

Rückert J, Nguyen D-K, Paech B (2007) "An adaptive dialog core for user interfaces"

Presented at:
ACOMP 2007 - International Workshop on Advanced Computing and Applications, Ho Chi
Minh City/Vietnam, March 14-16, 2007

An adaptive dialog core for user interfaces

Jürgen Rückert, Dinh-Khoa Nguyen, Barbara Paech

Institute of Computer Science, University of Heidelberg, Im Neuenheimer Feld 326
69120 Heidelberg, Germany

Rueckert@informatik.uni-heidelberg.de
Dinh_Khoa.Nguyen@urz.uni-heidelberg.de

Paech@informatik.uni-heidelberg.de

Abstract. User interfaces are the bridge between users and usually one
application core at runtime. In order to be integrated with new application cores
the user interface must be recompiled, repackaged and redeployed so that it
works correctly with the new cores and their specific technology. In this article
we outline our solution and present a detailed design model of a user interface
which can be configured dynamically and can integrate required application
cores at runtime.

Keywords: user interface, application core (back-end, server, web service),
dynamical configuration and adaptation, dialog core.

1 Introduction

The service-oriented architecture (SOA) becomes more and more popular in the field
of business applications. However so far, developers have discussed mostly the
construction of web services and their interoperability with other web services,
namely the back-end of business applications. But there are a lot of complementary
technologies that could by applied as back-ends for service-oriented applications. In
this paper we introduce the idea of an adaptive dialog core, which allows runtime
integration of several back-end technologies at the same time.

In section 2 we outline the concept of our adaptive dialog core. In section 3 we
detail the concept by presenting the design model and some design decisions. In
section 4 we summarize the article and give a short outlook in which areas the
concept might be useful and should develop in future.

2 Outlining the Adaptive Dialog Core

In this section we present an application scenario in which the adaptive dialog core
can be applied (2.1), we explain the general role of a dialog core in user interface
architectures (2.2), we present the components of our adaptive dialog core (2.3) and
we finally specify the targeted flexibility of the adaptive dialog core (2.4).

2.1 Application Scenario

The motivation of this paper comes from the lecture Software Engineering of modern
applications – component-based, service-oriented or mobile systems given by Prof.
Barbara Paech at the University of Heidelberg [2] [3]. During this lecture the students
realize the application scenario Auctions with four different architectures. The
Auctions application scenario (similar to eBay) enables users to take part in auctions
in order to buy or sell items. The web application consists of a user interface (UI) and
an application core. In contrast to the mostly constant UI, the application core is to be
realized with servers and web services of four different technologies:

• JSE [5] Server: foreseen to hold application data in memory only
• JEE [6] Server: foreseen to persist application data in a database
• AXIS [8] Web Service: foreseen to hold application data in memory only
• JEE Web Service [6]: foreseen to persist application data in a database

In the lecture the students create four shipments each of them containing both the UI
and the application core. As expected, most of the UI is reused in all four shipments
and only a small piece of the UI, the one that communicates with the servers and web
services, is exchanged, namely the dialog core.

2.2 Dialog Core

The UI is built based on the reference architecture of UIs introduced in [2], which is
shown in figure 1. The most important component in this model is the dialog core,
which is the interface component to the application core. The dialog core offers an
interface DE for receiving dialog events from the presentations (views). It uses the
interface AF of an application core for consuming offered functionalities.

GUI engineGUI

front-end

(e.g. Motif,
Swing)

Application
core

Dialog component

Session Control and Management

Presentation Dialog core

Dialog manager

PE

A

DE AF

SY AE

Transaction
manager

Authentication

Fig. 1. Reference architecture of a user interface [4]

2.3 Adaptive Dialog Core

In a SOA environment we expect to have several application cores in different
technologies (e.g. distributed Enterprise JavaBeans or web services). We therefore
need to design a dialog core, which integrates and adapts to new servers/web services
at runtime without having to recompile, repackage and redeploy the UI.
Figure 2 visualizes the usage of such an adaptive dialog core. The adaptive dialog
core provides four functionalities F1 to F4 technology-independently through the
interface DE (see figure 1) to the Presentation component (see figure 1). Each
functionality Fx is offered by a technology-dependent application core, e.g. a JSE
server, a JEE server (like JBoss), an AXIS web service or a JEE web service (like
JBoss web service). Generic integrator components (technical adapters) are
responsible for communicating with the application cores and offer the functionality
Fx to the dialog core by hiding the specific technology.

Dialog component (partially shown)

<<Adaptive
dialog core>>

<<JSE Server>>

Java object

<<(JBoss) JEE Server>>

Java session bean

<<AXIS Web Service>>

Web service

<<(JBoss) JEE Web Service>>

„Enterprise“ web service

<<Invoker>>

JSEObject

<<Invoker>>

JEESessionBean

<<Invoker>>

AXISWebService

<<Invoker>>

JEEWebService

F2

F3

F4

F1F1

F2

F3

F4

F1
F2
F3
F4

<<Configuration
information>>

Internet Intranet

Java Virtual Machine

Fig. 2. The adaptive dialog core and its technical adapters as new components of the UI

2.4 Flexiblity

Configuration of connection parameters. Application cores are realized by different
technologies and require therefore adapted UI engines. In order to communicate with
web services, it is e.g. necessary to generate stubs (as technical adapters) and package
them into the UI in order to create, send and receive SOAP messages. By using our
approach of an adaptive dialog core, we would offer a generic, configurable web
service invoker that allows switching to another application core at runtime without
having to recompile and repackage the UI.

Configuration of functional mapping. Moreover, application cores can also
provide different functionalities. In case of an eShop, we can imagine that shopping
cart functionality (F1), user registration (F2), credit card check (F3) and purchase
order (F4) are provided by different application cores. However, all these four
functionalities should be made available to users through the UI. The adaptive dialog
core can fulfill this demand by configuration.

Configuration of QoS. In case a JEE web service drops out suddenly and hence
the data cannot be persisted any more, a pre-configured JEE server could replace it
immediately. We imagine that the adaptive dialog core knows about redundant
application cores and switches automatically to one of these in case a breakdown
occurs. For other quality of service (QoS) demands, like security (encryption,
signatures and authentication), we imagine that users may want to choose the
appropriate application core in the UI by themselves, in order to fulfill their quality
demands.

3 Designing the Adaptive Dialog Core

In this section we present the design class diagram of the adaptive dialog core and
give some details of the design decision we took during creating the class diagram.

3.1 The Model

The model of our adaptive dialog core is presented in figure 3 as UML class diagram.
The DynamicAdaptionModel enables us to configure several dialog cores. It
offers several Operations to the dialog core, which actually correspond to the
functionalities F1 to F4 from figure 2. These operations are named e.g. like “register”,
“login”, “observeAuction” and “bid”. An Operation has multiple
OperationInputParamter, one OperationOutputParamter and can
throw several OperationExceptions. Each Operation can be called and
executed by an Invoker, or more precisely a subclass of the abstract class
Invoker which is a customization for a specific technology. In case there is no
Invoker that integrates your application core, you have to add such by yourself. A
JSEObjectInvoker is instantiated in the same Java Virtual Machine where the UI
lives and is able to call local operations. A JEESessionBeanInvoker is able to
call operations of distributed JEE Session Beans, which are hosted by a JEE
Application Server. A WebServiceInvoker is able to send and receive SOAP
message to and from Web Services. The libraries needed for the invocations of local
and remote operations can be received via RemoteJar. At last, according to which
technology we want to integrate, the Operations of the appropriate Invoker will
be mapped to those of the dialog core at runtime. Although the input and output
parameters can be defined using complex data types, it is sufficient to apply a
SimpleMapping when mapping the input and output fields of the dialog and
application core operations.

3.3 Design Decisions

Java platform. The UI of the application Auctions should be implemented as a
web application by using Java Servlets [6], JavaServer Pages [6], JavaServer Faces
[6] or web frameworks (Struts, Tiles etc.). The adaptive dialog core, as a component
of the UI, is however independent from the presentation technology and can be
implemented in pure JSE [5].

Remote libraries. Because our adaptive dialog core targets the Java platform,
application cores have to offer Java libraries that allow communication. Libraries
must contain Java classes. Because these libraries are necessary they have to be
downloaded in the UI through Internet from the application core provider at runtime.
Because the UI is implemented in JSE, we solve this problem by using the JSE class
URLClassLoader and JarURLConnection for loading a class dynamically
over HTTP. In order to be integrated with e.g. Web services, our adaptive dialog core
must be able to access jar files of SOAP libraries like soap.jar, saaj.jar etc. For
integration with a SAP system we need a SAP client adapter for Java called jco.jar
(Java Connector) in order to perform a remote function call (RFC).

Single operation output parameter. We decided to model operations with only
one output parameter because we target the programming language Java. Fortunately
this assumption does not limit the capabilities of web services cause several web
service message parts can be handled by one complex XML Schema type (like WSDL
2.0 [10] assumes).

Fig. 3. Design class diagram of the adaptive dialog core

4 Summary and Outlook

In this article we outlined the idea of an adaptive dialog core for service-oriented user
interfaces that allows technical and functional integration of multiple application
cores at runtime (section 2). We proposed a model for the adaptive dialog core and
explained important design decisions (section 3).

Development of business applications using service-oriented technologies and
frameworks is taking place intensively and is becoming an important business
strategy among rival software companies. In future, customers of these software
companies will get more choices which products they will rely on, especially when
enhancing their existing system landscape with new back-ends, then consisting of
mixed installations, e.g. SAP NetWeaver platform plus Microsoft .Net platform plus a
JBoss open source platform. Our approach enables software consumers to integrate
UIs with back-ends in a fast and flexible way.

But our approach might be useful in the area of service grids as well. A grid
service provider is someone who bundles several grid providers. The grid providers
offer special features of their grid, e.g. high computing performance or high I/O
performance. Thus, when the grid service provider receives a request from a grid
service user, it will consider which grid provider would be most suitable to fulfill this
request and then delegate the request to that grid provider. Therefore, we think of
enhancing the adaptive dialog core with a quality of service component in future.

References

1. J. Rückert, J. Horvat, D.-K. Nguyen, S. Becker, B. Paech: Modell for Adapting Dialog
Cores. Modellierung 2006, Workshop Quality of Models. Innsbruck, Austria, 2006.

2. B. Paech: Lecture notes “Software Engineering of modern applications – component
based, service oriented or mobile systems“, Institute of Computer Science, University of
Heidelberg, Germany, 2006 (in German).

3. J. Rückert, B. Paech: Software Engineering of modern applications. SEUH 2007
(Education of Software Engineering in Universities). Stuttgart, Germany, 2007 (in German).

4. J. Siedersleben: Moderne Software-Architektur, Dpunkt Verlag, 2004 (book in German).
5. Java Platform, Standard Edition (JSE), Version 5. http://java.sun.com/javase/. Sun

Microsystems.
6. Java Platform, Enterprise Edition (JEE), Version 5. http://java.sun.com/javaee/. Sun

Microsystems.
7. JBoss open source JEE Application Server (JBoss AS), Version 4.0.5. http://www.jboss.org/.

JBoss.org.
8. Apache AXIS 2, Version 1.1. SOAP implementation. http://ws.apache.org/axis2/. Apache.
9. SOAP 1.2. http://www.w3.org/TR/SOAP/. W3C Recommendation, 24 June 2003. World

Wide Web Consortium.
10. Web Services Description Language (WSDL) 2.0. http://www.w3.org/TR/wsdl20/. W3C

Candidate Recommendation, 27 March 2006.

