

Copyright © ACM [2006]

This is the author's version of the work. It is posted here by permission of ACM for your
personal use. Not for redistribution. The definitive version was published in Proceedings of
the 2006 ACM SIGMOD international conference on Management of data, Chicago
(USA), June 26-29, pp. 739-741

 http://doi.acm.org/10.1145/1142473.1142572

Testing Database Applications

Carsten Binnig
University of Heidelberg

Germany
carsten.binnig@informatik.uni-

heidelberg.de

Donald Kossmann
ETH Zurich
Switzerland

kossmann@inf.ethz.ch

Eric Lo
ETH Zurich
Switzerland

ecllo@inf.ethz.ch

ABSTRACT
Testing database application is challenging because most methods
and tools developed for application testing do not consider the data-
base state during the test. In this paper we demonstrate three dif-
ferent tools for testing database applications: HTDGen, HTTrace
and HTPar. HTDGen generates meaningful test databases for data-
base applications. HTTrace executes database applications testing
efficiently and HTPar extends HTTrace to run tests in parallel.

1. INTRODUCTION
Database applications are becoming increasingly complex. They
are composed of many components and stacked in several layers.
Furthermore, most database applications are subject to constant
change; for instance, business processes are re-engineered, autho-
rization rules are changed, components are replaced by other more
powerful components, or optimizations are added in order to achieve
better performance for a growing number of users and data. The
more complex an application becomes, the more frequently the ap-
plication and its configuration must be changed.

The SIKOSA project is a joint research project of several univer-
sities in Western Europe. One goal of the SIKOSA project is to
develop new techniques and tools in order to automate the test-
ing and quality assurance of database applications. The goal is to
reduce the burden of programmers and engineers (i.e., people) to
guarantee the quality of a database application and to provide a
(computer-based) infrastructure that automatically checks diverse
quality metrics. This project has several apparent results: (a) the
quality of the database applications can be dramatically increased
– obvious errors which might slip a human’s attention can be de-
tected; (b) the cost of testing can be reduced; (c) the time to market
of a computer system can be reduced; (d) new computer technol-
ogy (e.g., fast hardware) can be leveraged in order to achieve even
higher quality and reduced costs in the long run.

As part of this project, a suite of tools for testing database applica-
tions has been developed: HTDGen, HTTrace, and HTPar. First,
HTDGen is a tool for generating a test database such that we could
use that to test a database application thoroughly. Second, HTTrace

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2006, June 27–29, 2006, Chicago, Illinois, USA.
Copyright 2006 ACM 1-59593-256-9/06/0006 ...$5.00.

is a tool to run regression tests on database applications. It “learns”
during each test and devises a new test run execution schedule after
each test. The next test will then be executed according to the new
devised schedule so as to minimize the testing time. Third, HTPar
is an extension of HTTrace. It is used to execute test runs in parallel
on a single or several machines. Its goal is to exploit the available
resources (e.g., machine) as well as possible and/or achieve linear
speed up in testing.

2. HTDGEN: A TEST DATABASE GENER-
ATOR

In order to execute tests on a database application the database it-
self has to be initialized with interesting data (called test database).
Most methods for generating test databases only consider the data-
base schema [9, 4] or generate random data for a given statistical
distribution [3, 6]. However, these generated databases are inade-
quate to cover many critical execution paths of the application. It
is because these generated test databases never take the embedded
SQL queries of the database application into account. As a con-
sequence, there is a gap between the generated test databases and
the queries of the application during test: this leads to the fact that
many queries of the application get no (meaningful) results from
the generated databases and thus many execution paths of the appli-
cation cannot be tested. In order to test the critical execution paths
of a database application in a meaningful way, we designed HTD-
Gen. HTDGen is a test database generator that considers both the
database schema and the queries of the database application during
data generation. Currently, HTDGen supports database applica-
tions with embedded SQL statements and it generates relational test
databases for testing these applications. To show the idea, consider
the following pseudocode fragment from a database application:

foreach price in SELECT price FROM Product do
if(price>=0 && price<=10)
//do something

else if(price>10)
//do something else

end if
end foreach

To test all execution paths of this fragment, HTDGen collects the
embedded SQL query Q (SELECT price FROM Product),
the schema SD of the target database (e.g., SD includes the schema
of table Product and integrity constraints) and the results R of
the SQL query (e.g., a table with three rows: −5, 5 and 15 for
the attribute price of the table Product; either given by the
testers or by running a code analyzer). Then HTDGen sends Q, SD

739

(a) Test run recording (b) Regression Test

Figure 1: Regression Tests

and R to a reverse query processing engine called SPQR [2]. The
reverse query processing engine reverse processes the query and
generates a test database D that fulfills all the integrity constraints
in SD and guarantees that R = Q(D). Essentially, SPQR trans-
forms the inputs from HTDGen into a set of constraints and uses a
model checker to find possible solutions. The results of SPQR are
translated by HTDGen into a set of SQL INSERT statements and
inserted the data into the test database.

3. HTTRACE: EFFICIENT TEST RUN EX-
ECUTION

Given a test database, the next step is to create test runs and execute
the test runs on the database application. A test run is defined as a
sequence of requests (that are always executed in the same order)
and the expected responses of the application. It is assumed that
the test database is in state D at the beginning of the execution of a
test run. During the execution of a test run the state of the database
may change due to the execution of the requests. For example, a test
that checks the reporting component of an order management ap-
plication must always be executed against the same state of the test
database in order to make sure that the report shows the same or-
ders every time this test is executed. Controlling the state of the test
database D is a challenging task, if many tests (possibly thousands)
need to be executed and if some of these tests involve updates to the
database (e.g., tests that test the insertion of a new order).

HTTrace [7] is a capture-and-replay tool developed as part of the
SIKOSA project. HTTrace was designed for carrying out black-
box database application regression tests efficiently. Figure 1 shows
the design of HTTrace. HTTrace has two components. One com-
ponent (Figure 1a) is a tool for test engineers to record test runs.
During the recording phase, the application is expected to work
correctly so that the answers returned by the application are cor-
rect. Furthermore the state of the test database D after a test run
is recorded is expected to be correct, too. HTTrace records the re-
quests and the answers of the application at the end of a test run.
After the application code has changed (e.g., customization or a
software upgrade), the test engineers can run the recorded test runs
by invoking the playback component of HTTrace (Figure 1b) in or-
der to find out how the changes have affected the behavior of the
application. This kind of process is called regression testing. HT-
Trace re-issues automatically the requests recorded in its repository
to the application and compares the answers of the updated appli-
cation with the answers stored in the repository.

Logically, the test database must be reset after each test run is
recorded (Figure 1a) and executed (Figure 1b). This way, it is guar-

anteed that all failures during the playback phase are due to updates
of the application layer (possibly, bugs). However, resetting the
database is a time consuming process: it takes about two minutes
to reset a 100MB database [7]. Therefore, HTTrace is equipped
with a set of control strategies to minimize the number of database
resets during testing. The basic idea is to apply database resets
lazily. During each regression test, it learns which test runs are
possibly hurting (conflicting) with each others. As a result, in sub-
sequent regression tests, HTTrace reorders the possibly conflicting
test runs in order to reduce the number of database resets. If the
number of database resets can be reduced, obviously the regression
test time can be reduced, too.

4. HTPAR: PARALLEL TEST RUN EXECU-
TION

Executing test runs in parallel is not uncommon when many test
runs need to be executed. HTPar [8] is an extension to HTTrace
so that test runs can be executed concurrently on a single or sev-
eral machines. The goal is to exploit the available resources as
well as possible. If several machines are available, the goal is to
achieve linear speed-up; that is, the running time of executing the
test decreases linearly with the number of machines. In order to
achieve this speed-up, it is important to balance the load on all ma-
chines - just as in all parallel applications [5]. At the same time,
however, it is also important to control the state of the test data-
base(s) and to execute the test runs in such a way that the number
of database reset operations is minimized - just as for non-parallel
testing in HTTrace. As a result, parallel testing involves solving a
two-dimensional optimization problem: (a) partitioning: deciding
which test runs to execute on which machine; and (b) ordering:
deciding in which order to execute the test runs on each machine.

HTPar supports two parallel testing modes: Shared-Nothing mode
and Shared-Database mode. In Shared-Nothing mode (SN), there
are N separate and independent installations of the application and
its underlying database. The installations do not share state and,
thus, do not interfere. In Shared-Database mode (SDB), there is
only one installation of the application and its underlying database
and test runs are executed concurrently on this instance. In this
case, concurrent test runs interfere because they read and update the
same database. Figure 2 shows the architecture of HTPar. The ar-
chitecture is applicable to both Shared-Nothing mode and Shared-
Database mode. The scheduler of HTPar has an input queue of test
runs (e.g. T12, T5, T31, ... in Figure 2). How to order the test
runs in this input queue depends on the scheduling strategy (SN or
SDB) [8]. At the beginning, the scheduler takes the first test run
from its input queue and submits it for execution to Machine 1 in
the SN mode or to Thread 1 in the SDB mode. (Figure 2 shows
machines in the SN mode, but the same principles apply to feeding
test threads in the SDB mode.) Furthermore, the scheduler submits
the second test run to the second machine/thread and so on until all
N machines/threads are busy.

When a machine (or thread), say Mi, has completed the execution
of a test run, say Tk, Mi notifies the scheduler that it is ready to
execute a new test run. The scheduler keeps a history of all test runs
that have been executed on Mi and correspondingly places Tk into
its history for Mi. Furthermore, the scheduler selects the next test
run to be executed on Mi from its input queue. In most cases, the
scheduler selects the first test run from its input queue, but there are
occasions in which it is beneficial not to select the first test run from
the queue. In SN, for example, if it is known that T12 and T17 are in

740

... T4 T31 T5 T12

Conflicts

Scheduler ...T17

Reset?

T8

Reset?

T7

T9 T25T13

History
M1

MN

...

Application

Database

Machine/Thread 1

Application

Database
Machine/Thread N

Figure 2: HTPar architecture

conflict1 in Figure 2, then it might be beneficial not to execute T12

on M1 after T17 has been executed on M1 and instead execute T5

on M1 and wait until another machine becomes available for T12.
In order to decide which test run to execute next, the scheduler
takes the conflict database, the history, and the order in the input
queue into account. Alternative policies how such optimizations
are applied for SN and SDB are described in [8].

When a machine/thread informs the scheduler that it has completed
the execution of a test run, it also indicates whether it has to reset
the database in order to execute the test run. Recall from the pre-
vious section that the database is reset whenever a test run fails in
order to make sure that this failure is not due to the test database
being in the wrong state. If a reset has been carried out by Mi in
order to execute Tk, then the scheduler updates its history informa-
tion and the conflict database.

Obviously, parallel testing can significantly reduce the running time
of executing a set of test runs. In the SN mode, it can be expected
that the speed-up is linear because there is no interference and if all
test runs have roughly the same length (if not, bin packing must be
applied to ensure load balancing). In fact, super-linear speed-up is
possible because conflicting test runs can be executed on different
machines so that the total number of resets is reduced. In the SDB
mode, linear speed-up is only possible for small levels of concur-
rency and if database resets are rare. A database reset blocks all
test run executions. Nevertheless, if a scheduling strategy makes
sure that conflicting test runs are not executed concurrently, then
significant speed-ups can be achieved in this mode, too, because
hardware resources (disks, multiple CPUs and co-processors) are
better exploited.

5. DEMONSTRATION
This demonstration will mainly show the benefits of the tools pre-
sented in this paper as well as the interplay of these tools. The
example application used in this demonstration is an e-shop appli-
cation that implements the TPC-W benchmark [1].

1Formally, a conflict is denoted as 〈Ti〉 → T , with 〈Ti〉 a sequence
of test runs and T a test run. A conflict 〈Ti〉 → T indicates that
if 〈Ti〉 is executed, then the database must be reset before T can
be executed. For example, one of the test runs in 〈Ti〉 could insert
a purchase order and T could be a test run that tests a report that
counts all purchase orders.

We first show the generation of a test database by HTDGen using
some SQL statements extracted from the TPC-W application. (e.g.
SQL statements from the search customer function).

Based on the generated test database, some test cases are recorded
by HTTrace. The test cases are based on the use cases specified in
the TPC-W benchmark (e.g., searching products, placing new or-
ders, updating items of the e-shop, etc.). Afterwards the test cases
are executed by HTTrace or HTPar. The test cases are executed in
different orders so as to show the motivation of resetting the test
database. Furthermore, the same test would be executed multiple
times in order to demonstrate the optimization components pro-
posed in HTTrace and HTPar could improve the testing time along
iterations.

6. CONCLUSION
Testing is one of the most important and time consuming steps in
software development. Testing database applications is much more
challenging because the testing involves a stateful component: the
backend database. While the testing of database application is still
in its infancy, the SIKOSA project presents three tools (HTDGen,
HTTrace and HTPar) which address the test database generation
and the efficient test run execution problem. As part of future work,
we plan to extend the tool suite by adding tools on testing the scal-
ability of database applications. Furthermore, we plan to extend
existing tools to deal with the evolution of test runs and test data-
bases.

7. REFERENCES
[1] The TPC-W benchmark.

http://www.tpc.org/tpcw/default.asp.

[2] C. Binnig, D. Kossmann, and E. Lo. Reverse query
processing. Technical report, ETH Zurich,
http://www.dbis.ethz.ch/research/publications/rqp.pdf, 2006.

[3] N. Bruno and S. Chaudhuri. Flexible database generators. In
VLDB, pages 1097–1107, 2005.

[4] D. Chays, Y. Deng, P. G. Frankl, S. Dan, F. I. Vokolos, and
E. J. Weyuker. An AGENDA for testing relational database
applications. Software Testing, verification and reliability,
2004.

[5] D. DeWitt and J. Gray. Parallel database systems: The future
of high performance database systems. Comm. of the ACM,
35(6):85–98, 1992.

[6] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J.
Weinberger. Quickly generating billion-record synthetic
databases. In SIGMOD, pages 243–252, 1994.

[7] F. Haftmann, D. Kossmann, and A. Kreutz. Efficient
regression tests for database applications. In CIDR, pages
95–106, 2005.

[8] F. Haftmann, D. Kossmann, and E. Lo. Parallel execution of
test runs for database application systems. In VLDB, pages
589–600, 2005.

[9] A. Neufeld, G. Moerkotte, and P. C. Lockemann. Generating
consistent test data for a variable set of general consistency
constraints. VLDB J., 2(2):173–213, 1993.

741

