difference in total benefit, i.e. total benefit of alternative 2 minus total benefit of

alternative 1, and ∆TC for the difference between the total costs of the alternatives,31

so this value is written as ∆TB/∆TC):

• If ∆TB/∆TC < 0, a clear decision can be taken:33

— If ∆TB < 0 and ∆TC > 0, then the total benefit of alternative 1 is higher

and total cost below that of alternative 2, and alternative 1 is chosen.35

1st Reading
December 21, 2006 11:20 WSPC/117-ijseke 00304

ICRAD: Solution of Requirements Conflicts and Architectural Design 19

— If ∆TB > 0 and ∆TC < 0, then the opposite is true and alternative 2 is1

chosen.

• If ∆TB/∆TC > 0 because both ∆TB and ∆TC are positive3

— and the absolute value of ∆TB/∆TC > 1, then alternative 2 is chosen;

— and the absolute value of 0 < ∆TB/∆TC < 1, then the alternative with the5

higher benefit-cost-ratio is chosen.

• If ∆TB/∆TC > 0 because both ∆TB and ∆TC are negative7

— and the absolute value of ∆TB/∆TC > 1, then alternative 1 is chosen;

— and the absolute value of 0 < ∆TB/∆TC < 1, then the alternative with the9

higher benefit-cost-ratio is chosen.

These three criteria (net value, benefit-cost-ratio and ratio of the benefit and cost11

differences) do not always lead to the same decision. If they are in favor of different

decisions, it has to be decided which satisfaction criterion should be maximized and13

also it has to be checked which of the effects discussed above might have the stronger

falsifying influence on the result here. If for instance the order of magnitude of cost15

and benefit are very different and the net value of an alternative can be wrongly

negative, then the benefit-cost-ratio or ∆TB/∆TC should be the decision criterion.17

Another question which occurred with the use of this template is: If a require-

ment is not satisfied by alternative 1, does it then reduce the benefit directly or add19

to the risk? As we work with the total benefit, which is the difference between ben-

efit and risk, this decision makes no big difference, but it has to be made because21

otherwise one might count the same risk twice. Therefore we decide: When the

non-realization of a requirement means a direct and inevitable loss, it is subtracted23

from the benefit, but when this non-realization produces a risk (i.e. something that

might happen with a certain probability), then it counts on the risk side.25

Table 3. Template table used to compare alternatives.

Alternative 1 Alternative 2 Difference

Cost C1 C2 C2 − C1

Complexity cost CC1 CC2 CC2 − CC1

Risk R1 R2 R2 − R1

Benefit B1 B2 B2 − B1

Total benefit B1 − R1 B2 − R2 (B2 − R2) − (B1 − R1)

Total cost C1 + CC1 C2 + CC2 (CC2 − CC1) + (C2 − C1)

Net value (B1 − R1) (B2 − R2) (B2 − R2) − (C2 + CC2)

−(C1 + CC1) −(C2 + CC2) −(B1 − R1) + (C1 + CC1)

Total benefit/ (B1 − R1)/ (B2 − R2)/ [(B2 − R2) − (B1 − R1)]/

total cost (C1 + CC1) (C2 + CC2) [(CC2 − CC1) + (C2 − C1)]

1st Reading
December 21, 2006 11:20 WSPC/117-ijseke 00304

20 A. Herrmann, B. Paech & D. Plaza

In addition to this table, the alternatives and details of their cost and risk,1

benefit and complexity estimations must be documented in detail elsewhere, also

the architectural components and requirements affected (as has been done in the3

case study in Sec. 6). So later on, when the conditions or information have changed,

the rationale of the decision can be reproduced or questioned.5

Requirements update: The architectural decisions can lead to new require-

ments and risks, which now have to be included in the requirements documentation.7

If they only apply to one specific architectural alternative among several, they must

be marked accordingly. (We call such requirements, which only belong to one ar-9

chitectural alternative, induced requirements.) Those requirements, which refer to

an alternative which has been rejected, can now be discarded.11

E Review of Design and Identification of New Architectural

Alternatives and Open Conflicts13

A review of the design is performed by developers or designers who were not involved

in the design process. They check the following criteria on the design document: Is15

it correct, complete, consistent, realistic, readable? (More detailed questions can be

found on page 281f of Bruegge and Dutoit [4]). These criteria must also be fulfilled17

for the relationship between design and requirements: It must be possible to map

the design to the requirements. This means that for each architectural component,19

there is at least one requirement, and each requirement is addressed. This includes

the architectural requirements.21

Not only is the design document reviewed, but also the design itself is re-

evaluated: Have all four architecture levels, as defined in step C, been designed?23

Does it meet the business goals and core requirements? The requirements realization

attribute is reviewed which indicates whether a requirement will be satisfied “to-25

tally/partly/impossible/postponed”, and also the project scope is identified. Which

is the total cost of the designed architecture? Which requirements conflicts could27

be solved and which are still open?

During this review, new requirement conflicts and architectural alternatives can29

be detected, which lead to new architectural decisions, which might lead to an

improvement of the architectural design. Based on this review, it has to be decided31

whether a new iteration is necessary and the process then starts again with step A.

In our example, we might have decided in favor of alternative 2, which has33

higher risks. We can now define countermeasures against these risks, which are new

requirements. If these countermeasures are in conflict with another requirement, a35

new negotiation and decision among the system as designed so far or an alternative 3

(realization of the countermeasure and renouncement of the requirement conflicting37

with the countermeasure) will be necessary.

6. Case Study39

A case study was performed to illustrate the requirements validation, negotiation

and architectural design process by a realistic example. The “Uveitis Database”41

1st Reading
December 21, 2006 11:20 WSPC/117-ijseke 00304

ICRAD: Solution of Requirements Conflicts and Architectural Design 21

is used at the Interdisciplinary Uveitis Center Heidelberg. Ophthalmologists and1

internists work together to diagnose and treat the non-trivial causes of Uveitis, an

inflammatory eye disease. The Uveitis Database manages patient admission data3

(name, address, date of birth, insurance and insurance number), as well as their

examination results, diagnosis, medication and surgery data at different points of5

time, for the analysis of the therapy course and as a database for scientific studies.

The system uses the software FileMaker. It is in operative use and available in7

several languages.

This case study was performed by a specialist for the suggested negotiation9

process and the software engineer managing the Uveitis Database.

During this case study, we discussed three new requirements which are relevant11

for further enhancement of the system and which are suitable to demonstrate our

process and methods. The new requirements are:13

• R1: Use the web client of FileMaker instead of or additionally to the client soft-

ware.15

• R2: A card reader is to be used for automated input of admission data.

• R3: The data which are entered via value lists in different languages are to be17

comparable.

To provide a basis for this case study, first the existing system was analyzed, iden-19

tifying requirements bundles, logical and architectural components.

A Requirements Review and Negotiation in Requirements21

Space

As input for the requirements review we used the requirements resulting from an23

earlier case study on the Uveitis Database. A review of the requirements had already

been carried out to check their consistency.25

Bundling according to requirements concept: Use cases have been bundled

according to their actor and according to the data which are entered, managed27

or reported in each use case. Each use case could be assigned to exactly one of

the six actors, so this bundling leads to six disjoint bundles. Several use cases,29

though, manipulated more than one of the five identified data groups, so there are

five overlapping bundles. R2 is attributed to actor “reception” and to data group31

“admission data”. R1 and R3 refer to all actors, all data and all use cases.

Feature bundles, from the users’ point of view: Before the Uveitis Database33

was implemented, the whole process of patient examination at the Uveitis Cen-

ter was supported by paper templates or other systems (e.g. calendar, SAP ISH35

MED). As the paper documentation is still used in parallel to the database, the

use cases can be treated independently. If a use case is not implemented, it can37

still be supported by the actual system. There is only one exception: the reports.

If certain data are managed in the system, then a corresponding report also has to39

be provided. The feature bundles therefore consist of the use cases referring to each

1st Reading
December 21, 2006 11:20 WSPC/117-ijseke 00304

22 A. Herrmann, B. Paech & D. Plaza

type of data (patient admission, examination, and surgery) plus the correspond-1

ing report functionality plus all related requirements, e.g. non-functional. The card

reader requirement R2 belongs to the feature bundle referring to the management3

of patient admission data. R1 and R3 are cross-cutting requirements which concern

all features but do not need to be attributed to any feature bundle as they make5

sense independently of the others.

As the requirements of the existing system have been reviewed in an earlier7

case study, new inconsistencies and contradictions can only appear between

the former requirements and the new ones or among the new requirements. An9

inconsistency might arise when the same terminology is not used for the new re-

quirements as for the existing requirements, e.g. when the specification says that the11

card reader is used for automated input of “admission information” instead of “ad-

mission data”. Such an inconsistency would be identified by the above bundlings.13

Either when attributing R2 to the corresponding feature bundle or requirements

concept bundles or at the latest when looking at the bundles during review, the15

inconsistency would have been detected.

There is one requirements contradiction among R3 and an older requirement17

which is “R4: Users must be able to edit the items of some of the value lists”. If the

users edit their own value lists, then the comparability of data entered in different19

languages can probably no longer be guaranteed. Both requirements refer to the

data group “value lists” and therefore belong to the same requirements concept21

bundle. The conflict is partial. Its degree cannot be estimated in numbers here,

but needs more architectural knowledge which is not available in the requirements23

space.

B Identification of Logical Components25

For the Uveitis Database, eleven logical components — comprising five data

groups and six service groups — were identified from the requirements. Table 427

represents the mapping of some of the requirements (left column) to the logical

components by which they are realized or which they affect. To illustrate this, we29

include R4 and some more of the old requirements (on different level of granularity),

which have also been relevant in some of the negotiations in step D.31

As one can easily see from the table, the complexity of some requirements —

measured by the number of logical components concerned is very high (like “R9:33

authorization concept” or “R12: data integrity”), while others only apply to one or

few logical components (R2: card reader). As the list does not contain all require-35

ments, the complexity of the logical components (i.e. the number of requirements

they realize) cannot be determined based on Table 4.37

C Design and Identification of Architectural Alternatives

The identification of architectural components starts with grouping the logical com-39

ponents which were identified in step B. This had already been done during the

1st Reading
December 21, 2006 11:20 WSPC/117-ijseke 00304

ICRAD: Solution of Requirements Conflicts and Architectural Design 23

Table 4. Case study: mapping of requirements to logical components.
Table 4. Case study: mapping of requirements to logical components.

d.
 g

r.
 a

dm
is

si
on

da
ta

 g
ro

up
 e

xa
m

da
ta

 g
. s

ur
ge

ry

d.
gr

. v
al

ue
 li

st
s

d.
gr

. u
se

r
ad

m
in

s.
gr

. a
dm

is
si

on

se
rv

ic
e

gr
. e

xa
m

s.
gr

. s
ur

ge
ry

s.
gr

. i
nt

er
ni

st

s.
gr

. r
ep

or
ts

s.
gr

.u
se

r
ad

m
in

R1: Use the web client of
FileMaker instead of or
additional to the client
software.

 x x x x x x x

R2: A card reader has to
be used for automated
input of admission data.

x x

R3: Data which are
entered via value lists have
to be comparable.

 x

R4: Users must be able to
edit the items of some of
the value lists

 x x x x

R5: Some value lists have
to be ordered alphabeti-
cally, some must not.

 x

R6: use case “manage
admission data”

x x

R7: the user interfaces
have to be available in
German as as well in
English and in further
languages

x x x x x x

R8: user administration x x

R9: authorization concept x x x x x x x x x

R10: usability x x x x x x

R11: availability of user
interface

 x x x x x x

R12: data integrity x x x x x x x x x x

R13: logging of data
changes

x x x x

original design of the system, but we sketch it here to illustrate the principle.1

Table 5 shows the DSM for the logical components, i.e. their dependencies among

each other. A non-zero matrix element ij means that the logical component of row3

i depends on the logical component of column j. Dependency type 1 means that a

data group is relational dependent on another, type 2 means that a service group5

needs data from a data group, type 3 means that a service is called by another.

The DSM shows that there is a block of filled matrix elements which indicates7

that it makes sense to group the data (groups) into one architectural component

(here: database). It is clear from the DSM that the service groups depend on the9

data groups and not vice versa. In this case study, the two top-level architectural

components are a server and a client.11

1st Reading
December 21, 2006 11:20 WSPC/117-ijseke 00304

24 A. Herrmann, B. Paech & D. Plaza

Table 5. Case study: DSM for logical components.Table 5. Case study: DSM for logical components.

d
at

a
g

r.
ad

m
is

si
o

n

d
at

a
g

ro
u

p
e
x

am

d
at

a
g

r.
su

rg
er

y

d
.g

r.
v

al
u

e
li

st
s

d
.g

r.
u

se
r

ad
m

in

s.
g
r.

ad
m

is
si

o
n

S
er

v
ic

e
g
r.

ex
am

s.
g
r.

su
rg

er
y

s.
g
r.

in
te

rn
is

t

s.
g
r.

re
p

o
rt

s

s.
g
r.

u
se

r
a
d

m
in

d. gr. admission ---- 1 1

data gr. exam 1 ---- 1 1

d.gr. surgery 1 1 ---- 1 1

d.gr. value lists ----

d.gr. user admin ----

s.gr. admission 2 2 2 ----

s.gr. exam 2 2 2 3 ----

s.gr. surgery 2 2 2 3 ----

s.gr. internist 2 2 2 3 ----

s.gr. reports 2 2 2 2 2 ----

s.gr. user admin 2 ----

Design of High-Level Architecture and Identification of Architectural1

Alternatives: The realization of the three requirements R1 to R3 can lead to

changes in the architecture. The web client (R1) means to add further software, the3

card reader (R2) to add a further hardware device plus the corresponding software.

R3 and the requirements contradiction detected in step A question the architecture5

as it has been so far, especially the realization of the logical component “data group

value lists”.7

D Negotiation in the Solution Space

Figure 1 shows a decision tree of the design decisions previously made for the Uveitis9

Database. The decisions were made top-down, and we present the final decisions on

the very left branch. Left of the tree we name the corresponding step in the archi-11

tectural design. The choice of FileMaker also meant that a relational database with

procedure-driven control has been chosen, so there was no architectural decision to13

be made on this level. On a lower level, we can say that the logical components

describe architectural components, i.e. the data groups describe database tables15

and the service groups parts of the application.

The new architectural decisions to be made with reference to the requirements17

R1–R3 (see last paragraph of step C) are now prioritized and ordered according to

their impact on architectural and logical components respectively. For each decision,19

we name the alternatives and — in brackets — the architectural respectively logical

components which are affected:21

(1) Realization of value lists: either as lists which are editable by normal users

(which lead to non-comparable entries) or defined fixed value lists including23

translations in separate tables (which are comparable but editable only by

1st Reading
December 21, 2006 11:20 WSPC/117-ijseke 00304

ICRAD: Solution of Requirements Conflicts and Architectural Design 25

Fig. 1. Case study: Decision tree.

administrators) (see Table 4: affects data group “value lists”, three service1

groups and requirements R3, R4 and R5, the other data groups only indirectly

(see Table 5)).3

(2) Introduction of card reader or not (see Table 4: affects requirement R2 and con-

sequently data group “admission” and service group “admission” and indirectly5

(see Table 5) two more data groups and four service groups).

(3) Access via web interface or via client software or both (affects all service groups,7

but only data group “value lists”).

These decisions are independent of each other, i.e. the choice of one or the other9

alternative does not affect the cost, benefit or risks of the other decisions. Therefore,

a similar reference system can be used for all three of them. This reference system is11

the existing system, using no card reader, giving access by client software exclusively

and realizing value lists as lists which are editable by normal users.13

One feasibility conflict which we found was the conflict between requirement R3

and R5. When in decision (1) we choose the second alternative, all value lists will15

be ordered alphabetically automatically. As R5 states that some (actually 7%) of

the value lists must not be ordered alphabetically, the conflict degree is 7%.17

As an example, we would like to present the details of the negotiation of the

decision (3): FileMaker allows an access via web interface or via client software19

or both in parallel, but the alternative presently used is the client software. Cost,

risks, complexity cost and benefits are estimated in an arbitrary unit within the21

range of 0 to 3 points. The period of time chosen to estimate time-dependent

values like maintenance cost is one year. Decision (3) affects requirement R1 and all23

requirements which depend on any service (see Table 4), but it makes a difference

in terms of realization, cost, risk and benefit for only some requirements. When25

estimating these values for the alternatives, they are not evaluated for the whole

system, but only those requirements are considered, where the decision makes a27

difference. It is assumed that the client software is already in use.

Feasibility check: Using the client software for accessing the database is more29

1st Reading
December 21, 2006 11:20 WSPC/117-ijseke 00304

26 A. Herrmann, B. Paech & D. Plaza

Table 6. Negotiation between the access via client software, web interface and the use of both

in parallel.

Alternative 1: Alternative 2: Alternative 3: Difference between

Client software Web interface Both alternatives 2–1

Cost 1.0 0.5 1.7 −0.5

Complexity cost 0 0 0.5 0

Risk 0.15 0.6635 0.8418 0.5135

Benefit 3.0 3.0 3.0 0

Total benefit 2.85 2.3365 2.1582 −0.5135

Total cost 1.0 0.5 2.2 −0.5

Net value 1.85 1.8365 −0.0418 −0.0135

Total benefit/ 2.85 4.6750 0.9810 1.027
total cost

secure and user-friendly and is the alternative realized so far, but the requirement1

“R11: availability of user interface” is better realized when we use the web interface

access. Table 6 summarizes the benefits, costs, and risks, as well as the net value3

and benefit-cost-ratio of the alternatives of

(1) access via client software,5

(2) via web interface (via intranet; via internet also would have been possible, but

will not be discussed here), that7

(3) both are offered in parallel, and the difference between the first two.

The costs of the alternatives 1 and 2 consist of the following factors: The installation9

costs are assumed to be 1 for the client software (e.g. licence costs), but only 0.1

for the web interface, as a web browser is supposed to be installed on almost all11

personal computers. Here, only patches are necessary. The use of the web interface

would demand an adaptation of the user interfaces, which so far are optimized for13

the client software access, at the cost of 0.4. For instance, the web interface (in

FileMaker Pro version 7.0) supports no pop-up windows. We do not consider the15

costs for the maintenance of the user interfaces here (we count them on another

budget), except for alternative 3 where both access alternatives are supported in17

parallel, because here the maintenance effort it raised, let us say by the cost of 0.3.

Alternative 3 also demands the adaptation of the user interfaces (cost = 0.4) plus19

an installation cost of 1.0.

The following risks were originally identified and estimated by MOQARE in the21

earlier case study, but updated now, based on the current architectural knowledge:

• Alternative 1 (client software) enhances the risk that data are not being entered23

due to lack of availability of the system at a work place. We rate the severity of

this loss of data at 3.0 and estimate the probability that this happens with 5%,25

i.e. this risk is rated at 0.15.

1st Reading
December 21, 2006 11:20 WSPC/117-ijseke 00304

ICRAD: Solution of Requirements Conflicts and Architectural Design 27

• Alternative 2 (web access) introduces security risks and security measures. As1

the access is planned via intranet (which is supposed to be secure), and not via

internet, the additional security risk of unauthorized use due to the introduction3

of the web access is estimated to be 0.01 due to the low probability of security

incidents.5

• Even after the adaptation of the interfaces to the browser, some functions cannot

be offered via web interface. This is the choice of multiple values within a value7

list. The severity of the benefit loss by missing data is rated at 1.5. This risk

affects one-fifth of all data fields at most. If we estimate that half of these data9

will be entered at another work place later, this risk is assessed by the risk

1.5× 0.2 × 0.5 = 0.15.11

• The web interface is visually less attractive and slower, but we consider this to

be only a visual problem which has a risk of 0.0035.13

• On the web interface, after the input of data, it is necessary to press an additional

“enter” button to save, what the users need not do when using the client software.15

This means that data can be lost, especially in the first phase after the change.

We rate this risk at 0.5.17

• When using both systems (alternative 3), the difference in the usage of both

interfaces can lead to an additional usability problem which we rate to be 0.5.19

As for the other risks observed for the web interface, we add the security risk

of 0.01, but consider the usability and other risks only to be half their values,21

because the users can choose among the two interfaces (=0.3318), what leads to

a risk sum of 0.8418.23

In terms of maintainability, alternatives 1 and 2 are approximately equal but for

alternative 3 of both clients we estimate additional complexity costs of 0.5. We25

estimate the benefit of alternatives 1 and 3 to be 3.0, but also for the web interface

alone (alternative 2), although multiple choice is not fully possible for one-fifth of27

the data fields. However, this was already included in the risk estimation.

The decision here is not evident, as the client software (1) has the higher net29

value, but the lower benefit-cost-ratio than the web interface alternative; (2) The

ratio of the benefit and cost differences is 1.027. It is positive because both differ-31

ences are negative, and its value is > 1. This means a decision for alternative 1.

Using both in parallel combines maximum cost with high risk and therefore has33

the lowest net value as well as the lowest benefit-cost-ratio. Alternative 3 is not

favorable.35

A compromise could be to offer the web interface only to a few very experi-

enced users who work on changing work places (alternative 2a, not presented in37

Table 6). This makes sense because usability problems contribute a major part to

the risks, and they will be less with experienced users. On the other hand, users39

with changing work places will introduce costs for installing the client on each of

these computers. A re-evaluation of the web interface for such users leads to a risk41

of 0.1635 (the “enter button risk” was considered to be zero). The result is more

1st Reading
December 21, 2006 11:20 WSPC/117-ijseke 00304

28 A. Herrmann, B. Paech & D. Plaza

favorable for alternative 2a than for 2: The net value of 2.3365 lies above that of the1

client software, and the benefit-cost-ratio is as high as 5.6730. The ratio between

differences in benefit and differences in cost (field on the lower right of the table)3

is now 0.027 instead of 1.027 before, i.e. a decision for alternative 2a.

The final choice was alternative 2a: to use the client software per default and5

to introduce the web interface for some experienced users.

Detailed negotiations concerning decisions 1 and 2 were performed but are not7

described here in detail, only summarized.

Decision 1: Two alternatives concerning the realization of the multi-lingual value9

lists were compared. The new proposal leads to high benefits and risk reductions

which were even strong enough to justify the high costs of realizing all value lists11

anew.

Decision 2: Use a card reader for automated input of admission data from the13

insurance card or not? The card reader itself did not add much value to the system,

but when it was combined with an automated search of whether this patient is15

already contained in the system (alternative 3), this solution showed a high value, as

the creation of doublets had shown to be an important risk which causes significant17

loss of data integrity and costs for data cleansing.

Requirements update: As it was decided to allow an additional access via web19

interface and intranet for some users, this changes the requirements on the user

interface as well as the requirements on user training. As these new requirements21

only apply if a web interface is offered, they must be linked to the alternative

accordingly. This allows the deletion of these additional requirements if later on23

new decisions lead to giving up the web interface.

E Review of Design and Identification of New Architectural25

Alternatives and Open Conflicts

There have been several changes to the system architecture (new card reader, allow27

web interface for some users, different realization of the multi-lingual value lists),

and therefore the consistency of the requirements must be checked anew. This29

demands a further iteration.

7. Conclusion31

The goal of this work was to integrate the activities of the solution of requirements

conflicts and of architectural design. A clear distinction was made between the33

requirements space and the solution space, and it was important to consider de-

pendencies among requirements, especially the dependency between architectural35

design and requirements negotiation: Most requirements conflicts can only be solved

in the solution space. Therefore, the process of requirements negotiation must also37

consider architectural design aspects. Based on this idea, ICRAD (Integrated Con-

flict Resolution and Architectural Design) was developed. The ICRAD process can39

1st Reading
December 21, 2006 11:20 WSPC/117-ijseke 00304

ICRAD: Solution of Requirements Conflicts and Architectural Design 29

be used for the development of a new system from scratch as well as for the en-1

hancement of an existing system (like in our case study).

In this work, three main types of requirements conflicts are considered, as well3

as nine types of dependencies among requirements and between the requirements

space and the solution space. The conflict types are requirements inconsistencies,5

requirements contradictions and feasibility conflicts. We considered the following

dependencies:7

• Among requirements when one requirement refines or realizes another. (These

are detected during the requirements elicitation in TORE [54] and MOQARE9

[56].)

• Among requirements which refer to the same requirements concept (requirements11

concept bundles), as they are potentially inconsistent or contradicting.

• Among requirements which from the users’ point of view depend on each other,13

i.e. only make sense when being implemented together (feature bundles). They

must be considered when solving requirements conflicts.15

• Among requirements which refer to the same data groups or service groups (log-

ical components) in the requirements space.17

• Among requirements which are realized by the same architectural component

(architectural bundles). Then we know which requirements will be affected by a19

decision.

• Between architectural decisions and requirements: The restrictions of architec-21

tural alternatives/designs lead to restrictions in requirements and to requirements

changes, e.g. when countermeasures against a misuse are not practicable, alter-23

native countermeasures for the same misuse can be considered.

• Between requirements and chosen architectural alternatives (induced require-25

ments), i.e. the bundling of some requirements which are valid for one archi-

tectural alternative only. For instance, some architectural designs introduce risks27

and therefore should only be used under constraints. This leads to new, more de-

tailed requirements which only apply to a specific architectural alternative, e.g.29

the configuration of an architectural component or interface.

• Between chosen architectural design and negotiation of requirements conflicts:31

Decision criteria like costs and complexity of a requirement depend on its real-

ization. Therefore, most conflicts cannot be solved in the requirements space, but33

only on the basis of at least an architectural draft.

• Among architectural decisions: Decisions are prioritized according to their impact35

(e.g. on other decisions), and the most important is treated first.

The process of requirements negotiation and architectural design was split into37

activities according to the methods chosen. The bundling and grouping of require-

ments reduces complexity and leads to an easier handling of the requirements during39

the process.

A negotiation template was developed which supports and documents the ne-41

gotiation among architectural alternatives in the solution space. This template well

1st Reading
December 21, 2006 11:20 WSPC/117-ijseke 00304

30 A. Herrmann, B. Paech & D. Plaza

allows the comparison of different alternatives in terms of cost, complexity, benefit1

and risk and gives an overview of the reasons for the decisions. The method helps

to compare different decision criteria, e.g. when high benefit of an alternative is3

combined with high complexity, high cost, but lower risk than another alternative

and therefore the decision would not be evident. It was important to document not5

only the total benefits and costs of an alternative but also their factors, so when dis-

cussing the result, the rationale of the negotiation is still visible, can be questioned7

and corrected if necessary. Furthermore, it can help to improve solutions.

In our case study, three negotiations were performed. Many parameters played9

an important role for the estimations, like the number and type of users, the time

which is assumed to be the break-even time of the system (for comparing one-time11

development cost to constant maintenance cost), the stability of the requirements.

Where such parameters were not known, the negotiation was performed twice,13

testing different values. Sometimes, the two alternatives had a significant influence

on the feasibility of other requirements which referred to the same logical system15

component. Such dependencies had been identified and documented in a new nego-

tiation. The high number of assumptions influencing such an estimation supports17

our assumption that cost and benefit are not fixed attributes of requirements but

must be estimated based on a reference system. Furthermore, clear definitions are19

necessary.

Our idea of solving requirements contradictions and feasibility conflicts by mak-21

ing architectural decisions was successful in our case study.

8. Future Work23

More sophisticated case studies will have to be performed, especially those starting

from scratch, so we can show whether the early phases of a real project can be25

supported well by the ICRAD process.

There still remains a risk when comparing benefit to cost. They may systemat-27

ically be of a different scale. We use both the net value and the benefit-cost-ratio

for the negotiation of alternatives. The ratio of the benefit and cost differences29

between these alternatives served as a good criterion to test which alternative is

more favorable. The latter two criteria partly compensate for the scale effect. In31

our future work, we want have a closer look on how to scale the cost and benefit

(order of magnitude).33

Further steps can be included into ICRAD like the trade-off of project scope with

budget constraints, the estimation of the total project cost, the price negotiation35

and the decision whether the project is being realized. We are currently investigating

these process extensions.37

Acknowledgments

The authors want to thank Prof. M. Becker of the Interdisciplinary Uveitis Center39

Heidelberg for his friendly support.

1st Reading
December 21, 2006 11:20 WSPC/117-ijseke 00304

ICRAD: Solution of Requirements Conflicts and Architectural Design 31

References1

1. E. R. Poort and P. H. N. de With, Resolving requirement conflicts through non-
functional decomposition, in Proc. 4th Workshop Conf. on Software Architecture3

(WICSA) (2004), pp. 145–154.
2. I. Sommerville, Software Engineering, 6th ed. (Pearson Education, 2001).5

3. W. N. Robinson, S. D. Pawlowski, and V. Volkov, Requirements interaction
management, ACM Computing Surveys 35(2) (2003) 132–190.7

4. B. Bruegge and A. H. Dutoit, Object-Oriented Software Engineering — Using UML,
Patterns, and Java (Prentice Hall, NJ, 2004).9

5. J. Bosch and P. Molin, Software architecture design: Evaluation and transformation, in
Proc. Conf. and Workshop on Engineering of Computer-Based Systems ECBS (1999),11

pp. 4–10.
6. A. van Lamsweerde, From system goals to software architecture, in Formal Methods13

for Software Architectures, eds. M. Bernardo and P. Inverardi (Springer-Verlag, 2003),
pp. 25–43.15

7. R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, and S. J. Carriere,
The Architecture Tradeoff Analysis Method, Technical Report CMU/SEI-98-TR-00817

(Software Engineering Institute, Carnegie Mellon University, 1998).
8. N. S. Rosa, G. R. R. Justo, and P. R. F. Cunha, A framework for building non-19

functional software architecture, in Proc. ACM Symposium on Applied Computing
(2001), pp. 141–147.21

9. M. Brandozzi and D. E. Perry, From goal-oriented requirements to architectural pre-
scriptions: The preskriptor process, in Proc. From Software Requirements to Archi-23

tectures Workshop STRAW (2003), pp. 107–113.
10. B. A. Nuseibeh, Weaving together requirements and architectures, IEEE Computer25

34(3) (2001) 115–117.
11. A. Egyed, P. Grünbacher, and N. Medvidovic, Refinement and evolution issues in27

bridging requirements and architecture — The CBSP approach, in Proc. From Soft-
ware Requirements to Architectures Workshop STRAW (2001).29

12. L. Xu, H. Ziv, D. Richardson, and T. A. Alspaugh, An architectural pattern for
non-functional dependability requirements, in Proc. 4th Workshop on Architecting31

Dependable Systems (WADS) (2005), pp. 1–6.
13. F. Losavio, Quality models to design software architecture, J. Object Technology 1(4)33

(2002) 165–178.
14. J. J. Pauli and D. Xu, Threat-driven architectural design of secure information35

systems, in Proc. 7th Int. Conf. on Enterprise Information Systems (2005), pp. 136–
143.37

15. P. Bengtsson, N. Lassing, J. Bosch, and H. van Vliet, Analyzing Software Archi-
tectures for Modifiability, Working paper, submitted for publication 2000,39

http://citeseer.ist.psu.edu/bengtsson00analyzing.html.
16. L. Dobrica and E. Niemela, A survey on software architecture analysis methods,41

Trans. Software Eng. 28(7) (2002) 638–653.
17. R. Kazman, L. Bass, G. Abowd, and M. Webb, SAAM: A method for analyzing the43

properties of software architectures, in Proc. 16th Int. Conf. Software Engineering
(1994), pp. 81–90.45

18. B. Tekinerdogan, ASAAM: Aspectual software architecture analysis method, in Proc.
4th Working Conf. on Software Architecture (WICSA) (2004), pp. 5–13.47

19. R. Kazman, M. Klein, and P. Clements, ATAM: Method for Architecture Evaluation,
Technical Report CMU/SEI-2000-TR-004 (Software Engineering Institute, Carnegie49

1st Reading
December 21, 2006 11:20 WSPC/117-ijseke 00304

32 A. Herrmann, B. Paech & D. Plaza

Mellon University, 2000).1

20. M. Barbacci, R. Ellison, A. Lattanze, J. Stafford, C. Weinstock, and W. Wood, Quality
Attribute Workshops, 3rd ed., CMU/SEI-2002-TR-019, ADA405790 (Software Engi-3

neering Institute, Carnegie Mellon University, Pittsburgh, 2002).
21. F. Losavio, L. Chirinos, N. Lévy, and A. Ramdane-Cherif, Quality characteristics for5

software architecture, J. Object Technology 2(2) (2003) 133–150.
22. IEEE, Std. 830-1998: IEEE Recommended Practice for Software Requirements7

Specification (1998).
23. G. Ruhe, A. Eberlein, and D. Pfahl, Trade-off analysis for requirements selection, Int.9

J. Software Eng. and Knowledge Eng. 13(4) (2003) 345–366.
24. P. Zave and M. Jackson, Conjunction as composition, Trans. on Software Eng. and11

Methodology 2(4) (1993) 379–411.
25. A. van Lamsweerde, R. Darimont, and E. Letier, Managing conflicts in goal-driven13

requirements engineering, Trans. in Software Eng. 24(11) 908–926.
26. B. Nuseibeh, J. Kramer, and A. Finkelstein, A framework for expressing the rela-15

tionships between multiple views in requirements specification, Trans. Software Eng.
20(10) (1994) 760–773.17

27. P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton, N degrees of separation: Multi-
dimensional separation of concerns, in Proc. Int. Conf. on Software Eng. (1999), 107–19

119.
28. P. Gruenbacher, A. Egyed, and N. Medvidovic, Dimensions of concerns in re-21

quirements negotiation and architecture modeling, in Proc. Int. Conf. on Software
Engineering ICSE (2000), http://www.research.ibm.com/hyperspace/workshops/23

icse2000/papers-index.htm (last visited: April 2006).
29. P. Grünbacher, M. Halling, S. Biffl, H. Kitapci, and B. W. Boehm, Repeatable quality25

assurance techniques for requirements negotiations, in Proc. 36th Int. Conf. on System
Sciences (2003), pp. 9–17.27

30. Å. G. Dahlstedt and A. Persson, Requirements interdependencies — Moulding the
state of research into a research agenda, in Proc. REFSQ — Workshop on Require-29

ments Engineering for Software Quality (2003), pp. 71–80.
31. B. W. Boehm, P. Bose, E. Horowitz, and M. J. Lee, Software requirements negotiation31

and renegotiation aids: A theory-W based spiral approach, in Proc. 17th Int. Conf.
on Software Engineering ICSE (1995), pp. 243–253.33

32. J. Park, D. Port, B. Boehm, and H. In, Supporting distributed collaborative prioritiza-
tion for WinWin requirements capture and negotiations, in Proc. Int. 3rd World Mul-35

ticonf. on Systemics, Cybernetics and Informatics (SCI ’99), Vol. 2 (1999), pp. 578–
584.37

33. H. In and S. Roy, Visualization issues for software requirements negotiation, Computer
Software and Applications Conference COMPSAC 2001 (2001), pp. 10–15.39

34. H. In, D. Olson, and T. Rodgers, A requirements negotiation model based on multi-
criteria analysis, in Proc. 5th Int. Symp. on Requirements Engineering (2001), pp. 312–41

313.
35. J. Yen and W. A. Tiao, A systematic tradeoff analysis for conflicting imprecise43

requirements, in Proc. 3rd IEEE Int. Symp. on Requirements Engineering (RE ’97)
(1997), pp. 87–97.45

36. P. Grünbacher, A. Egyed, and N. Medvidovic, Reconciling software requirements and
architectures: The CBSP approach, in Proc. 5th Int. Symposium on RE (2001), p. 202.47

37. P. Kruchten, The 4 + 1 view model of software architecture, IEEE Software 12(6)
(1995) 42–50.49

1st Reading
December 21, 2006 11:20 WSPC/117-ijseke 00304

ICRAD: Solution of Requirements Conflicts and Architectural Design 33

38. J. Bosch, On the design of system family architectures, in Proc. ICT-Architecture’991

(1999), http://www.serc.nl/lac/LAC-2001/lac-1999/docs/jan bosch.pdf.
39. R. J. A. Buhr, Use case maps as architectural entities for complex systems, Trans.3

Software Eng. 24(12) (1998) 1131–1155.
40. L. Xu, H. Ziv, D. Richardson, and Z. Liu, Towards modeling non-functional5

requirements in software architecture, in Proc. Aspect-Oriented Requirements
Engineering and Architecture Design Workshop (Early Aspects 2005) (2005)7

http://trese.cs.utwente.nl/early-aspects-AOSD2005/workshop papers.htm.
41. X. Franch and P. Botella, Putting non-functional requirements into software9

architecture, in Proc. 9th Int. Workshop on Software Specification and Design (1998),
pp. 60–67.11

42. F. Gross and E. Yu, Evolving system architecture to meet changing business goals:
An agent and goal-oriented approach, in Proc. From Software Requirements to13

Architectures Workshop STRAW (2001).
43. R. Kazman, J. Asundi, and M. Klein, Quantifying the cost and benefits of architec-15

tural decisions, in Proc. Int. Conf. Software Engineering (2001), pp. 297–306.
44. H. In, R. Kazman, and D. Olson, From requirements negotiation to software archi-17

tectural decisions, in Proc. From Software Requirements to Architectures Workshop
STRAW (2001).19

45. P. Clements, L. Bass, R. Kazman, and G. Abowd, Predicting software quality by
architectural-level evaluation, in Proc. 5th Int. Conf. on Software Quality (1995).21

46. R. Kazman, G. Abowd, L. Bass, and P. Clements, Scenario-based analysis of software
architecture, IEEE Software 13(6) (1996) 47–55.23

47. A. Egyed and P. Grünbacher, Identifying requirements conflicts and cooperation: How
quality attributes and automated traceability can help, IEEE Software 12(6) (2004)25

50–58.
48. A. Egyed, A scenario-driven approach to trace dependency analysis, Trans. Software27

Eng. 29(2) (2003) 116–132.
49. A. Sutcliffe and S. Minocha, Scenario-based analysis of non-functional requirements,29

in Proc. REFSQ — Workshop on Requirements Engineering for Software Quality
(1998), pp. 219–234.31

50. A. H. Dutoit, R. McCall, I. Mistŕık, and B. Paech (eds.), Rationale Management in
Software Engineering (Springer, Berlin, 2006).33

51. L. Chung, D. Gross, and E. Yu, Architectural design to meet stakeholder requirements,
in Proc. 1st Working Conf. on Software Architecture WICSA (1999), pp. 545–564.35

52. L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, Non-Functional Requirements in
Software Engineering (Kluwer Academic Publishers, 2000).37

53. N. Xie, N. R. Mead, P. Chen, M. Dean, L. Lopez, D. Ojoko-Adams, and
H. Osman, SQUARE Project: Cost/Benefit Analysis Framework for Information Se-39

curity Improvement Projects in Small Companies, Technical Note CMU/SEI-2004-
TN-045 (Software Engineering Institute, Carnegie Mellon University, 2004).41

54. B. Paech and K. Kohler, Task-driven requirements in object-oriented development,
in Perspectives on Requirements Engineering, eds. J. Leite and J. Doorn (Kluwer43

Academic Publishers, 2003).
55. A. Herrmann and B. Paech, Software Quality by Misuse Analysis, Techni-45

cal Report SWEHD-TR-2005-01 (University of Heidelberg, 2005) http://www-
swe.informatik.uni-heidelberg.de/research/publications/reports.htm.47

56. A. Herrmann and B. Paech, Quality misuse, in Proc. REFSQ — Workshop on
Requirements Engineering for Software Quality (2005), pp. 193–199.49

1st Reading
December 21, 2006 11:20 WSPC/117-ijseke 00304

34 A. Herrmann, B. Paech & D. Plaza

57. S. Easterbrook and B. Nuseibeh, Using viewpoints for inconsistency management,1

Softw. Eng. J. 11(1) (1996) 31–43.
58. O. Laitenberger and J.-M. DeBaud, An encompassing life-cycle centric survey of soft-3

ware inspection, J. Systems and Software 30(1) (2000) 5–31.
59. T. R. Browning, Applying the design structure matrix to system decomposition and5

integration problems: A review and new directions, Trans. Eng. Man. 48(3) (2001)
292–306.7

60. L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice (Addison-
Wesley Longman, Reading, 1998).9

61. L. Bass, P. Clements, R. L. Nord, and J. Stafford, Capturing and using rationale
for a software architecture, in Rationale Management in Software Engineering, eds.11

A. H. Dutoit, R. McCall, I. Mistŕık, and B. Paech (Springer, Berlin, 2006).
62. A. Herrmann and B. Paech, Benefit estimation of requirements based on a utility13

function, in Proc. REFSQ — Workshop on Requirements Engineering for Software
Quality (2006).15

63. International Standards Organization, ISO: Risk management — Vocabulary —
Guidelines for use in standards, ISO Guide 73 (International Standards Organiza-17

tion, Geneva, 2002).
64. N. Lassing, D. Rijsenbrij, and H. van Vliet, On software architecture analysis of19

flexibility, complexity of changes: Size isn’t everything, in Proc. Second Nordic Soft-
ware Architecture Workshop (NOSA ’99) (1999), pp. 1103–1581.21

