
Borner et al. Teaching Software Engineering using TRAIN

Proceedings of the 1st AIS SIGSAND European Symposium on Systems Analysis and Design, Galway, Ireland, June 6, 2006 1

Teaching the Software Engineering Process Emphasizing
Testing, Rationale and Inspection (TRAIN)

Lars Borner
Institute for Computer Science

University of Heidelberg
Im Neuenheimer Feld 326

D-69120 Heidelberg, Germany
borner@informatik.uni-heidelberg.de

Barbara Paech
Institute for Computer Science

University of Heidelberg
Im Neuenheimer Feld 326

D-69120 Heidelberg, Germany
paech@informatik.uni-heidelberg.de

ABSTRACT

Students learning software systems development at the
University of Heidelberg follow the TRAIN process. This
tool supported process emphasizes the early phases of
software development by combining different activities
and artefacts such as requirements engineering, quality
assurance as well as graphical user interface and system
design. By the use of TRAIN students are being enabled
to finish large software projects. TRAIN focuses
especially on various decisions (rationales) in the
development process and on several quality assurance
activities like testing or inspection. This paper gives a
short overview of the TRAIN–process, how it is taught in
software engineering courses and how it is supported by a
tool called Sysiphus.

Keywords

Teaching, software engineering process, tool supported
education, requirements engineering, test, inspection,
rationale

INTRODUCTION

At the University of Heidelberg software engineering
skills are taught and applied in various software
engineering courses. Students learn basic skills in the
course “Software Engineering I” and in the practical
courses for beginners. They acquire more profound skills
in advanced courses like “Software Engineering IIa”
(focusing on requirements engineering and project
management), “Software Engineering IIb” (focusing on
architectures based on component technologies and web
services) and practical courses for advanced students.
These courses are designed especially for bachelor and
master students in computer science, but students of other
fields of study are invited as well.

In all software engineering courses students have to
handle a software project of realistic dimension in a given
time. The intention is to allow students to gain
experiences in developing or extending large software
systems. In these projects one focus lies on early phases
of the development process like requirement elicitation
(~30%) and system design (~25%). The other focus is

quality assurance (30%). We assume that programming
skills are already available. All projects are performed in
teams. This allows students to refine their soft skills [8] in
team work and communication.

The development is based on the well defined TRAIN-
process. The CASE-tool Sysiphus [12] supports TRAIN
by assisting students in performing different activities and
documenting required artefacts.

The reminder of this paper is organized as follows:
Section 2 shortly introduces TRAIN and its main
activities. The third section describes the various artefacts
of TRAIN in detail and how activities and artefacts are
taught in the course “Software Engineering I”. The last
section summarizes our experiences with TRAIN and
Sysiphus in our courses and discusses the advantages and
disadvantages of our approach.

TRAIN – THE OVERALL APPROACH

The TRAIN-process combines different concepts of
software engineering, emphasizing Testing, RAtionale
and INspection to support the early development phases.
We have developed our own approach with detailed
guidance for requirements engineering covering also GUI
design and non-functional requirements (NFR), because
the requirements engineering approaches we found in the
literature do not integrate all these aspects. Therefore we
adapted the Rational Unified Process (RUP) by adding
easily understandable methods of requirement
engineering and system design supporting rationale and
quality assurance activities. In the requirements phase the
TORE approach [10] is used to identify and specify the
relevant functional and non-functional requirements. This
is complemented by the approach of [7] to design user
interfaces and to create first prototypes of a GUI. The
approach proposed in [3] is used to transfer requirements
into a class design.

Similarly, we could not find detailed guidance for the
development of test cases in parallel to the requirements.
Thus, we incorporated our own advices into TRAIN on
how to derive test cases for the system, integration and
unit test, and give hints on how to specify these test cases.
To make sure that all specified artefacts in documents are

Borner et al. Teaching Software Engineering using TRAIN

Proceedings of the 1st AIS SIGSAND European Symposium on Systems Analysis and Design, Galway, Ireland, June 6, 2006 2

correct and consistent, TRAIN includes various types of
inspections like perspective-based or checklist-based
inspections.

An important but often forgotten part of software
documents is the documentation of decisions made during
the development process. Typically these decisions are
implicit only in the results of these decisions. However,
the discarded options and the decision criteria are lost.
Therefore, often during changes and extensions (e.g.
through personnel not involved in the development)
important criteria are forgotten, discarded options are re-
discussed and consequently the decision quality is
reduced. Thus, TRAIN demands to document this
rationale (see [2]); i.e. the different options, reasons and
decisions that have been involved.

In the following we shortly describe the basic ideas of the
approaches within the early phases in TRAIN. Afterwards
we sketch the CASE tool Sysiphus and explain how it
supports TRAIN.

dialogdialog

Task level

Domain level

Interaction level

Application core

Actors &
Tasks

Actors &
Tasks

as-is
activities

as-is
activities

to-be
activities

to-be
activities

system-
responsibility

system-
responsibility

domain
data

domain
data

system-
functions

system-
functions

inter-
action

inter-
action

interaction
data

interaction
data

UI-
structure

UI-
structure

internal
actions

internal
actions

internal
data

internal
data architecture

GUI

System level
navigation
& support
functions

UI-dataUI-data screen-
structure

screen-
structure

Figure 1: Levels and decisions of TORE

TORE

TORE (Task Oriented Requirement Engineering) was
first introduced in [10]. It describes a “conceptual model
for the decision types [and NFRs] that should be
supported by methods integrating RE and OO” (see [10],
p. 49). These decisions are arranged in four abstraction
levels: task level, domain level, interaction level and
system level. These levels and decisions are illustrated in
Figure 1. At the top level roles and tasks of different
business processes are identified. At the domain level the
requirement engineer analyzes how these tasks are
currently performed (as-is) and how they should be
performed in the future (to-be). Using this information,
the requirements engineer can define activities that have
to be supported by the new software system (system
responsibility) and the required domain data. At the
interaction level the interactions between users and the
new system are specified by defining system functions,
use cases, interaction data and user interface (UI)-
structures. The lowest level is divided into two parts. One
deals with the application core and the other concentrates
on the graphical user interface.

GUI-approach

In [7] the author describes an approach to derive the
Graphical User Interface (GUI) design and to develop the
first GUI-prototypes. In a first step the tasks and data of
the domain level are analyzed to identify several
workspaces. A workspace contains all activities and data
of one or more tasks and represents a first abstract
description of parts of the later GUI. An example of such
a workspace is illustrated in Figure 2. It shows the
workspace of the “Select Books” task for an online book
store.

In a second step the workspaces are refined into views
(virtual windows) by using information that is contained
in use cases. In the last step the navigation and the support
functions are added to these views to get dialog and
screen structures. These structures can be realised by
several kinds of prototypes such as mock-ups or
functional prototypes.

Search books
Purpose: Selection of books
Data:
-Search criteria
-List of books with title and author
Functions:
-Search
-Move to shopping basket

Book details
Purpose: Detailed info about a book
Data: abstract, picture of cover,
ISBN no., year, review, order, conditions
availability
Functions:
-Move to shopping basket

Select Books

Figure 2: Example of a workspace description for a “select
books”-task

Design-approach

Jacobson describes in [3] an approach to develop class
models. He uses artefacts specified in the requirements
phase especially artefacts in domain data diagrams and
use case and system function descriptions. First, analysis
class diagrams are created by using entity, boundary and
control classes. Then boundary and control classes are
transformed into “real” classes, attributes or operations,
and basic and complex operations are identified and
specified. Finally, the distribution of attributes and
operations to classes is revised, based on sequence
diagrams for the system functions. The goal is to achieve
loose coupling and high cohesion between classes.

Rationale-approach

In [2] Paech and Dutoit introduce an approach for
documenting rationale. They use the question-option-
criteria (QOC) approach to make decisions explicit. Made
decisions or decisions to be made are documented as
questions. Every question possesses one or more options,
whereas an option describes one possible solution
alternative to this question. Criteria are assigned to every
question and are used to assess the proposed options.
Having assessed all options for one question, the best
option can be chosen as the best solution for this question
and the decision is recorded in the corresponding
specification document.

Borner et al. Teaching Software Engineering using TRAIN

Proceedings of the 1st AIS SIGSAND European Symposium on Systems Analysis and Design, Galway, Ireland, June 6, 2006 3

Inspection-approach

In TRAIN inspections are applied to uncover defects in
the specification, i.e. to find inconsistent, incomplete,
duplicated or ambiguous parts. The documents are read
by one or more inspectors. For this purpose two different
reading techniques can be used: the checklist-based or the
perspective-based technique. The former uses a checklist
to find defects. The inspector reads the document and tries
to detect defects according to defect classes that are
defined in a checklist. The latter uses different roles.
Every role corresponds to a special point of view, e.g. a
tester point of view. The inspector gets a task he/she has
to solve according to this role. Usually it is easier to
discover defects, when working actively with the
document based on a task.

 Test-approach

TRAIN supports test case design as well as test case
execution. System, integration and unit test cases are
derived based on the specification. Use cases and
information of the GUI prototypes are used to design test
cases at the system test level. We are applying the testing
techniques “equivalence partitioning” and “boundary
value analysis” (see [1]) to derive test data for system test
cases. At the integration test level sequence diagrams and
state charts are used to develop test cases. Class diagrams
are the basis for test cases at the unit test level. All these
test cases have to be designed before the next level of the
software development process can be reached, i.e. all

system test cases have to be specified before the design
phase can be processed. After the programming phase all
test cases are executed to uncover bugs.

Sysiphus

Sysiphus [12] is a CASE tool developed at the Technische
Universität München (TUM). Its special purpose is to
support teachers and students to teach and learn software
engineering skills. With different kinds of documents
Sysiphus provides a well structured support for TRAIN.
Sysiphus allows specifying requirements artefacts in the
Requirement & Specification Document, design artefacts
in the Object Design Document and test artefacts in the
Test Specification Document. Furthermore, it allows the
documentation of rationale by asking and answering
questions during the development phases. Every question
is assigned to at least one element specified in one of the
documents mentioned above.

By supporting distributed cooperative work, Sysiphus
facilitates on the one hand inspections of one or more
documents by more than one inspector at a time and on
the other hand team work of two or more students. One
possibility to access the documents contained in Sysiphus
is to use the web-front-end REQuest. A screenshot of
REQuest is shown in Figure 3. The left side of the figure
shows the structure of the Requirement & Specification
document. Here you can see different elements that can be
documented in Sysiphus, e.g. actors, user task, use cases
or system functions. The right side of the figure shows

Figure 3: Screenshot of the REQuest-GUI of Sysiphus

Borner et al. Teaching Software Engineering using TRAIN

Proceedings of the 1st AIS SIGSAND European Symposium on Systems Analysis and Design, Galway, Ireland, June 6, 2006 4

the documented rationale for the current project
represented in question form. Every question can have
two different states: open and closed. All questions in
Figure 3 are closed, i.e. for every question the best option
was chosen and the decision was documented. The second
possibility to access documents is to use the Swing-GUI
RAT. While using RAT the user does not need an
additional program like a web-browser to access all
documents in Sysiphus. All he/she needs is a Java virtual
machine.

Sysiphus provides templates for nearly all artefacts of
TRAIN. Furthermore it allows to link artefacts together
e.g. actors to user tasks, test cases to use cases, questions
to system functions or classes to packages. This allows
easy navigation between documented elements on the one
hand and traceability between artefacts of different
development phases on the other hand.

TEACHING TRAIN

In the course “Software Engineering I” students become
familiar with TRAIN. We divide the semester in two
parts. In the first seven weeks we teach basic knowledge
and practice this new knowledge in small exercises. In the
last six weeks students have to finish a software project of
realistic dimension by applying the newly gained skills.
The task is to extend an existing software system with
new functionalities.

Knowledge and Skills

The necessary knowledge is taught in a weekly 2-hour
lecture course. Every week we introduce new activities
and artefacts of TRAIN. To illustrate these activities and
artefacts small examples are used. In the first half of the
semester the new knowledge and models are practiced in
small, weekly and independent exercises. Here three
different approaches are used. First, students have to
complete an incomplete model, second, they have to find
and correct inconsistencies between models and third,
they have to correct a given incorrect model. These
exercises refer to the existing software system that has to
be extended. The advantage is that students become
familiar with this system. All artefacts and activities are
practiced with examples of this system i.e. the students
have to “re-engineer” several artefacts of the given
system. In addition the students learn how they have to
document the artefacts in Sysiphus. To motivate the
students for this approach, the tasks are embedded into
small scenarios like this: students are new employees of a
large software company and their first task is to restore
lost models and artefacts of a given system.

We introduce the artefacts and activities bottom up, that
means we start with the design and component test and
move on to more abstract descriptions in requirements
and integration and system test.

After a short introduction into TRAIN and Sysiphus,
students get to know the different models and artefacts of

the design phase. For example they have to complete a
given class diagram by using the source code. They learn
how the different model elements of a class diagram are
mapped to the source code and vice versa. They also
reconstruct sequence diagrams out of the given source
code and the control flow of the system.

At the same time students get to know how to derive test
cases for unit tests from class and sequence diagrams and
source code. They become acquainted with different
coverage criteria like statement, branch or path coverage
and with different testing techniques like equivalence
partitioning and boundary value analysis. They design and
document these test cases within Sysiphus and realise and
execute the test cases by using JUnit [5], e.g. students had
to develop test cases for a given class. In this exercise
they have to reach 100% branch coverage to successfully
finish the tests for the given class.

In the next weeks we practice the TORE levels in the
requirement phases and teach all required activities and
decisions. We start at the interaction and system level. At
these levels it is important to teach different kinds of
NFRs. The students have to become aware of the
importance of NFRs. For example they have to redo some
decisions in the existing system. They have to decide
which architecture the system should have. Therefore they
have to evaluate different given options against a set of
given NFRs and choose one option that supports the
NFRs best. For this purpose we created a question in
Sysiphus in the summer term 2004. We added all possible
options and identified all important NFRs. First, the task
of the students was to assess every single option against
given NFRs in a matrix. Afterwards they had to choose
the best solution and compare this solution with the
current architecture of the software system. Figure 4
illustrates the structure of such an assessing matrix. The
different options are documented in the upper left corner.
In the right half of the figure the criteria and assessments
can be seen. As you can see the option “3-layers installed
on one machine” fulfils the given criteria best.

At the interaction level the students also get to know new
artefacts like use cases and system functions. Moreover,
they learn to write their first use cases, to design use case
diagrams and to specify complex system functions in
Sysiphus. They become acquainted with the right
abstraction level of use cases and system functions und
become able to fill in the templates given in Sysiphus.
They identify the pre and post conditions as well as
several steps of use cases. At the same time they are
taught to create their first abstract description of a GUI:
the workspaces and UI-structures.

After specifying use cases and system functions, the
students begin with their second quality assurance
activities. On the one hand, they develop integration test
cases for given system functions. They identify the
classes that realise the system functions, analyse the
interactions between these classes regarding the system
functions and document integration test cases in Sysiphus.

Borner et al. Teaching Software Engineering using TRAIN

Proceedings of the 1st AIS SIGSAND European Symposium on Systems Analysis and Design, Galway, Ireland, June 6, 2006 5

Afterwards they use JUnit to realise and execute these test
cases. On the other hand, they develop scenarios, in order
to describe exemplary instances of the use cases. These
scenarios are used to specify the first system test cases.
Here Sysiphus also provides templates to describe
scenarios and test cases. Afterwards every scenario and
every system test case is linked to a use case. To realise
and execute the system test cases, the students have to use
JWebUnit [6].

At the task and domain level the students learn how to
identify roles, tasks and domain data. They practice
specifying actors and tasks by restoring lost actor and task
descriptions. They link together existing actors, user tasks
and use cases with restored ones in Sysiphus.
Furthermore, they practice modeling domain data in an
entity relationship diagram and specifying NFRs for the
domain level. The NFRs have to be identified and
specified correctly in Sysiphus and linked to
corresponding user tasks by the students.

So, in the first half of the semester the students have
practiced all important development activities, but not in a
coherent method. So in the second half of the semester –
simultaneous to the extension task – the students learn
how these artefacts are developed coherently top down. In
particular, they learn to derive the class model based on
the specified use case and domain data model. They
become familiar with boundary, entity and control class
and how these elements are used to transform the domain
data diagram into analysis class diagrams. Furthermore
they are taught to validate the class model by using
sequence diagrams.

Project work

Students apply the new knowledge and skills they
acquired during the first seven weeks to extend an
existing system. The system they have to extend is the
same system they had used to specify and document their
artefacts: Sysiphus. In this phase, Sysiphus is no longer a
CASE tool to the students. It is also the software system
they have to extend. Sysiphus comprises more than 700
classes and over 100.000 lines of code. In our opinion it is
a software system of a realistic dimension. The main
advantage in using Sysiphus as the software system to
extend is that students already know how to use the
system and how it is realised. The most important parts of
the system are familiar to them by now. To give the best
possible support, they get access to all existing
documented artefacts, diagrams and models of Sysiphus
including test cases and the source code. Furthermore,
they get a handbook of TRAIN. This handbook can be
found in [11]. It contains an overall description of the
process illustrated by an example. It can be used as a
reference book, where they can look up all details of
TRAIN.

In teams of four or five, the students have to perform the
extension task. As an example we would like to mention
the project of the summer term 2004. The students had to
add new inspection functionality into Sysiphus. They
analysed the inspection process and identified the
activities that could possibly be supported by the tool. For
example they had to distinguish between two different
kinds of defects an inspection process can uncover:
semantic and syntactic defects. They had to understand
that only the syntactic defects can be found automatically.

Figure 4: Rationale example

Borner et al. Teaching Software Engineering using TRAIN

Proceedings of the 1st AIS SIGSAND European Symposium on Systems Analysis and Design, Galway, Ireland, June 6, 2006 6

One example for such a syntactic defect could be a
missing initiating actor for a user task. In Sysiphus every
user task has to have an initiating actor, otherwise the user
task is not complete.

Every project has a strict time schedule and three given
mile stones. Every two weeks one of the mile stones has
to be reached. Moreover every team gets its own tutor.
The teams have to send partial results to their tutors every
week. The tutors give detailed feedback on these results.
To reach a mile stone the teams have to present their
results to a fictitious customer, mostly the professor of the
course.

One focus of the project work lies on functional and non-
functional requirements. The students have to create
descriptions of actors, user tasks, use cases as well as
system functions and of course they have to document
decisions the team members have made. Figure 5 shows a
diagram similar to a use case diagram that represents the
solution for the extension task of summer term 2004. The
teams had to identify and to describe the role of the
inspector. For the inspector they specified the user task
“inspect requirements” (the dark grey oval in the
diagram). This task was realized by two different use
cases (“Inspect requirements manually” and “Inspect
requirements automatically”). The latter was supported by
a system function “Execute automated inspection” that
describes how the later system performs the automated
inspection. The non-functional requirements have to be
documented for the requirements phases as well as for the
architecture and design phase. One example of an NFR of
the project of 2004 was the demand that an automated
inspection had to be executed within one minute. In
addition to the functional and non-functional requirements
dialog, screen models and the user interface prototype
play an important role and have to be developed within
the project. In 2004 every team developed at least one
prototype for the later extension of Sysiphus. Therefore
they used different kinds of tools. One team used a paint
tool and another team realised the prototype with HTML.
The prototype was added to the documented elements in
Sysiphus.

The second focus lies on quality assurance activities and
artefacts. On the one hand the teams have to specify and
execute system, integration and unit test cases. Before a
milestone can be reached, the test cases of the
corresponding development phase have to be specified,
and after the implementation the test cases have to be

executed. On the other hand every team has to inspect the
results of another team and give detailed information
about uncovered defects. In a session of 90 minutes the
teams have to uncover as much defects as possible. Here
we use different kinds of inspections. At the requirements
mile stone the students apply the perspective based
technique. Therefore four different perspectives are used:
tester, designer, customer and rationale maintainer
perspective. The checklist based inspection technique is
applied before the design mile stone is passed. After every
inspection every team gets the possibility to correct its
defects.

The third main focus of the project work lies on design
models. The teams have to derive the class model
stepwise. They are developing analysis class diagrams,
class diagrams and sequence diagrams. In summer term
2004 students had to create about 10 new classes, adopt
about 15 classes and interact with nearly 50 classes. The
number of lines of code differed from team to team and
was between 2.000 and 8.000 lines of code.

Similar to the exercises in the first half of the semester the
teams have to document all artefacts they are creating in
Sysiphus. To draw different kinds of diagrams like use
case, class or sequence diagrams, we use the UML-tool
Jude [4]. Diagrams drawn with Jude can be exported to
JPEGs and attached to the corresponding documents in
Sysiphus.

EXPERIENCES

In the previous sections we have introduced an approach
to teach activities, artefacts and models of early
development phases. So far our approach was used in the
courses “Software Engineering I” in the summer terms of
2004 and 2005. A possible curriculum for the courses can
be found in [9]. In 2004 ten and in 2005 twenty five
students attended the courses. At the end of the semester
the students had to answer questions about the course.
E.g. questions like: “Did you enjoy the course?” “How
important was the team work?” or “How much did you
learn about the software engineering process?” Most of
the answers were very positive. All students were
convinced that they learned a lot in the course and most (~
80 %) of them enjoyed our course.

These last two semesters have shown that detailed
feedback to the students is one of the main factors of
success. The feedback should be given not only in the
second half of the semester but also in the first half.
Teachers should point out the mistakes the students have
made immediately. Subsequently the students should have
the time to correct their mistakes. To show that solutions
of one software engineering task can be quite diverse, the
different solution proposals have to be discussed in
weekly exercises. Most of the students agreed in the
questionnaire that the immediate feedback was very
important for the learning success. But some of them
annotated that the feedback could have been more
detailed.

Figure 5: Use case solution of the extension task

Borner et al. Teaching Software Engineering using TRAIN

Proceedings of the 1st AIS SIGSAND European Symposium on Systems Analysis and Design, Galway, Ireland, June 6, 2006 7

The main advantage of our approach is that the students
learn the basic knowledge and skills in the first half of the
semester. This knowledge is taught in weekly lectures and
skills are practiced in small, mostly independent, weekly
exercises. In order to really embrace the knowledge and
skills, the students have to finish a project of realistic
complexity from beginning to end. The project
“Extending Sysiphus” is large enough to confront the
students with real problems of software projects. In the
point of view of most of the students (~ 70%) the
extension task within Sysiphus was very important and
assisted to understand the main phases of a software
development process.

Team work is the second advantage of the approach. It
reduces the extent of feedback needed. It is easier to give
feedback to four or five students at once then giving
feedback to every single person in particular. Furthermore
the students learn to work in teams, to communicate with
customers and to organise themselves. Nearly 70% of our
students agreed that team work was very fundamental for
them. They learnt to communicate with and to coordinate
each other and to give hints and assistance to other team
members. For three students only the communication
overhead was too large and they argued the team work
was hindering.

Supporting TRAIN with Sysiphus helps to reduce
mistakes beginners often make by providing templates to
document required artefacts at different development
phases. Furthermore the tool alleviates the
communication within the teams, because all team
members can work on the same project documents and
discuss different possible solutions at the same time. The
third important benefit of Sysiphus is that it enables
teachers to give feedback to all team members easily by
(mis-)using the rationale functionality. The tutors are able
to question confusing or inconsistent parts of the student’s
documentation. He/she creates a new question in Sysiphus
and describes the misunderstandings and links the
question to the corresponding elements. The students can
describe how they solve the problem as an alternative
option and close the question. They also can use the
rationale functionality in Sysiphus to discuss different
solution with the tutors.

The main disadvantage of our approach is the very high
amount of support given by teachers and tutors. On the
one hand giving detailed feedback takes a lot of time.
Every week the solutions of the students have to be
commented and discussed within every single team. For
the next semester we plan to assign the task of giving
feedback to students of a higher semester. This could
disburden other tutors and the given feedback would be
more detailed.

Sysiphus is enhanced continuously. That means existing
examples of artefacts used in the first part of the semester
have to be updated before the next semester starts. But
enhancement of Sysiphus is done by the tutors of the
course. So they are familiar with the different parts of the

software system and the corresponding source code. This
helps to give the best possible support to students during
the extension task.

Another weak point of TRAIN is that Sysiphus does not
support all activities of TRAIN in the same way. There
could be better support for deriving the design model
from the use case model. Of course one can document
different artefacts like use cases, classes as well as
packages and link them together. But so far it is not
possible to document the results of intermediate steps like
classes of the analysis class model.

The analysis of the questionnaire has also shown that the
amount and the complexity of some tasks seem to be too
large for the students. Most of them spent more than nine
hours a week to solve the tasks. Some of them argued,
that within the semester the extension task of Sysiphus is
too time consuming and could be better realised within
the holidays in a three week compact course. Maybe this
is a possibility to reduce the work load of the students
within the semester.

Nevertheless, at the end of the questionnaire most of the
students pointed out that they would recommend the
“Software Engineering I” course to fellow students. We
are convinced that the combination of TRAIN and
Sysiphus supports teaching very well. So far, our
approach was used in teaching small groups of students
only. However, we are sure it could be used with larger
groups of students provided there is enough capacity of
teachers and tutors.

ACKNOWLEDGEMENT

We would like to thank Anke Borner, Timea Illes, Andrea
Herrmann, Doris Keidel-Müller and Dima Suliman for
their helpful reviews.

REFERENCES

1. Binder, R. V. (2003) Testing Object-Oriented
Systems – Models, Patterns, and Tools, Addison-
Wesley

2. Dutoit, A. and Paech, B. (2002) Rationale
Management in Software Engineering, Handbook of
Software Engineering and Knowledge Engineering,
World Scientific Publishing Company

3. Jacobson, I., Christerson, M., Jonsson, P. and
Övergaard, G. (1998) Object oriented software
engineering – A use case driven approach, Addison-
Wesley

4. Jude (2006) http://objectclub.esm.co.jp/Jude/
5. JUnit (2006) www.junit.org
6. JWebUnit (2006) http://jwebunit.sourceforge.net/
7. Lauesen, S. (2005) User Interface Design – A

Software Engineering Perspective, Addison-Wesley
8. Lichter, H., Melchisedech, R., Scholz, O. and Wiler,

T. (2003) Erfahrung mit einem Workshop-Seminar

Borner et al. Teaching Software Engineering using TRAIN

Proceedings of the 1st AIS SIGSAND European Symposium on Systems Analysis and Design, Galway, Ireland, June 6, 2006 8

im Software Engineering-Unterricht, Proceedings of
SEUH 8: Software Engineering im Unterricht der
Hochschulen, Workshop des German Chapter of the
ACM und der Gesellschaft für Informatik e.V. (GI)
Berlin, dpunkt Verlag, 89 – 100

9. Paech, B., Borner, L., Rückert, J., Dutoit, A.H. and
Wolf, T. (2005) Vom Code zu den Anforderungen
und wieder zurück: Software Engineering in sechs
Semesterstunden, Proceedings of SEUH 9: Software
Engineering im Unterricht der Hochschulen,
Workshop des German Chapter of the ACM und der
Gesellschaft für Informatik e.V. (GI) Aachen, dpunkt
Verlag, 56 – 67

10. Paech, B. and Kohler, K. (2003) Task-driven
Requirements in object-oriented development, In:
Leite, J. and Doorn, J. (2003) Perspectives on
Requirements Engineering, Kluwer Academic
Publishers

11. Häfele, P. (2005) Softwareentwicklung mit dem
TRAIN-Prozess - Bachelor Thesis
http://www-swe.informatik.uni-
heidelberg.de/research/publications/reports.htm

12. Sysiphus (2006)
http://wwwbruegge.in.tum.de/Sysiphus

