

Copyright © [2006] IEEE.
Reprinted from Proceedings of the 30th Annual International Computer Software and
Applications Conference (COMPSAC'06) - Volume 02, pp. 171-176

This material is posted here with permission of the IEEE. Internal or personal use of this
material is permitted. However, permission to reprint/republish this material for advertising
or promotional purposes or for creating new collective works for resale or redistribution must
be obtained from the IEEE by writing to pubs-permissions@ieee.org

By choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

The MORABIT Approach to Runtime Component Testing

Dima Suliman,
Barbara Paech,

Lars Borner
 University of Heidelberg

Institute of Computer Science
Germany-69120 Heidelberg
{suliman,paech,borner}@

informatik.uni-heidelberg.de

Colin Atkinson,
 Daniel Brenner

 Mannheim University
Institute of Computer Science
Germany - 68161 Mannheim

atkinson@informatik.uni-
mannheim.de

dbrenner@uni-mannheim.de

Matthias Merdes,
Rainer Malaka

EML Research gGmbH
Germany-69118 Heidelberg

matthias.merdes@eml-r.villa-
bosch.de

rainer.malaka@eml-d.villa-
bosch.de

Abstract

Runtime testing is important for improving the

quality of software systems. This fact holds true
especially for systems which cannot be completely
assembled at development time, such as mobile or ad-
hoc systems. The concepts of Built-In-test (BIT) can
be used to cope with runtime testing, but to our
knowledge there does not exist an implemented
infrastructure for BIT. The MORABIT project realizes
such an infrastructure and extends the BIT concepts to
allow for a smooth integration of the testing process
and the original business functionality execution. In
this paper the requirements on the infrastructure and
our solution are presented.

1. Introduction

Software systems that cannot be assembled completely
at development time, such as mobile systems or ad-hoc
systems, emerge through composition of components
at runtime. Since the participating components are not
known in advance, the system cannot be tested fully at
development time or at deployment time. In order to
ensure that the components act correctly within the
steadily changing environment they have to be tested
at runtime. The Built-In Test approach (BIT) [9] has
been developed to enable runtime testing. As we
discussed in [7] it satisfies many important criteria for
testing mobile systems. In our project MORABIT
(Mobile Resource Adaptive Built-In Test) we enhance
BIT in several ways. We support different ways of
allocating the responsibilities of the testing process to
the components. Furthermore, we monitor and control

test resources in order to minimize the effects of the
testing on the business logic execution. And, we have
implemented a prototypical infrastructure (component
container) realizing these features. To this end, we
define in detail how a component can trigger tests and
react to test results.

In the next section we review the general idea of
BIT and related literature. In section 3 we sketch a
mobile auction scenario which serves as the running
example for this paper, and give examples of runtime
failures which should be detected with our approach.
In section 4 we provide the most important concepts of
the MORABIT approach. In section 5 we discuss the
current status of the implementation. Section 6
concludes the paper.

2. Built In Test

Many testing approaches can be referred to as Built-In
test. An overview of the best known Built-In testing
approaches is presented in [1]. In the MORABIT
project [5] we build on the BIT approach proposed by
the component+ project [3], since it suggests many
useful concepts that can be applied to runtime testing.
The main idea in this approach is to enhance the
component with testable interface(s). Such an interface
provides methods to perform tests on the component.
To support this, each BIT component possesses two
modes:

- Normal mode: the component performs the
original business functionality

- Maintenance or test mode: in this mode a
tester (component) can set or check internal
logical states of the component through the
testable interface.

Note that interior variables are still invisible to the
outside. They can be manipulated implicitly
through manipulation of logical states that
encapsulate these physical variables, but their
values resp. names are still hidden. In other words
the tester does not know how the logical states are
implemented by the component.

When transferring the idea of testing to runtime, a
fundamental question is who is responsible for what.
The responsibilities encompass providing the test
cases, starting and reacting to the test. As shown in
Table 1 there are several options for who and what:

Table 1: Runtime test responsibilities

Who / what Test cases
by CUT

Test cases by
client or
specific tester
components

Test requested
by CUT

Self-test
[9][10]

Test requested
by client

 Contract test [4]

Test req. by
specific tester
components

Centralized
test [8]

(who) Either a component under test (CUT) tests it-

self or the CUT is tested by another component. This
other component could be the client or a third
(infrastructure) component without business
functionality, but with specific functionality to perform
tests on other components.

(what) The test cases can be brought by the CUT or
another component.

Three cases have been so far considered in the
literature: Wang et. al. [9], [10] use self-test, in order
to check whether the component acts correctly within a
new environment. A simple case study for this
approach is presented in [11]: A COTS component of
binary search was enhanced with self-test mechanism.
In contrast, Gross [4] uses contract test in order to
ensure that server components fulfill the expectations
of their clients.

In [8], an architecture for BIT within a runtime
system was presented. The BIT facilities are used by a
separate handler and tester component: The tester
component can configure and execute the test modules
that are provided by the CUT. The test results are
processed by the handler component which takes
responsibility for a certain quality property of the
system e.g. avoiding resource dead lock (centralized
test). This architecture presupposes that all defects can
be detected and handled by test cases supplied by the

developers of the CUT. But the developer of the
component cannot foresee all possible use scenarios of
the component and sometimes the test reaction affects
only part of a system. In other words, a client
component often needs to test its server and react to
the tests from its point of view. If the test cases for the
server functionality are brought by the server only,
they represent merely the server aspect, and thus they
cannot test whether the server component acts as the
client component in the environment expects. In
MORABIT we therefore support all six possible
responsibility distributions for the testing process.
Note that this discussion is independent of whether the
test cases are associated with a component at
development time or generated at runtime. In the
following we call all tests requested by the CUT self-
tests and all tests requested by a client or a specific
component contract-tests.

To our knowledge there does not exist an
implementation of the BIT concepts so far. So the
mentioned approaches do not define in detail how to
perform the test concurrently with the business logic.
In particular it must be ensured through test isolation
that the original business functionality is not
compromised and through resource monitoring that
system performance is not compromised. In the
following we sketch how this is achieved by the
MORABIT approach.

3. Auction Scenario and Runtime Failures

In this section we sketch a simple auction system
which we have realized and tested to evaluate our
infrastructure.

In the auction scenario the participants
communicate with the auction house via mobile
devices e.g., laptop or PDA. Unlike fully electronic
auction applications like ebay, the users of this system
need to actually be present at a physical auction. The
system supports the auction by allowing users to offer
and bid for items, use facilities such as e-mail etc., and
conduct payment transactions electronically.
Participants come and go, and thus the components
with which the auction house component
communicates are steadily changing. After registration
participants can join auctions. Then they can bid for
items in the auction. At the end of an auction the
auction house notifies the winner and asks him or her
to authorize payment. After successful money transfer,
the winner gets the auction item. The currency of the
winner account may differ from the currency of the
auction house. Altogether the software system consists
of an auction house component, several participant
components, at least one bank and currency converter

component. So which kind of problems can be
detected through runtime testing for such a system?

Typical test concerns for BIT are described in [8],
[9], [10]. In [9] static inconsistencies due to design,
implementation and maintenance errors are
distinguished from dynamic inconsistencies due to
resource errors, code corruption (e.g. through a virus),
environment incompatibilities, configuration errors and
bugs. Only dynamic inconsistencies are the focus of
BIT such as resource errors or configuration errors. In
dynamically built systems that cannot be fully
assembled at development time, dynamic
inconsistencies errors can arise also due to
incompatibilities between components. A component
might not deliver its expected service, because there is
a misunderstanding with the client component. These
errors are the focus of contract testing. The
misunderstandings concern the contract between the
components in terms of inputs, outputs, states,
exceptions and quality metrics.

In the following we give some examples for such
misunderstandings within the auction scenario:

- Input order misfit: At the end of an auction
and payment authorization, the auction house
has to invoke the method “transfer money” of
the bank with the arguments: source account,
target account, and money amount. If the
auction house calls the method “transfer
money” with wrong argument order (target
account, source account, money amount), the
transfer will not be successful. Since both
arguments, source and target account, are of
the same type, this will not be detected by the
bank before the transfer is executed.

- Input interpretation misfit: The auction
house could offer a service for automatic
bidding, where an amount is added to a bid
whenever it is no longer the highest. The
input to such a method could be the upper
limit for the bidding. The participant
however, might provide the minimal amount
for the bidding.

- Output interpretation misfit: The currency
converter may convert with less accuracy than
the bank or the auction house expect.

- Control state misfit: A participant tries to
bid in an auction before s/he has joined the
auction.

- Quality misfit: The auction house has a much
longer response time than expected from the
participant.

In the following we discuss how the MORABIT
approach copes with these dynamic inconsistencies.

4. The MORABIT Approach

In this section we present the requirements on and
solution provided by our approach. In section 4.1 we
give an overview of the main use cases and domain
data for developers and testers of MORABIT
components. In section 4.2 we describe how to define
and execute test requests with the help of the
MORABIT infrastructure. Section 4.3 exemplifies how
some of the inconsistencies given in the previous
section are handled by the infrastructure.

4.1 MORABIT Use Cases and Domain Data

As shown in Fig. 1, MORABIT supports the
component developer and test designer in the
preparation of MORABIT components, and the test
administrator and a tester component in the test
execution. The tester component is any component
performing a self-test or a contract-test. A human test
administrator is needed within the MORABIT runtime
environment, in order to (re)configure the
infrastructure e.g., setting the resource aware strategy
to be adopted. The test administrator can also test
components within the MORABIT environment. This
is basically the same use case as the one performed by
a component testing another component. After the
execution of a test the reaction to the test result has to
be performed.
In Fig. 2 part of the domain data model corresponding
to the test component use case is shown. The main
entities are: A MORABIT component is a software
component that offers an extended interface and that is
associated with test requests. An extended interface
consists of a service interface and a testable interface.
The service interface comprises the business
functionality of the component. The testable interface
provides methods to support testing, in particular
methods to set and get details of the logical state.
The test designer provides self-test cases or contract
test cases for the component in terms of a test suite. A
test suite is part of a test request of the component.
The test request is the main information exchanged
between the infrastructure and a component. At
development-time the test designer prepares test
requests to check for inconsistencies. The test request
in addition to the test suite defines test timing policy,
test reaction policy and resources needed. The policies
are explained in section 4.2. The resources are needed
to allow resource-aware scheduling of tests. This is not
treated in this paper.

Figure 1: Use cases

A test request response is the infrastructure’s
answer to a sent test request (e.g. test is performed
now, test is not possible): The result of a test request is
the number of test cases in the test suite which were
performed successfully. Here we distinguish between
confidence (how many test cases have been
performed) and reliability (how many of the executed
test cases were successful). This is useful to also allow
reliability calculations based on the tests. All executed
tests should be centrally captured in a test log.

In the next section we sketch our solution how to
handle test requests.

4.2 MORABIT Infrastructure Concepts

Besides resource-awareness (which is not treated here)
the main feature of the MORABIT infrastructure is the
handling of test requests without compromising the
business functionality of the components.

4.2.1. Test Request Definition. As mentioned in
section 4.1 the test request encompasses all test
information handed over to the infrastructure. The test
suite consists of the set of test cases to be executed.

Figure 2: Domain data model

The test timing policy describes when the
infrastructure is requested to perform the test. There
are different test timing policies:

• idle time tests: When a component is idle, the
component might want to run self or contract
tests .

• server acquisition time tests: Before
acquiring a component as a server, the client
might like to execute tests so that the two
components are only connected, if the test
was successful.

• call time tests: When a client component
calls a method of a server component, it might
like to execute tests.

• periodic tests: As soon as a connection to a
server is established, the client might like to
run tests periodically.

• topology change time tests: If the topology
changes (e.g., components are replaced by
others with the same service interface), a
component may re-execute test cases.

Clearly, not all start times are suitable for each test.
Self-test should be started at idle time, periodically or
triggered through environmental change, while
contract test should typically be started at server
acquisition or call time.

A test reaction policy is needed to react to negative
test results: The test reaction may be component driven
i.e., it is carried out by the component that issues the
test request. As a component driven test reaction the
component may switch to a different way of providing
its own services e.g., use a different algorithm that
does not need the CUT. The test reaction may also be
carried out by the infrastructure (infrastructure driven
reaction). An example for an infrastructure driven
reaction is “try next”, e.g. at server acquisition time
after a failed test the infrastructure tries to find another

server for the requested interface. Infrastructure driven
reactions are to some extent similar to the handlers
mentioned in [8]. However, handlers in [8] are
classified according to specific quality (e.g. ensuring
deadlock freeness), while infrastructure driven reaction
are classified according to the actions which are
performed (e.g., try next).

4.2.2 Test Request Execution and Isolation. For each
active component within the MORABIT environment
the infrastructure checks, whether it possesses test
requests. The infrastructure executes the test requests
according to their test timing policy, and the actual
resource status. One major problem here is that test
cases should not interfere with the business
functionality of the components (we call this test
isolation). Suppose a component B tests component A,
and during the testing process component A receives a
regular business service request from another
component C. How should A react to this request?
There are the following options:
1. Component A responds to the request just as if A

were not tested. If A manipulates resp. uses data
that is already manipulated by the testing process,
A may give a wrong answer to C or to B or both.
Therefore the developer has to indicate whether A
is sensitive to testing.

2. Component A is blocked during the whole testing
process. This may affect the performance of the
whole system, since all components that need the
tested component A have to wait until the testing
process is finished. This option has to be avoided.

3. Component A aborts the testing process and the
original state of A (before the beginning of the
test) is restored. This option will affect the
performance of the components that test
component A, because they have to wait until the
requested test can be completed. Clearly, this
option is not satisfying.

4. Component A is cloned by the infrastructure
before the test starts. The testing process is
performed with the clone and the service process
is performed with the original component. This
option can be very expensive e.g., when, the
number of needed clones becomes very large.

5. The testable interface of component A provides
methods that allow test sessions. These methods
ensure that test data and real data are not mixed
during the testing process. This could be done also
through cloning (driven by the component itself)
or by providing specific methods. This option puts
additional burden on the component developer.

Since there is no optimal strategy for test isolation, we
propose to use a mixture. The infrastructure checks

whether the component A is not sensitive to testing or
provides test sessions. If yes, the service is performed
(option 1 or option 5). If not, the infrastructure tries to
clone the component (option 4). If this is not possible,
the testing process is interrupted (option 3).

4.3 Examples for Test Request

Here we demonstrate briefly two test request examples
that detect misunderstandings mentioned in section 3.
In general, the definition of appropriate test cases for
runtime is not a simple task.

First we treat the input order inconsistency: The
auction wants to test the transfer method of the bank.
This is a case where the CUT (the bank) needs to
provide specific methods in its testable interface (test
sessions). The auction house cannot transfer money
between two real accounts, in order to test whether it
shares the same understanding of the method “transfer
money” with the bank component. If the bank provides
methods for test sessions e.g., “create test account” in
its testable interface, the test case can create two test
accounts, invoke the method “transfer money”, and
finally check the result without changing the real data
of the CUT. Since the auction house does not know the
winner’s bank in advance, its test time policy could be
call time. In the case of a negative test result, the
auction house stops the bank transfer and informs the
winner (component-driven reaction).

Now we treat the output interpretation
inconsistency. Here the problem is the definition of the
test oracle. E.g., if the bank component wants to test
the currency converter, the bank component does not
know the result, since the exchange rate is always
changing. Thus, the test case should be able to set the
exchange rate of the currency converter component,
before calling the method “convert”. That means the
currency converter is sensitive to testing. If the
currency converter does not offer a test session, the
infrastructure has to clone the currency converter
component. Start time is server acquisition time, since
the bank component has to establish a connection to a
reliable currency converter from the beginning. If the
test fails, the infrastructure could test another currency
converter from the available currency converter
components within the environment. Thus, “try next”
is an appropriate test reaction policy (infrastructure
driven). Finally, the infrastructure hands a reference to
the currency converter that fulfils the test requests.

5. Implementation

In this section we present some technical details about
the prototypical implementation of the MORABIT
infrastructure. In MORABIT we have defined a very
light-weight component model which minimizes the
coupling of MORABIT components to the
infrastructure API. This is in accordance with current
trends in industrial component technologies such as the
Spring framework or even the new EJB 3.x standard
and is achieved by using an empty marker interface to
denote MORABIT components. Each component is
defined and introduced to the infrastructure by a
configuration file which specifies its fully qualified
class name enabling the infrastructure to dynamically
instantiate components. At runtime components can
lookup other components offering a specific service by
contacting the infrastructure via a standard service
locator interface. The prototypical infrastructure is
implemented in Java, and the components must also be
implemented in Java. The concepts are, however,
programming language independent. The test code is
not glued to the functional code of the component.
That means, tests can be disabled or enhanced after the
release of the component.

We have implemented the auction scenario
sketched in section 3 as MORABIT components. The
scenario is described in more detail in [2]. The current
infrastructure implementation does not support
distributed components so far. Its foremost aim is to
show that the testing concepts are viable. We believe
that typical concepts for distribution can be added on
top (e.g. load balancing).

We have also implemented first tools to support the
use cases described in section 4.

6. Conclusion

Testing at runtime is a non-trivial task. It plays an
important role for component based system which
cannot be assembled fully at development time. In this
paper we presented the first results of the project
MORABIT. The current MORABIT infrastructure
supports testing at runtime through many useful
features such as test isolation, test scheduling, and
resource monitoring. The developed infrastructure can
also be applied for testing at deployment time. The
flexible structure of the test request allows adding or
discarding test cases within a test suite without the
need to change the source code of the component.
Clearly, the test reaction policies for testing at
deployment time might be different from those at
runtime, since in contrast to testing at runtime qualified

staffs are usually available. After the deployment of
components within a static system some tests may be
removed since nothing will change.

Future work concerns detailed guidelines that
describe how to develop and enhance MORABIT-
components. First ideas are sketched in [6]. In
particular we investigate guidelines that describe how
to derive runtime relevant test cases systematically
considering the inconsistencies that may appear at
runtime.

Currently we are working on tools that alleviate the
definition of test requests e.g. through an Eclipse Plug-
In. We are extending our application example to
evaluate whether we need to enhance the test reaction
or test timing policies.

Acknowledgements

This work is funded by the Landesstiftung Baden-
Württemberg in the project MORABIT. Rainer Malaka
and Matthias Merdes thank the Klaus Tschira Stiftung
for its support.

References

[1] S. Beydeda, Research in Testing COTS Components –

Built-in Testing Approaches, International Conference
on Computer Systems and Application, Cairo, 2005.

[2] D. Brenner, A Case Study for Resource Adaptive
Built-in Test Components. Diploma Thesis, University
of Mannheim, 2004

[3] Component + project, http://www.component-plus.org
[4] H.G. Gross, Component –Based Software Testing with

UML, Springer, Germany, 2004.
[5] MORABIT project site http://www.morabit.org.
[6] B. Paech, A. Atkinson, R. Malaka, L. Borner, D.

Brenner, M. Merdes, D. Suliman and D. Dorsch,
MORABIT delivarable M2, 2006

[7] D. Suliman, B. Paech, and L. Borner Testing Mobile
Component Based Systems. Proceedings of the
NET.OBJECTDAYS, pp 213-223, 2005/

[8] J.Vincent, G. King, P. Lay, J. Kinghorn: Principles of
Built-In-Test for Runtime-Testability in Component-
Based Software Systems. Software Quality Journal,
Springer Science +Business Media B.V., Formerly
Kluwer Academic Publishers B.V, (2002) 115-133.

[9] Y. Wang, G. King, D. Patel, S. Patel, A. Dorling: On
Coping with Real-Time Software Dynamic
Inconsistency by Built-in Tests. Annals of Software
Engineering, Oxford (1999) 283-296

[10] Y. Wang, G. King, and H. Wickburg, “A method for
built-in tests in component-based software
maintenance”, IEEE Computer Science Press, 1999.

[11] Y. Wang and G. King "A European COTS Architecture
with Built-in Tests," Lecture Notes in Computer
Science vol. 2425 / 2002, pp. 336-347, 2002

