

Copyright © [2007] IEEE

Reprinted from Proceedings of the Second International Conference on Software
Engineering Advances (ICSEA 2007), Cap Esterel, France, 25.-31. August 2007, p. 41

This material is posted here with permission of the IEEE. Internal or personal use of this
material is permitted. However, permission to reprint/republish this material for advertising
or promotional purposes or for creating new collective works for resale or redistribution must
be obtained from the IEEE by writing to pubs-permissions@ieee.org

By choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

The Testing Process - A Decision Based Approach

Lars Borner
University of Heidelberg

Im Neuenheimer Feld
Heidelberg, Germany

borner@informatik.uni-heidelberg.de

Timea Illes-Seifert
University of Heidelberg

Im Neuenheimer Feld
Heidelberg, Germany

illes@informatik.uni-heidelberg.de

Barbara Paech
University of Heidelberg

Im Neuenheimer Feld
Heidelberg,Germany

paech@informatik.uni-heidelberg.de

Abstract-Software processes often focus on artifacts, activities and
roles, treating decisions to be made during the software
development process only implicitly. However, awareness of these
decisions increases their quality by forcing the decision-makers to
search for alternatives and to trade off between them. In this
paper, we propose a decision hierarchy for the testing process.
This hierarchy comprises all decisions made during testing and
reflects dependencies between them. Additionally, we present the
results of four case studies to which we applied this decision
hierarchy.

Keywords- decision; testing process; system testing; integration
testing; knowledge management

I. INTRODUCTION
Today’s software systems consist of numerous software

components; they realize countless requirements and are
developed in an industrial environment limited by high time
and resource constraints. In order to assess to which extent a
software system or its parts fulfill the requirements, testing
activities have to be performed. Since complete testing is
impossible [17], testers are forced to make decisions, i.e. to
decide which parts of the software system have to be tested in
which way. Usually, these decisions are made implicitly by the
corresponding roles and often, the responsible persons are not
aware of the decisions they made. However, the awareness of
decisions, can significantly improve their quality. Making a
decision consciously forces the person who has to take this
decision to search for alternatives, to establish selection criteria
and to trade off between advantages and disadvantages of
several alternatives. Consequently, the awareness of decisions
leads to better decisions compared to implicit or ad hoc
decisions and increases the quality of the testing process.

In this paper, we define a decision as follows: A decision
denotes a choice consciously or unconsciously made by a
person or group of persons. A decision made consciously
evolves in the process of discussing possible alternatives and
considering existing success criteria. During the software
development process as well as during the testing process,
several decisions have to be made. The best alternative has to
be selected from e.g. alternative GUI designs, architectural
patterns or testing techniques.

The remainder of this paper is organized as follows. Section
2 describes the generic decision hierarchy for the testing
process, containing decision levels and corresponding
decisions. Section 3 presents results of four case studies, to
which we applied this decision hierarchy. Section 4 gives an

overview of related work and section 5 gives a short summary
and discusses the results of our approach.

II. DECISION HIERARCHY
In our research work we identified the decisions to be made

during the testing process and assigned them to decision levels.
At first, we identified the tasks and roles by analyzing test
process descriptions mentioned in standard textbooks such as
Spillner [23] and Mosley and Posey [18]. Our work is mainly
based on the fundamental test process described in [23]
consisting of test planning and specification, test execution,
capturing and analysing test results. In a next step, we
identified decisions to be made while performing testing tasks
and grouped them into seven decision levels. The result is the
generic decision hierarchy illustrated in Figure 1. Management
decisions and issues, e.g. scheduling or training are not
addressed here, as this would reach beyond the scope of this
paper.

Test goal level

Test design level

Test realization level

Test
Focus

Test
Intensity

Test Design
Technique

Test End
Criteria

Ideal
Test Order

Logical
Test Case

Logical
Test Data

Logical Test
Environment

Concrete
Test Case

Concrete
Test Data

Concrete Test
Environment

Test Run
Evaluation

Concrete
Test Order

Test run level

Test strategy level
Coverage
Criteria

Test Cycle
EvaluationTest evaluation level

Logical
Test Order

Test
BasisSpecification level

Test
Model

Process oriented decisions System oriented decisions
Figure 1. Decision levels and corresponding decisions of the testing process

The principles underlying our decision hierarchy can be
defined by the following rules:

R1 Decision dependencies: Decisions at lower levels
depend on decisions made on earlier levels. If decisions at top
levels are left out, they are implicitly contained in decisions on
lower levels. Leaving out a decision decreases the quality of
this particular decision as well as the quality of all dependent
ones. The goal of making decisions in the proposed order is to
facilitate the decision making process.

R2 Parallelism: All decisions on the same level can be
done in parallel, i.e. these decisions can be made nearly
independently, but they may influence each other. Decisions

that influence each other can be combined to decision bundles.
In Figure 1. decision bundles are represented by a dark grey
box behind the corresponding decision (e.g. test focus and test
intensity belong to one and the same bundle).

Moreover, two different perspectives on the decisions can
be identified. One perspective contains decisions which
influence the testing process (called process oriented
decisions), i.e. which test artifacts will be created. Another
perspective contains decisions concerning the system under test
(called system oriented decisions), i.e. how the system will be
tested. The top level decisions try to give answers to the
question which parts of the software system have to be tested.
The subsequent levels make decisions on how the (parts of the)
system should be tested. On the last two levels, decisions
concerning the evaluation of the test runs have to be made.

In the following, we introduce the different decision levels
and detail the corresponding decisions on each level.

A. Specification Level
The specification level contains decisions which deal with

the completeness of the test basis. The test basis includes all
information needed for a successful start of the testing process
and often consists of the specification of the software system at
different development stages (e.g. requirements specification or
system design specification). The test basis defines a set of test
objects, their behavior, their input and their output as well as
the specification of possible dependencies between the test
objects. We presume the definition in [12] of a software
system, including its specification as well as its implementation
(represented by code) and define a test object as a part of a
software system. At specification level it has to be decided
whether the test basis is complete or not. If information in the
test basis is missing, it has to be added. If important
information is missing in the test basis, critical parts of the
software can be overlooked and thus remain untested. The
decisions on this level influence nearly all decisions on the
lower levels.

B. Test Goal Level
Considering that a software project usually is limited in

time, not all parts of the test basis can be tested. Therefore, at
test goal level it has to be decided which parts of the system
have to be tested and which not. For this purpose, it is essential
to possess a complete test basis in order to select the critical
test objects. We denote all parts of the system which have been
selected to be tested as test foci. Usually, the test foci represent
all critical parts of the test basis. Critical in this context means
e.g. that the corresponding parts of the software will often be
used during run time, they will cause high damage (to the user,
to the software system or to the environment) if they fail, they
are very complex so that the probability to fail is high or they
contain already known defects.

Besides time pressure within the testing process another
constraint influences the decisions on this decision level: cost.
The cost constraints lead to a limitation of resources needed in
the testing process. Therefore, the existing resources have to be
split up among several test foci. To concede the correct
assignment of resources to the various test foci, it has to be

decided which test intensity (measured e.g. by man days or
funds) a single test focus has to be assigned to.

The test intensity and test foci influence each other and
consequently belong to a bundle. Decisions on the test end
criteria can be made independently from this bundle. The test
end criteria define conditions which have to be fulfilled to
finish the testing activities, e.g. they can give information on
the required rate of successful test runs.

C. Test Strategy Level
This level contains decisions concerning the test strategy to

be used. The test strategy comprises decisions related to the test
design techniques to be used, the test model(s) and its
coverage(s) as well as the ideal test order. One decision to be
made concerns the test design technique which will be used to
derive test cases and test data from the test basis. For each test
level (system, integration and unit test level) a countless
number of test design techniques can be found in the literature
(e.g. in [3], [4], [17], [23]). Therefore, existing test design
techniques, the defined test foci and test intensities have to be
taken into account in order to select the most adequate test
design technique(s). In parallel, decisions on the test model
have to be made. A test model facilitates the derivation of test
cases and test data in comparison to the derivation from an
informal specification. A state based model or a control flow
model are examples of test models. A test design technique
influences the selection of the test model and vice versa. Later
in the testing process, the selected test design techniques have
to be applied in order to derive test cases and test data to
achieve the given test coverage and to fulfill the test coverage
criteria. The test coverage is an indicator for the number of test
cases to be derived. The test design technique influences the
decision on coverage criteria and vice versa.

Furthermore, on this decision level an ideal test order to
test the different test objects has to be specified. The ideal test
order represents an optimal order to test the different parts of
the system by taking into account the information on the test
foci and on test intensity. An example of such an ideal test
order could be that all test objects with the highest test intensity
should be tested first, followed by the ones with the next lowest
intensity and so on.

D. Test Design Level
The test design level is the most important and most

complex level of the testing process. The main decision on this
level is how to test the different test foci, i.e. the selected test
objects. Therefore the given test design techniques are applied
to derive logical test cases (also called abstract test cases) [13],
[23]. A logical test case gives an abstract description of how to
test a specific aspect of the objects under test. In parallel to the
test case design, it has to be decided which logical test data
serve as an input for the test objects within the test case. The
logical test data represent the abstract description of the data to
be sent to and returned by the test object. Both, the
specification of a logical test case and the required test data, are
connected. A logical test case without the required logical test
data is not complete and vice versa.

The third decision on this level concerns the definition of
the logical test environment. The decision comprises the kind

of tools, software and hardware needed during the execution of
the test cases. The description of the logical test environment is
also abstract similar to the specification of the logical test cases
or test data and represents the general requirements on the test
environment.

The last decision at test design level discussed here is
related to the logical test order. This order refines the ideal test
order considering dependencies between test cases as well as
information about planned test environment factors. Execution
efficiency and parallelism are main criteria influencing this
decision.

E. Test Realization Level
The test realization level details the logical representation

of the test cases, of the test data as well as of the test
environment. It contains all decisions which influence the
execution of a test case. This level contains decisions on the
concrete test order, on concrete test cases, concrete test data
and the concrete test environment. Setting up the concrete test
order means to identify an actual executable test order
considering the logical test order and the project environment
factors. In parallel, the logical test cases are refined by
concrete test cases. Thus, information on the specific behavior
of the test case and the test object is added. Concrete test cases
contain all information needed to execute the test case. To
complete the specification of a concrete test case, the detailed
description of concrete test data is needed. Consequently, it
has to be decided which concrete “instances” of the logical test
data are used in concrete test cases. The decisions on the
concrete test environment consider the description of the
logical test environments and the specification of the logical
test cases. The concrete test cases need a corresponding
concrete test environment (e.g. the specification of concrete
hardware and software needed) in order to be executable.

F. Test Run Level
The test run level deals with the evaluation of test run

results. After the execution of a test case the test run
evaluation decides, whether the test run revealed a defect. If
this is the case, a state (e.g. “open”), a priority (e.g. “critical”)
and a weight (e.g. system crash) have to be assigned to the
corresponding defect [23].

G. Test Evaluation Level
This level contains the decision whether test activities can

be finished. The decisions on the test cycle evaluation check
whether the test end criteria have been fulfilled and whether
every test focus has been tested with the required test intensity.
Furthermore, the defects not found within this test cycle are
estimated by using for example a metric like the defect
detection rate. The decision not to finish the test cycle, leads to
a new iteration of some (or maybe all) of the testing tasks and
decisions.

III. APPLYING THE DECISION HIERARCHY
We validated the decision hierarchy in several case studies

by applying it in different contexts: As a framework for the
comparison of system and integration testing processes (A) and
as a framework for the evaluation of testing tools (B).

Additionally, the decision hierarchy served as the basis for test
process analysis in an industrial case study (C) and as a
framework for classifying testing research (D). The results of
these case studies are summarized below. A detailed
description of the results can be found in the technical report in
[5].

A. Evaluation Framework for System and Integration Testing
Processes
We applied our decision hierarchy to the system testing

process (STP) and integration testing process (ITP) in order to
identify the specific issues and decisions of both processes by
instantiating the generic decision hierarchy. Figure 2.
summarizes the main results. It illustrates all decision levels as
well as the corresponding decisions of the generic testing
process (left column), the specific decisions of the system
testing process (middle column) and of the integration testing
process (right column). Specific decisions in the middle and the
right columns refine corresponding decisions of the generic
testing process at the same decision level. This is illustrated in
Figure 2. by using two labels within one “decision box”. The
upper label of a box describes the decision of the generic
testing process. The lower label specifies the corresponding
specific decision of the STP, respectively of the ITP.

Within the STP as well as within the ITP, decisions
concerning the test basis and test focus are refined. Both testing
processes deal with different kinds of information and
specifications, e.g. functional and quality requirements within
the STP and components and dependencies within the ITP in
order to decide on critical parts to be tested. On test strategy
level the integration testing process defines several integration
rules to provide guidelines for the later integration test order.
Within the STP decisions on model coverage and the degree of
automation refine the generic decisions.

At test design level both processes refine the decisions on
the logical test environment and the logical test order. Within
the STP, the kind of external systems and the automation tools
to be used in the test execution phase are decided, whereas
within the ITP decisions on the required stubs, drivers,
monitors and the points of observation and control are made.
Within the ITP the focus of the test order lays on the
integration order and the integration step size, i.e. the order and
the number of components added within one integration step.
At this level, the STP decisions on the optimal test case order
minimizing the setup-overhead for the test cases play an
important role.

At test realization level the STP refines the decisions on
concrete test data and concrete test cases whereas the ITP deals
with decisions on the concrete test environment and the
concrete test order. Especially for the STP, decisions
concerning GUI steps are important in order to define the
concrete test cases. Moreover, GUI data is used to select
concrete test data. In parallel, the GUI layout, i.e. how the GUI
data is arranged on the screen, influences the concrete test
cases. At test realization level, the ITP defines a concrete test
order considering the real completion time of every component,
the integration rules, order, and step size. Furthermore,
decisions on how to prepare the test object (e.g. inserting points
of control and observation), how to implement concrete
monitors, stubs and drivers have to be made. At the last two

decision levels there are no specific decisions within the STP
and the ITP.

B. Evaluation Framework for Testing Tools
The decision hierarchy served as the basis for the design of

a questionnaire used within a survey evaluating 13 commercial
and open source test management tools [15]. The evaluation is
primarily based on the information provided by tool vendors
who completed the questionnaire. The goal was to analyse to
what extent a decision is supported by a test management tool.
Based on the decision hierarchy, questions addressing the
functional characteristics of the testing tool can easily be
derived. E.g. if a test management tool integrates requirements
management functionality, it would provide support for
decisions on specification level by facilitating the identification
of functional and quality requirements.

C. Test Process Analysis
Based on our decision hierarchy, the testing process of an

organisation was analyzed in order to find its strengths and
weaknesses. The organisation we refer to provides system
solutions in the area of remote operations. Testers in this
organisation are organized in an independent testing group. The
ratio of testers to developers is 1:4. The test process analysis
was based on document reviews as well as on interviews. All
interviewees are experienced testers, with up to ten years of
experience. In the following we describe the results of our
analysis.

All decisions at specification level are made by the
requirements engineering team, whereas the rest of the
decisions are made by the testing team. Furthermore, there are
decisions made implicitly, e.g. all decisions at test goal and test
strategy level and decisions made explicitly, e.g. all decisions

at test design level. Implicit decisions are not documented,
whereas explicit decisions are (partially) documented within
test artefacts. All decisions on test goal and test strategy level
are made implicitly. The testing team does not perform a risk
analysis in order to make sound decisions on test foci or test
intensities. Thus, the end of testing activities is not determined
by criteria defined in advance, but by current test results and
the “feeling” of the testing team regarding the maturity and
quality of the product. The test team uses two “standard” test
design techniques (domain testing and boundary value
analysis). Other techniques are not considered and evaluated
with respect to their efficiency in the project’s context. Thus,
decisions on the test model, the design technique as well as on
coverage criteria are made implicitly, without a thorough
analysis of alternatives.

Logical test cases and test data are explicitly defined on the
basis of requirements and documented within a test
management tool. Decisions concerning concrete test cases and
test data are made explicitly and are mostly documented during
test execution within test protocols. The decision on the
concrete test order is made explicitly, but only documented in
the case of a failed test run. A matrix of concrete test
environments is also managed by the testing team. Decisions
on logical test environments as well as on the logical test order
are made implicitly and are not documented.

The evaluation of a test run is made explicitly for each
executed test case. If a failure occurs a process concerning the
life cycle of a defect is passed through, from its classification,
localization and correction until its retest. At the end of a test
cycle, the test team evaluates the results. This decision is made
explicitly, but only summarizes the test results. Since the
definition of test end criteria is not performed, the evaluation of
the test cycle occurs without a reference to defined criteria.

Test Goal Level

Test Design Level

Test Realization Level

Test Run Level

Test Strategy Level

Test Evaluation Level

Test Design
Technique

Test End
Criteria

Ideal
Test Order

Logical
Test Case

Logical
Test Data

Concrete
Test Case

Concrete
Test Data

Concrete
Test Environment

Test Run
Evaluation

Concrete
Test Order

Test Cycle
Evaluation

Test
Intensity

Test
Focus

Coverage
Criteria

Test
Basis

Logical
Test Environment

Logical
Test Order

Test Basis
Components & Dependencies

Test Focus
Critical Components & Dependencies

Ideal Test Order
Integration Rules

Logical Test Environment
Logical Monitors

Logical Test Environment
Stubs & Drivers

Logical Test Environment
Points of Observation & Control

Logical Test Order
Integration Order

Logical Test Order
Integration Step Size

Concrete Test Environment
Concrete Stubs & Drivers

Concrete Test Environment
Concrete Test Objects

Concrete Test Environment
Concrete Monitors

Generic Testing Process Integration Testing Process

Concrete Test Order
Concrete Integration Order

Specification Level

Test
Model

Test Basis
Functional and Quality Requirements

Test Focus
Critical Functional and Quality Requirements

Test Design Technique
Degree of Automation

Coverage Criteria
Model Coverage

Logical Test Environment
Logical Automation Tools

Logical Test Order
Test Case Order

Logical Test Environment
External Systems

Concrete Test Data
GUI Layout

System Testing Process

Concrete Test Data
GUI Data

Concrete Test Cases
GUI Steps

Figure 2. Specific decisions of the system and integration testing process

Implications: The decision based analysis highlights the
following main strengths and weaknesses of the testing
process. Missing involvement of the testing team into decisions
at specification level leads to input which is not well suited to
be used in the testing process. Thus, complex user scenarios are
not part of the documentation provided by requirements
engineers. However, these scenarios would be very precious
for system testing as they lead to realistic test cases.

Another weakness concerns the unstructured decision
process on test goal as well as on test strategy level. Thus, a
thorough evaluation against goals is not possible. Improvement
efforts should concentrate on methodologies which help testers
to define objective and measurable goals in advance. A strength
of the testing process is the thorough documentation of
decisions concerning test cases and test data supporting the
repeatability of test runs e.g. within regression testing.

D. Evaluation Framework for Testing Approaches in the
Literature
The decision hierarchy can also be used as a framework for

the comparison of different testing approaches. It permits the
classification of approaches depending on whether they provide
(automated) support for a specific decision or not. Figure 3.
exemplifies how approaches for use case based testing can be
compared to one another on the basis of the decision hierarchy,
where this example considers only three of the seven decision
levels. A complete overview of all approaches is presented in
[14]. Comparing the approaches on the basis of the decision
hierarchy allows the analysis of their similarities and
differences. As illustrated in Figure 3. some decisions, e.g. the
decision concerning the test model, are supported by all
approaches, whereas other decisions, e.g. the decision
concerning quality requirements, are partially supported by

only a subset of the approaches.

IV. RELATED WORK
A process model, which describes the main phases of the

testing process, consisting of test planning, test design, test
execution and test evaluation activities has been proposed in
[23] by Spillner, Linz and Schäfer. In comparison to our
approach, which explicitly focuses on all decisions to be made
during the testing process, the process model described in [23]
is very generic and does not take decisions into account. The
IEEE standard for software test documentation [10] specifies
all artifacts to be created during the testing process, e.g. test
plan, test design specification, test case specification. The
decisions made within the testing process are not part of the
standard. Another group of related work comprises test process
improvement models like TPI (Test Process Improvement) [16]
or test maturity assessment models, e.g. TMM (Testing
Maturity Model) [6]. The focus of these models is not the test
process itself, but the steps for its improvement, respectively on
criteria to assess the maturity of the organizational testing
process.

A conceptual framework categorizing different decisions
made during requirements engineering has been presented in
[20] by Paech et al. and in [2] by Aurum et al., but these
approaches do not consider decisions to be made during other
phases of the software engineering process. Furthermore, the
system Sysiphus supporting the documentation of decisions
defined in [20] has been realized in [25]. Additionally, several
approaches for the documentation of the decisions made during
the software development process have been proposed in [10].
To the best of our knowledge there is no existing research and
there are no case studies which particularly address the
decision making process within quality assurance activities.

Generic tesing
process System testing process

 P
at

h
an

al
ys

is
 [1

]

 E
xt

en
de

d
U

C
s [

4]

 T
O

TE
M

 [6
]

 S
tru

ct
ur

al
 T

es
tin

g
w

ith
 U

C
s [

8]

A
SM

 B
as

ed
 T

es
tin

g
[9

]

R
eq

ui
re

m
en

ts
 b

y
C

on
tra

ct
s [

19
]

Te
st

in
g

w
ith

 U
C

s [
21

]

SC
EN

T
[2

2]

Si
m

ul
at

io
n

an
d

Te
st

 M
od

el
s [

24
]

Functional requirements X (X) (X) (X) X (X) X X X

Quality requirements (X) (X) (X)

Critical functional requirements X (X) (X) (X)

Critical quality requirements (X)

Test intensity Test intensity (X)

Test end criteria Test end criteria

Test model Test model X X X X X X X X X

Coverage criteria Model coverage X X X X X X X X X

Test design technique Degree of automation X X X (X) X

Ideal test order Ideal test order (X)

Approaches

Specification level Test basis

Test goal level Test focus

Test strategy level

Decision level

Decisions

Figure 3. Applying the decision hierarchy to compare testing approaches, X = Approach supports decision, (X) = Approach partially supports decision

V. CONCLUSION
In this paper, we presented a generic decision hierarchy

which contains decisions to be made during the testing process
at different decision levels. We evaluated our hierarchy in four
case studies.

Our decision hierarchy proved of value for both, for
industry as well as for research applications. Practitioners get a
deeper understanding of the complex decision making process
during testing. Thus, the hierarchy can be used as an
introducing guideline to the complex area of testing processes.
Additionally, this approach increases the awareness of all
decisions which have to be made during the testing process.
The decision hierarchy is useful for researchers, too. At first, it
enriches the body of knowledge on the subject of decision-
making in the area of testing and builds the foundation for
further research in the area of rationale management. Rationale
management research aims at making design and development
decisions explicit to all stakeholders involved. Additionally, as
illustrated in the case studies, the decision hierarchy can be
used by researchers as an evaluation framework in many
contexts.

Based on our experience in applying this hierarchy in the
case studies, we revealed that our approach is universal enough
to be applied in different contexts. But, it is also specific
enough to highlight the similarities and differences of the
subject matters. Additionally, our approach is easily to be
learned. Thus, students as well as practitioners get familiar with
key issues of the testing process without having to get into
details. Finally, our hierarchy eases the communication among
testers by providing a common terminology.

ACKNOWLEDGMENT
We would like to thank all the interviewees for their

cooperation and help in providing information and insight into
documents. Furthermore, we would like to thank Andrea
Herrmann for her helpful comments and Doris Keidel-Müller
for reviewing previous versions of this paper.

REFERENCES
[1] N. Ahlowalia, “Testing from Use Cases Using Path Analysis

Technique”, International Conference On Software Testing
Analysis & Review, 2002.

[2] A. Aurum, C. Wohlin, and A. Porter, „Aligning Software Project
Decisions: a Case Study“. International Journal of Software
Engineering and Knowledge Management, vol. 16, number 6,
pp. 795 – 718, 2006.

[3] B. Beizer, “Software Testing Techniques”, Second Edition, Van
Nostrand Reinhold, New York, 1990.

[4] R. Binder, “Testing Object-Oriented systems”, Addison-Wesley,
2000.

[5] L. Borner, T. Illes-Seifert, and B. Paech, “The Testing Process -
A Decision Based Approach”, Technical Report, SWEHD-TR-
2007-01, 2007.

[6] L. Briand, and Y. Labiche, “A UML-based Approach to System
Testing”, Technical Report, Carleton University, 2002.

[7] I. Burnstein, T. Suwannasart, and C. R Carlson, “Developing a
Testing Maturity Model for Software Test Process Evaluation

and Improvement”, Proceedings of the IEEE International Test
Conference on Test and Design Validity, 1996.

[8] A. Carniello, M. Jino, and M. Lordello, “Structural Testing with
Use Cases”, WER04 - Workshop em Engenharia de Requisitos,
Tandil, Argentina, 2004.

[9] W. Grieskamp, M. Lepper, W. Schulte, and N. Tillmann,
“Testable Use Cases in the Abstract State Machine Language”,
Second Asia-Pacific Conference on Quality Software, 2001.

[10] A. H. Dutoit, R. McCall, I. Mistrik, and B. Paech, “Rationale
Management in Software Engineering”. Springer-Verlag Berlin
Heidelberg, 2006.

[11] IEEE Std. 829-1998, Software Engineering Technical
Committee of the IEEE Computer Society, IEEE standard for
software test documentation, USA, 1998.

[12] IEEE Std. 610.12-1990, IEEE Standard Glossary of Software
Engineering Terminology. New York, September 1990.

[13] International Software Testing Qualifications Board, ISTQB
Standard Glossary of Terms used in Software Testing V1.1,
2005.

[14] T. Illes, and B. Paech, “An Analysis of Use Case Based Testing
Approaches Based on a Defect Taxonomy”. In IFIP
International Federation for Information Processing, vol. 227,
Software Engineering Techniques: Design for Quality, ed. K.
Sacha, Boston Springer, pp. 211-222, 2006.

[15] T. Illes, H. Pohlmann, T. Roßner, A. Schlatter, and M. Winter,
„Software-Testmanagement Planung, Design, Durchführung und
Auswertung von Tests - Methodenbericht und Analyse
unterstützender Werkzeuge“, Heise Zeitschriften Verlag, 2006.

[16] T. Koomen, and M. Pol, “Test Process Improvement, A step-by-
step guide to structured testing” Addison-Wesley, 1999.

[17] G.J. Meyers, “The Art of Software Testing”, John Wiley &
Sons, New York, 1979.

[18] D. J. Mosley, and B. A. Posey, “Just Enough Software Test
Automation”, Prentice Hall, July 2002.

[19] C. Nebut, F. Fleurey, Y. Le Traon, and J.-M. Jézéquel,
“Requirements by contracts allow automated system testing”,
Proc. of the 14th. IEEE International Symposium on Software
Reliability Engineering (ISSRE'03), 2003.

[20] B. Paech, and K. Kohler, “Task-driven Requirements in object-
oriented development”. In Leite, J. and Doorn, J. Perspectives
on Requirements Engineering. Kluwer Academic Publishers
2003.

[21] C. Rupp, and S. Queins, „Vom Use-Case zum Test-Case“,
OBJEKTspektrum, vol. 4., 2003.

[22] J. Ryser, and M. Glinz, “SCENT: A Method Employing
Scenarios to Systematically Derive Test Cases for System Test”,
Technical Report, University of Zürich, 2003.

[23] A. Spillner, T. Linz, and H. Schaefer, “Software Testing
Foundations - A Study Guide for the Certified Tester Exam -
Foundation Level - ISTQB compliant”. dpunkt.verlag, 2006.

[24] J. Whittle, J. Chakraborty, and I. Krueger, “Generating
Simulation and Test Models from Scenarios”, 3rd World
Congress for Software Quality, 2005.

[25] T. Wolf, and A. H. Dutoit, “Sysiphus: Combining system
modeling with collaboration and rationale”, In
http://wwwbruegge.in.tum.de/publications/includes/pub/wolf200
4GIRE/wolf2004GIRE.pdf, 2004.

