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Abstract. In this paper we describe a new approach for asing the reliabil-
ity of ubiquitous software systems. This is achteby executing tests at run-
time. The individual software components are consatly accompanied by
executable tests. We augment this well-known boilest (BIT) paradigm by
combining it with resource-awareness. Starting ftbenconstraints for such re-
source-aware tests (RATS) we derive their design destribe a number of
strategies for executing such tests under resamastraints as well as the nec-
essary middleware. Our approach is especially lgakfo ubiquitous software
systems due to their dynamic nature — which prevanstatic verification of
their reliability — and their inherent resourceitiations.

1 Introduction

In Pervasive and Ubiquitous Computing, human uaegsconfronted with a high
number of computing devices and services. The egganadigm shift from personal
to ubiquitous computing empowers people to acceasynservices anywhere and
anytime. Many researchers sketched scenarios ichwhodern computer users bene-
fit from such a federated infrastructure [29] wheegious devices and services can
build ad-hoc ensembles and self-organize in omerdvide added value.

However, it is not possible anymore for a humarr tséest each component and
verify that all ensemble players interact in theidal way. Let us consider for in-
stance a scenario where a user carries a shopgsigiaant on a PDA that may interact
with his refrigerator and its content as well aghvthe shelves in a store in order to
advise the user which goods to buy and to comperetices. But when connecting
to the supermarket services, the user cannot ke that they actually provide the
services the PDA software expects. The providehefdomponents in the supermar-
ket might (deliberately or not) advice the userbtoy too many or too expensive
goods.

Future UbiComp scenarios consist of an arbitrarmiper of users, devices, and
services of unknown origin and implementation. Frarsoftware engineering point
of view these services are realized as composafti@age components [25] and each
of these components contributes to the overallkesydiehavior. However, thamer-
gent ensemble of system components (software and hagjlveannot always be



planned in advance — let alone be subjected tdtibadl integration testing. There-
fore, the question of how to make sure that intérgccomponents actually fit to-
gether correctly at run-time becomes a crucial tmedor the whole paradigm. In
particular, syntactic and meta-description of conmgis and services are not suffi-
cient to verify what a component actually does. €fae, run-time testing is a neces-
sary requisite for stable and trusted interactimetsveen UbiComp components. Such
tests need to be domérun-time since components can connect at any time and may
not be known before. However, such run-time testag be very resource-intense. In
particular, when each component may test any atherponent at any time, the load
on some devices can become high potentially rengéhie system unusable. There-
fore, new methods are necessary for designing resaware run-time tests (RATS)
for UbiComp systems which are often deployed oreiahtly resource-restricted
devices.

So far, systematic testing has been studied simglyslittle from a ubiquitous
computing viewpoint. In the software engineeringnoaunity there is a huge body of
literature [2] covering all aspects from unit tdeigration, systems, acceptance, reli-
ability, and usability testing. While the ubiquisbaomputing community has a clear
focus on acceptance testing and user evaluatiahestiil5], [19] our work can be
thought of as an integration testing approach tmuitous software systems. We
view this run-time integration testing approactulbquitous systems construction as
a contribution to systems support [11]. Morla aral/igs [20] present a test and simu-
lation environment for location-based services (LB$3tems which covers some
testing aspects but based on simulating locati@hremworks from a systems testing
rather than from an integration testing point afwi While the Speakeasy approach
[9] supports run-timantegration of components or services with limited a priori
knowledge it does not include notions of run-tiresting or test-based reliability.

Although not the focus of this paper the work damehe component software
field is generally important to our approach. Whieyperski's seminal work [25]
gives a comprehensive overview Gao et al. focusesting component-based soft-
ware [12]. Our approach to include tests with congris and to execute these tests
at run-time is not in itself new. Such built-in te¢BITs) have been proposed by
Wang [28] and further developed by, e.g. Gross Hit] Vincent et al. [26]. Histori-
cally, this approach has focused on componentsaimdard enterprise systems with
fairly stable topologies. Recent overviews of comgt testing approaches can be
found in [1] and [23] covering built-in tests andlile component testing, respec-
tively.

Much work has also been done in the area of reseam@re and resource-
adapting services and systems [4], [18], [21]. Thagproaches, however, do not
include testing. We adopt some of the conceptsiofj[@t al., who describe a re-
source-aware agent infrastructure [6], and adaggethconcepts for resource-aware
testing, in particular, the separation of base tionality (a.k.a. business logic) and
resource-dependent behavior. This resource-depemhddatvior is often a domain-
specific one (e.g. fidelity adaptation in multi-nedpplications) [7], [27] or more
generally, a QoS related one [22]. In our work plossibility to adapt testing behav-
ior to the given resource situation is studied eysttically for the first time. Indeed,
the specific contribution of our work lies in thewel application of resource-



awareness to run-time tests. In this paper we ptakis approach from a ubiquitous
computing perspective.

This paper describes the MORABIT approach: a conegfitamework for com-
ponents enhanced with resource-aware built-inngstapabilities as well as the de-
sign of the middleware necessary for such compenditie remainder of this paper is
as follows: In section 2 we describe constraint$ saguirements for the application
of resource-aware built-in tests in ubiquitous catimy scenarios. While the general
conceptual infrastructure necessary to organize randsuch tests is described in
section 3, section 4 provides a more detailed g®imon of our version of BIT tests.
Section 5 describes specific approaches to theuérecof these tests at run-time,
namely strategies for resource-aware executionexample application is described
in section 6 before we conclude and discuss sorssilplities for future work.

2 Constraintsfor Resource-Awar e Built-in Testing in UbiComp

In the application scenarios we have in mind fés thork any two software com-
ponents may find each other and initiate some act@&n. They can syntactically
verify that they are — in principle — of a desitgde, but they cannot look inside of
each other to validate the implementation. Morenfly, A needs to verify that A
and B share a common interpretation of the undeglgontract of B's provided inter-
face. Thus a component A that wants to use compdemeeds to verify that com-
ponent B fulfills some tests in order to minimizeetrisk that B fails in some way
necessary for A’s usage of it. An example coulctabheemail component on a user’s
PDA (component A) that wants to connect to a seceenponent offering email de-
livery (component B) on the premises where the a®tunally walks around on a
business trip. Through some lookup services, thepoment A finds service B but
since some servers may not send correct error ges$a deliver mails in a corrupt
format, tests are necessary in order to find oaAtsfunderstanding of what B should
do matches to B’s service. Of course, A needs itmylits own test cases for compo-
nents of type B since another client A* of B midifaive other needs and may be less
(or more) tolerant against B’s implementation. TAusust have some built-in tests
for connectivity with B. The need for different teshay not only depend on different
clients that come with their own needs. Even theeseli@nt-server combination may
come with different tests in different contextstdf instance our mailing components
A and B are used in a high-security application dimmthe tests may look differently
than when they are deployed in a leisure environmBmerefore, tests must be de-
scribed in a way such that both the componentstiadests can be reused in other
contexts. Additionally, testing B should not prewvether users from using B. Thus,
the execution of tests needs to be adapted toutient load of the system and avail-
able resources. Since the results of the tests@@®r, the reaction to the outcome of
the tests must be flexible and various reactioatestjies should be possible. In our
case, A might decide to use B without concern, migctide to use B only for un-
critical mails or search for another server B*this case, A would test B on connec-
tion time. But during usage of B, B might changeliehavior and a more ‘paranoid’
component A* might want to execute tests on B naften.



From this discussion we can see that for desigaifrgmework of resource-aware
built-in tests, we need to
— have a mechanism for describing built-in tests,
— have flexible test strategies for scheduling tests,
- define mechanisms for resource-aware test exegw@iah
— provide appropriate mechanisms for reactions toréssilts.

In the following, we present a framework that suppall four constraints. More-
over, we want to allow for a high level of flexiiy and component reusability and
thus want to separate all testing concerns fronliggion logic. In many ways we
follow the philosophy of resource-aware agents (RA¥here basic agents imple-
ment the core application functionality and corléns supervise resources and adapt
the agents’ core behavior to the available resauigle

3 Infrastructure

Every component system needs a run-time infrastreicithis can be an agent sys-
tem or some component middleware. We are open fotipie such infrastructures
and our conceptual approach can be used togetlleressentially any component
middleware or agent system. In our generic demdementation, we use a custom
Java system that focuses on the novel aspectsr @pmuoach. In general, our frame-
work and its respective infrastructure could besgnated into many existing plat-
forms and thus allow all existing software compdaesr agents to migrate to a sys-
tem that is enhanced with capabilities for resowaware built-in testing. These exist-
ing components could then stay as they were ohbmdelves enhanced with re-
source-aware test aspects (see Fig. 2). Thereferayamt to separate the implemen-
tation of the components’ application logic andteiting and resource concerns as
much as possible. This way, a scenario could bebitdthby both legacy components
and MORABIT components. Moreover, programmers @fliaption components are
able to focus on their components and developetsstd can add their tests including
test reaction strategies independently. Thus,pbisible to deploy the same compo-
nents together with various different tests inatiéint application scenarios. A data-
base component, for instance, might have diffetest requirements in a hospital
application than in a tourist application.

In the following we will sketch the overall desigih the MORABIT middleware
and describe its core components to provide anvarof the services provided to
MORABIT components (see Fig. 1). Basic servicesuidel component instantiation
and management including a service locator facilityich allows components to
lookup other components (servers) offering servioegheir required interfaces. A
resource-aware infrastructure must keep track efctirrent state of the relevant re-
sources. This is achieved by a set of resource orgnithich observe the respective
values for processor load, main memory, batteryrgghanetwork bandwidth, and
other relevant resources.

Test support services play a crucial role within M@®RABIT infrastructure. First
of all, there is a test handler component whichizea the test concern on behalf of



every component. Technically, this can be realizgceimploying, e.g., Java’'s Dy-
namicProxy facility. In order to properly balandee ttest execution and the process-
ing of the ‘normal’ functionality, a component ressible for test scheduling is
needed. It employs the test execution strategissritbed in section 5 to provide an
appropriate trade-off between testing and coretfonality in an intelligent manner.
Furthermore, the test results are stored by theréssit logger component both for
inspection by a human administrator as well as terg@l source of test history
knowledge. Such a knowledge source can be explbyeshore advanced strategies
which might consider replacing actual test execulip a reliability estimate based on
past test execution results.
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Fig. 1. High-level architecture of the MORABIT run-time iaétructure

A high-level view of the conceptual architectuséliustrated in Fig. 1. In this dia-
gram we (logically) differentiate between the istracture and the application sub-
systems. While the former provides the infrastrietcomponents with the services
described above, the latter contains the actudicapipn components. We have im-
plemented a prototype of this infrastructure inaJg24].

4  Description of Built-In Tests

The ‘built-in test’ (BIT) approach implies that cooments ‘bring their tests
along’, or more formally, that there is an unamioigsi mapping from a given compo-
nent to its associated test cases. The term ‘utieést’ is not strictly correct in our
approach. While earlier work [8] physically inclutéhe test code in the component
code — either manually in the raw source code oii-seitomatically via some wrap-
per mechanism — we decided to use a looser assockEtween component and test
definitions. The hard-coded approach implies serfmablems for maintenance and



other problems associated with poor separatioron€erns. Our approach to merely
associate the test definitions logically with tremponent has all advantages of the
strict built-in approach but avoids its inherendwlbacks by allowing an independent
variation of component functionality and test difim, respectively. This flexibility

is not only relevant at development (or maintenatioge, but may also be exploited

at deployment or even run-time.

In order to understand the relationship betweerctie component and its associ-
ated test cases and metadata it can be helpfuktimglish between physical and
logical components. In this metaphor, the core aomept with the basic functionality
(a.k.a. the business logic) plays the role of thesgral component. The logical com-
ponent is comprised of the physical componenta#isociated test cases and addi-
tional meta-data concerning the execution of tls¢ ¢ases and the reaction of the
component to the outcome of the tests. This relgkignis illustrated in Fig. 2.

Logical Component Logical Component
Test Timing Policy Test Timing Policy

Fig. 2. Logical components consisting of the physical congnts and test metadata

The entities describing the test concern are modeléétail in the schema shown
in Fig. 3. The most comprehensive abstraction esarequest which in turn includes
other relevant concepts such as test suites, ahdibitest cases and other associated
meta-data. In the following we will discuss the stitments of such a test request
following the structure of this schema. An examgéeEument that conforms to the
given schema can be seen in Fig. 4. This examplerides a test request for a bank
component.

Every entity in this schema has the properties afri@’ and ‘description’, both in-
herited from the abstract base type ‘Describabiglt@his assures a uniform way of
organizing basic descriptive data about the estitiwolved. A test request contains
numerical thresholds with respect to some qualitiergon, e.g. a reliability value
(here: 0.8) together with a desired confidencell@éwere: 0.95). This reliability value
defines failure or success of a test request smahthe test request is considered
successful if and only if the reliability value cpuoted from the execution of the
contained test suite exceeds the specified ratiabihlue. Of course, the comparison
of such a numerical value is only valid if we catatmine a confidence level for the
measurement.
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Fig. 3. XML schema definition of a test request in a giephrepresentation
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The test request further contains a property ‘testTifinere: Lookup-time) which
specifies a logical test time or, more precisedst ttiming policy, that is, a well-
defined point in time during the execution of agram. These logical points during
the execution of a program are conceptually rel&tej@din points [16] known in as-
pect-oriented programming [17]. Logical test timpalicies include:

— Lookup-time: when a component first acquires a reference tmthan
component

— Call-time: when a client component calls a method of a seremponent

— Topology-change-time: when the topology of the component nodes
changes because a component leaves or joins therket

— Periodic-time: in a fixed time interval independent of functitityaexecu-
tion

— Randomttime: in a random time interval with respect to somaperal
distribution

— ldle-time: when there is a (local) minimum of the systerndloa

In many practical situations the Lookup-time andl<Bale timing policies are the
most important ones. While these two have genemgbitance in static as well as
dynamic scenarios the Topology-change-time is eafgdmportant in more dy-
namic scenarios such as those commonly found wapite and ubiquitous systems.
In particular, when more complex dependencies batwmmponents in a UbiComp
scenario exist, it is not granted that a test Heet passed (or failed) will pass again
some time later even when the testing and thedestmponents remain the same. A
simple example could be a dependency of the testeghonent on other components



that have been removed. Other examples could ievihle use of resources that indi-
rectly influence the behavior of a tested componargerver could, for instance, fail
to respond adequately with respect to some Qo#rieri(e.g., in time) to a response

due to a higher load in the overall system evenghat worked perfectly before.
<testRequest nane="Mobile Bank Component”
confidence="0.95"
reliabhility="0.8"
testTine="LookupTime"
testReaction="TryNextConponent >
<description=d test request for a server representing a bank</descriptiomn-
<restiuite name="Hank test suite”
typelnderTest="org.morabit.app.interfaces.bank.Bank -
<description-i test suite for a serwver of type bank</descriptions
Ltestlfase nane="Withdrawal test case”™
implementingClass="org.norabit. testcases. TithdrawvalTestCase™ >
<description-a test case for a withdrawal transaction</descriptiomns-
</testlasze>
<testlase name="Payment test case”
implementingClass="org.norabit. testcases. PaymentTestlase' >
<description-a test case for a payment transaction</descriptions
</testlasze>
</testiuites
</testRequests

Fig. 4. Example XML document describing a test requestafbank component with specified
reliability, confidence level, test timing and réan strategy, and two test cases

The test request also includes the specificatioa tést reaction strategy (here:
Try-next-component). These strategies specify praddfreactions to the failure of a
test request. Note that failure is defined onlyhwitspect to a given reliability crite-
rion as described in the last section. As suchti@ecto a failure are often generic in
nature it is desirable to be able to specify thedlatatively. This avoids error-prone
and repetitive manual implementation and resultmgpnsistencies and supports a
clean separation of concerns. Important test re@actirategies include:

— Use-anyway: in certain non-critical situations even a negatigst result
might be acceptable. A warning to the user or &ldly can be issued po-
tentially providing valuable data for debugging qmdblem analysis.

— Try-next-component: try to find another component offering the saree d
sired service but providing better test results.

— Use-best-component: a strategy related to the Try-next-component strat
egy. At a given fixed point in time it guarantebe best component with
respect to the given quality criterion. This guagans statistically associ-
ated with a higher test execution cost comparedth® Try-Next-
Component strategy.

- Shut-down: useful for critical tests; affects a shutdown of

o Either the currently executing thread
o Or the whole system/application (in cases wherg ftition is
well-defined)
These are examples for strategies which easily ndrtteerefore should be specified
declaratively at development or deployment timectSpredefined strategies can be



supported by the run-time system and as with tef itme setting, they may depend
on the actual deployment and context. Thereforenaponent can provide different
strategies. These test reaction strategies andrtéisy policies can be changed with-
out modifying (i.e. changing the source code armmgiling) the physical compo-
nent which implements the business logic as illistt in Fig. 2.

In some situations more powerful reaction strategieluding domain knowledge
or even run-time information might be useful. ledh cases it is necessary to provide
reaction behavior that is programmed in the compbrede and to export some
hooks for these custom reactions that can, in toenactivated by the test strategy.
This allows for a high degree of flexibility, whilet the outside, it is still visible
which reaction strategies are applied and all degiendent behavior can still be
changed later on depending on the particular nigetthe scenario.

A test request also contains a test suite whidtsédf a complex entity. The test
suite specifies a list of test cases and a typewuteast. Conceptually, this is the type
of the target component under test; technicallg thispecified by a Java interface
describing the service which is currently testecergvest case in the list contains the
definition of a test case in physical form, hehe fava class which provides the test
case behavior. By such a declarative specificaifaest definitions the test cases can
be loaded dynamically and instantiated (or evereg®ad if necessary) at run-time
which would not possible had the test cases beahdmied within the host compo-
nents.

5 Resource-Awareness and Test Execution

So far, we enriched the UbiComp paradigm with meangun-time testing and
components can incorporate additional tests aradegfies that help them to define
their interactions with other components dependindhe outcome of tests. This can
already be sufficient and beneficial for many scersa However, just adding tests
may sometimes even worsen the situation becaussofirce consumption and avail-
ability. If all components just go along and testtworking bandwidth might dra-
matically decrease or processor load might increask a system might even col-
lapse. Relevant resources include, for instancejpating power, network band-
width, or even battery charge of mobile devicess lbne of the key features of our
approach to adapt the testing process at run-tintieet resource situation of the com-
puting device. An important step in this directisrto treat the decision to execute a
test request explicitly. If this decision is modkkxplicitly as a strategy it is possible
to reason about its different dimensions. Theseidethe following:

— Approval or cancellation of the request

— Test start time (in a chronological sense, not tedused with logical
start times such as Lookup-time, or Call-time)

— Allocation of resources for tests in an explicégarce allocation scenario
or assignment of priorities, e.g. thread priorities

— Selection of a partial test suite



A number of basic strategies can be identifiednbany cases it might be possible
to combine multiple strategies to form a compositategy. Several such basic or
atomic strategies are described in the following.

The Constant Strategy is the simplest strategy possible and expliciigares the
resource situation. While it does not constitufg@gress compared to other run-time
testing approaches with respect to UbiComp apglitalit can serve as a baseline
for comparison with more advanced strategies.

The simplest strategy supporting resource-awaraadhs Threshold Srategy un-
der which tests are executed only if the resouvedability exceeds a certain thresh-
old for every individual resource. This strategy dsm parameterized by allowing
violations of the threshold condition by a certpgrcentage or for a number of re-
sources. If estimations or measurements of the’ testource consumption are avail-
able an additional threshold for maximum resoumesamption for single test cases
can be defined.

The Weighted-Resource Strategy allows treating resources non-uniformly. By as-
sociating different weights with resources it issgible to treat, e.g., memory in a
different manner than network bandwidth. This appt® situations where a compo-
nent knows that it will need a given resource (¢hg. network) rarely but will in
these rare situations use a large percentage oésoarce for a limited time or where
it needs a lot of memory for a prolonged periodimie but will access the network
rarely.

ThePriority Srategy provides a mechanism to privilege the ‘normal dtionality
of the deployed applications over the test exeautidnlike the Threshold Strategy
which also supports reserving resources this glyatan differentiate between load
generated by the core functionality and by te$teetessary, variable priorities can
be assigned to individual functional and test retgjgespectively.

The Meta-Data Aware Strategy interprets the additional meta-data of the test re
quest as hints for modifying the test request piyiatynamically. As detailed in sec-
tion 4, these additional meta-data include:

— (logical) test execution time (e.g. Call-time, Lopkiime, or Idle-time)

— test reaction strategy (e.g. Shut-down, Try-nextponent, or Use-

anyway)

Clearly, the specified test reaction informatiom ¢ used to reassign priorities or to
even cancel a test request altogether if the ressuare currently scarce depending
on the implicit importance of the test request aedufrom the test reaction. If addi-
tional domain and/or application-specific knowledae available then it might be
possible to derive test priorities from test timipglicies, e.g. decide automatically
whether a call-time or a lookup-time test is man@adrtant in a given scenario.

The Delay Strategy supports controlled postponement of tests duregpurce
shortages with global or individual (per test resfienaximum delay values. This
‘poor man’s optimization’ heuristically avoids Idaaaxima in the resource demand
of tests while avoiding complex and thus expenghaaning algorithms. While this
does not globally optimize the resource allocatiod test scheduling it can increase
the probability for proper system operation in maityations. Multiple waiting test
requests can be managed in a FIFO queue.



The Satistical Sgnificance Strategy computes a reliability measure for a given
component during the execution of a test suitel tim&i computed reliability can be
determined with statistical significance thus aisguthat the test execution itself uses
the given resources economically. For any giveialdity model [10] (based on test
execution results) confidence in the computed lvditg depends monotonically on
the number of test executions and thus on thetdffeested. The optimal number of
tests with respect to resource economization anfidence maximization is reached
when the calculation of the confidence reachessttatl significance. If information
on the expected cost of a test case is availablealien therder of test cases can be
changed to optimize the ratio between test exetutimst and contribution to the
confidence level.

The Custom Strategy allows explicit programmatic access to resourceasuee-
ments and to the test execution moving the cowfrthe test execution process from
the infrastructure to the component and thus tbgnammer. This approach increases
the flexibility and the set of possible strategi®s taking into account both static
domain as well as dynamic run-time knowledge. Disathges include that the pro-
grammer of such a strategy cannot easily be faiwedtually take the resource situa-
tion into account and that it becomes difficultetiaforce a uniform resource consid-
eration strategy across different components -asibefrom disparate sources.

The Full Planning Srategy treats the allocation of resources to tests ardeht
scheduling as a full planning problem [13]. Whileck a planning approach has the
theoretical benefit of providing the optimal alltica and scheduling results it is a
problematic approach in a UbiComp scenario withitéch hardware capabilities due
to the computational complexity and associated bmhputational cost.

These nine strategies have very different propeiiesnumber of respects. They
vary from basic resource aware strategies likeTtheeshold Strategy to more ad-
vanced strategies. The latter take the ‘real’ fuumality of the application into ac-
count, consider additional test meta-data, havatesscal foundation, or use Al tech-
nigues such as planning. The Custom Strategy repseaespecial case as the overall
control is moved away from the infrastructure te tlesponsibility of the program-
mer. The strategies introduced here vary greathoth their own resource consump-
tion as well as effective allocation of resourceshie test execution process. For the
framework of this paper, we want to show the pol#s for realizing such strate-
gies — from simple to complex. However, for praaticonsiderations, simulations
and further studies (theoretical and experimerdaat) necessary for comparing the
appropriateness of these strategies dependingpartiaular scenario.

It should be noted however, that in most realistttings, heuristics are needed
that work sufficiently well. In most UbiComp sceitar that are sufficiently complex,
many parameters will be unknown and replaced bynagts. Thus, on the one hand,
complex strategies like the full planning strategight lack enough knowledge. On
the other hand, simple strategies might be justigomugh.

Depending on the knowledge of the application donaaid the usage of resources,
one might also consider mixtures of strategies,, @ghreshold strategy for battery
power and a delay strategy for CPU load. Since epamated the test strategy from
the design of the tests and the implementatiom@fcomponents, all parameters and
settings for the test strategy can be designecbamttently of other implementation



and testing issues. The strategy can even be modifieun-time in case that some
shortages appear.

6 Implementation and Sample Application

We have implemented a prototypical version of adiediare supporting the de-
scribed concepts. Its light-weight component maatel some technical issues as well
as a test isolation mechanism are described elsevjp4]. While the current imple-
mentation still has limitations w.r.t. distributicand test execution strategies many
important properties of resource-aware test executan already be studied.

In order to evaluate and demonstrate the usefuloiesar approach we have de-
veloped an application scenario which involves nebsers and devices in changing
compositions. A prototypical version of this apption has been implemented in
Java and is currently run experimentally on theettgyed middleware.

Even in the times of ebay, classical auction hosseb as Sotheby’s or Christie’s
are still popular. Especially high-priced goodstaaeled there. People physically visit
these auctions to either sell items or to bid fifered items. Instead of placing bids
by raising the hand, the bidders could use thebilaaevices. The bid is entered into
the mobile phone or PDA and is then sent to théiaumer. The (ad-hoc) network of
connected mobile devices might change rapidly beeaew bidders can come into
the network and old bidders can leave the netwarkny case, in the end the highest
bidder wins. In order to get the won item, the leidbas to authorize the payment at
her bank to pay off the auction house. For this, dhction house is connected to a
bank service. This bank has to fulfill several dif@ services so that the auction
house can use it. To be sure that both the auctioseéhand the bank have the same
understanding of the services tests are executethdf details on the demo applica-
tion can be found in [3].

In this scenario the auction house component cbrifty along a test request for
its required server, i.e. the bank component. Aplfiad version of such a test re-
quest including two separate example test casegagment and withdrawal actions
is illustrated in Fig. 4 in section 4. This scenaaleo provides a wide field for ex-
perimentation with the different test executiorattgies discussed in section 5. For
instance, for tests executed on the PDAs resowgBetis test execution is more
important compared to tests running on the (padéntimore powerful) computer
which hosts the auction house component. Also, shumetional requests such as
payments are more critical and thus require higkéability than others such as
browsing of auction item images. So the tradeo#faveen test execution and basic
functionality as well as between performance afidbdity can be studied in relation
to test start times, test reactions, and test acstrategies.

This application scenario does not yet provide Bgsly measurable numbers of
increased reliability for a given performance legelincreased general performance
during run-time test execution. However, it seriegalidate the conceptual approach
and to uncover flaws in the design and implemeumttatif the run-time infrastructure.



7 Conclusion and Future Work

There has been a widespread initial enthusiasméany#ars following Weiser's
seminal paper [29] and many new application domairsh as location-based sys-
tems, wearable computing, intelligent homes, andiant intelligence have been
proposed in the ubiquitous and pervasive computioogpmunities. This ongoing
search for ‘killer applications’ has provided aosiy impetus for the development of
the UbiComp field as a whole and has furtheredsthdy of many important proper-
ties of ubiquitous computing systems. However,goent years it has become clear
that after the initial hype a more systematic apphoto the actual development and
deployment of ubiquitous computing applicationgaging importance. This trend is
documented by, e.g., several UbiSys workshops Whjle it is likely and appropri-
ate that the focus of UbiComp research will rem@minmore fundamental issues we
consider it important to acknowledge that more aeseis needed in the area of sys-
tematic support for the development of deployald&uitous computing software
systems. Here, software engineering inspired appesacan contribute to progress.
The dynamic formation of many ubiquitous computilygtems calls for improved
support especially in the area of integration antttime testing. In fact, Davies and
Gellersen [5] explicitly name integration issuesaasiajor challenge in the deploy-
ment of ubiquitous computing systems and emphakaaeed for reliability metrics
for deployed ubiquitous computing components. Capgp provides a first step in the
direction of increasing the run-time reliability abiquitous computing systems by
introducing systematic run-time testing even irregaesource situations. Thus, com-
bining the application of software engineering pihes from (run-time) testing and
component technologies with appropriate middlewsrpport can contribute to the
improvement of open and dynamic systems.

We have introduced the MORABIT approach to run-titesting in ubiquitous
software systems. This approach combines run-tistnteand resource-awareness
in a novel way. We have shown why such an appreachbe considered beneficial
in many current and future ubiquitous scenariomeig due to the inherent resource
limitations of typical UbiComp devices and the dgri@ nature of the network to-
pologies involved. The traditional approach to tbarfation of dynamic ubiquitous
computing systems relies mainly on syntactic (ammies semantic) description of the
services offered. This implies that chance and édémce still play a major role dur-
ing run-time. Our approach enhances run-time coitifigt by enabling run-time
tests and, in turn, flexible reactions to the emguest results. The typical resource-
constrained environments of ubiquitous computingteays call for a resource-aware
management of the testing process. To this end we peoposed and discussed a
number of test execution strategies for resourcar@test management. These strate-
gies are at the heart of the novel combination wf-time testing and resource-
awareness. After describing the constraints andimegents for built-in tests we
showed how such tests can be represented by apieopneta-data information.
These requirements led to the design of a conceptfralstructure which we de-
scribed in detail with special emphasis on a ctedt clean separation of testing and
business logic (i.e. ‘normal’ functionality) conosr While the described concepts are



useful independent of an implementation it is, hesve important to validate the
approach within a real implementation.

Future work includes the study of distribution-gfieéssues, namely the possibil-
ity to distribute the execution of test suites ilbad balancing manner. An important
part of our future work is a systematic empiricahleation of the effects achieved by
means of the resource-aware run-time testing apprdascribed herein. To this end
a number of metrics such as reliability measurdshaive to be defined in terms of
the number and kind of tests executed. We can theasure these metrics when
running carefully crafted sample applications ameirttests with different degrees of
resource-awareness and compare the numericalgesult

Although we have demonstrated the usefulness ofMBMRABIT approach in
ubiquitous systems — mainly based on structurah(véspect to dynamic topologies)
and device-related arguments — one important ctaistic of ubiquitous systems has
not yet been included: By considering an explioitext dependency in terms of the
(extra-device) situation and the user, the exenudfdests could be further improved.
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