

Priorisierung von Qualitätsanforderungen auf der Basis von Risikoabschätzungen

Andrea Herrmann

Institut für Informatik
Neuenheimer Feld 326
D-69120 Heidelberg, Germany
http://www-swe.informatik.uni-heidelberg.de
herrmann@informatik.uni-heidelberg.de

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Dr. Andrea Herrmann

Werdegang:

- ➤ 6 Jahre als Beraterin und Projektleiterin in IT-Projekten
- Seit 2 Jahren wissenschaftliche Mitarbeiterin an der Universität Heidelberg

Interessengebiete:

- > Anforderungen
 - Qualitätsanforderungen
 - Schnittstelle zu Entwurf
- > Projekt- und Wissensmanagement

Motivation: Qualitätsanforderungen

Qualitätsanforderungen

Motivation

Anforderungsbewertung

Entwurfsentscheidungen

Lessons Learned **Erlernbarkeit (QA)**

Benutzerfreundlichkeit (QA)

FA 1

FA 2

FA 3

FA 4

FA = funktionale Anforderung QA = Qualitätsanforderung

Motivation: Bewertung

Qualitätsanforderungen

Wichtig für Entscheidungen in Bezug auf Entwurf, Projektmanagement oder Testen?

Motivation

Anforderungsbewertung

Entwurfsentscheidungen

Lessons Learned Was bedeutet "wichtig"?

Ist die Erlernbarkeit wichtiger als die Benutzerfreundlichkeit?

Vage -> konkrete Qualitätsanforderungen

> Abhängigkeiten, z.B. Erlernbarkeit vs. Effizienz

Nutzen- und Risikoabschätzungen (Wahrscheinlichkeit und Schaden) sind schwierig

Aufbau des Vortrags

Qualitätsanforderungen

Motivation

_Anforderungsbewertung

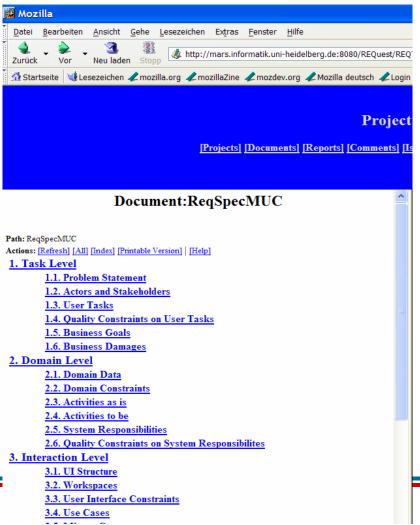
> Entwurfsentscheidungen

Lessons Learned Anforderungsbewertung <-Risikoabschätzungen, z.B. in MOQARE

- Entwurfsentscheidungen <-
 Anforderungsbewertungen
- Lessons Learned aus Fallstudien und Anwendungsbeispielen

Beispiel

Bewertung der <u>Benutzerfreundlichkeit</u> eines Werkzeugs für Anforderungsspezifikation und Entwurf


Qualitätsanforderungen

Motivation

Anforderungsbewertung

Entwurfsentscheidungen

Lessons Learned

Folie 6

Priorisierung von Qualitätsanforderungen Auf der Basis von Risikoabschätzungen

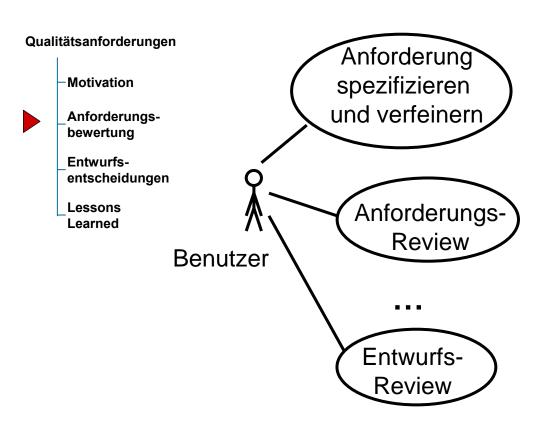
© 2007 Institut für Informatik Ruprecht-Karls-Universität Heidelberg

Im Beispiel durchgeführte Schritte

Qualitätsanforderungen

Motivation

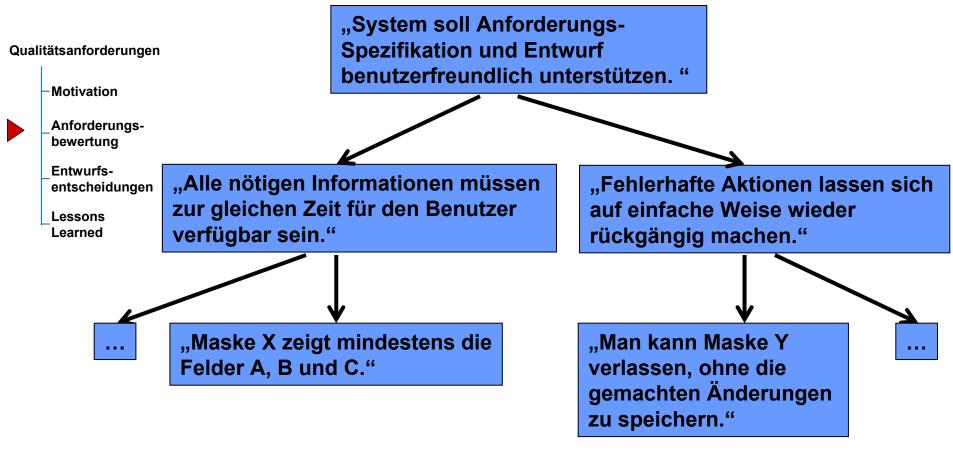
Anforderungsbewertung


Entwurfsentscheidungen

Lessons Learned

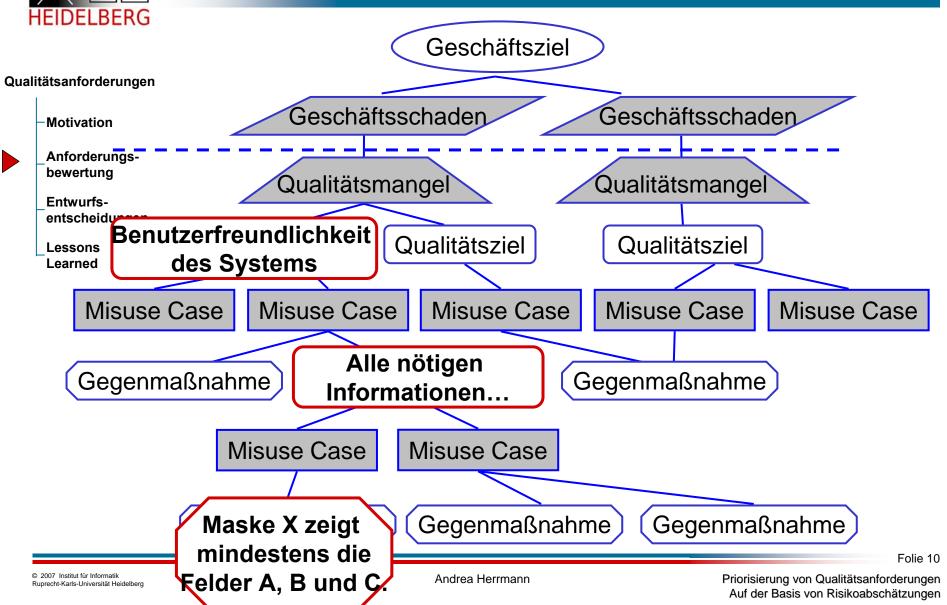
- Funktionale Anforderungen (FA)
- Konkretisierung des QA "Benutzerfreundlichkeit"
- Bewertung der QA
- Test der Software gegenüber den QA
- Versionierung der Weiterentwicklung

Funktionale Anforderungen (FA)


Nutzersichtbündel PunkteTORE (FA) 30MOQARE (QA) 20

ICRAD (Entwurf) 50

Insgesamt 27 Use Cases



Konkretisierung der Qualitätsanforderungen

Konkretisierung & Abhängigkeiten in MOQARE

MOQARE Misuse Tree Ausschnitt

Erhöht Qualität und Effizienz in RE und AD

RE und AD schwieriger als von Hand

Zeit- und Geldverlust

Softwareunterstützung verursacht Fehler

Ineffiziente Prozessunterstützung

Prozessunterstützung

...

Benutzerfreundlichkeit

Systemeffizienz

Benutzerfehler -> schlechte Datenqualität

Nicht alle nötige Inf. auf Benutzeroberfläche -> Aufwand, Datenqual. Zu viel Information auf Benutzeroberfläche -> Aufwand

Unnötige Eingaben

Rückgängig-Machen von Fehlern Alle nötige Inf. auf Benutzerob.

Keine überflüssigen Felder/ Daten auf Benutzeroberfläche Minimum an Pflichtfeldern

Eingabefehler A,B oder C fehlt auf Maske X

Wechselnder Informationsbedarf

Verschiedenes Wissensniveau Unregelmäßige Benutzer

Maske Y
Verlassen ohne
Speichern

Maske X zeigt mind. Felder A. B und C.

Filter

Filter für Anfänger und Experten

Erlernbarkeit des Systems

Was bedeutet "wichtig"? Bewertungskriterien

Qualitätsanforderungei

Motivation

Anforderungsbewertung

Entwurfsentscheidungen

Lessons Learned Nutzen

- Kosten; (Kalender-)Zeit
- Bedeutung der Quelle
- Risiko, z.B. Fehleranfälligkeit
- Dringlichkeit, Sanktion
- Volatilität

Nutzen – Kosten-Abwägung

Bewertung in MOQARE

Erhöht Qualit Effizienz in RE

Faustformel: Nutzen umso höher, je näher zu den Geschäftszielen, d.h. in höherer Ebene

RE und AD schwieriger als von Hand

Softwareunterstützung verursacht Fehler

Ineffiziente Prozessur terstützung

Prozessunterstützung

...

Benutzerfreundlichkeit

Systemeffizienz

Benutzerfehler -> schlechte Datenqualität

Nicht alle nötige Inf. auf Benutzeroberfläche -> Aufwand Zu viel Information auf Benutzerøberfläche -> Zeitverlust

Unnölige Eingaben

Rückgängig-Machen von Fehlern Alle nötige Inf. auf Benutzerob.

Keine überflüssige Felder/ Daten auf Benutzeroberfläche Minimum an Pflichtfeldern

Eingabefehler A,B oder C fehlt auf Maske X

Wechselnder Informationsbedarf

Verschiedenes Wissensniveau Unregelmäßige Benutzer

Maske Y
Verlassen ohne
Speichern

Maske X zeigt mind. Felder A, B und C.

Filter

Filter für Anfänger und Experten

Erlernbarkeit des Systems

SOFTWARE ENGINEERING

Speichern

A. B und C.

graue (unerwünschte) **Bewertung in MOQARE** Elemente: Risiko Erhöht Qualität und = Wahrscheinlichkeit Effizienz in RE und AD x Nutzenverlust RE und AD schwieriger Zeit- und Geldverlust als von Hand Softwareunterstützung verursacht Fehler Ineffiziente Prozessunterstützung Prozessunterstützung Benutzerfreundlichkeit Systemeffizienz Benutzerfehler Nicht alle nötige Inf. Zu viel Information Unnötige Eingaben -> schlechte auf Benutzeroberfläche auf Benutzeroberfläche Datenqualität -> Aufwand -> Zeitverlust Rückgängig-Alle nötige Inf. Minimum an Keine überflüssige auf Benutzerob. Machen von Fehlern Pflichtfeldern Felder/ Daten auf Benutzeroberfläche A,B oder C Eingabe-Verschiedenes fehlt auf Wechselnder Unregelmäßige fehler Maske X Informationsbedarf Wissensniveau Benutzer Maske X zeigt Maske Y Filter für Anfänger Filter Erlernbarkeit des Systems Verlassen ohne mind. Felder und Experten

Bewertung in MOQARE

Erhöht Qualität und Effizienz in RE und AD

RE und AD schwieriger als von Hand

Zeit- und Geldverlust

Softwareunterstützung verursacht Fehler

Ineffiziente Prozessunterstützung

Prozessunterstützung

Benutzerfreundlichkeit

Systemeffizienz

weiße (erwünschte) Elemente: Nutzen - Risiko

nätige Inf. eroberfläche Zu viel Information auf Benutzeroberfläche -> Zeitverlust

Unnötige Eingaben

Rückgängig-Machen von Fehlern Alle nötige Inf. auf Benutzerob.

Keine überflüssige Felder/ Daten auf Benutzeroberfläche Minimum an Pflichtfeldern

Nutzen einer Gegenmaßnahme

= Risikominderung

Maske X

vvechselnder Informationsbedarf Verschiedenes Wissensniveau Unregelmäßige Benutzer

Maske Y
Verlassen ohne
Speichern

fehler

Maske X zeigt mind. Felder A. B und C.

Filter

Filter für Anfänger und Experten

Erlernbarkeit des Systems

Risikoabschätzungen

Qualitätsanforderungen

Motivation

Anforderungsbewertung

Entwurfsentscheidungen

Lessons Learned Risiko abhängig von vielen Faktoren:

- Umfeld: Firma, Kunden, usw.
- Zeithorizont
- System (Referenzsystem)
- andere Risiken bzw. Anforderungen

Referenzsystem

= zusätzlicher Nutzen N(SAB) - N(SA) N(SAB) Referenzsystem SA N(SA) Nutzen von A -= verlorener Nutzen N(SA) - N(S)z.B. Risikoerhöhung N(S)

Nutzen von B

Referenzsystem: Achtung!

Nutzen von B = N(SABC) - N(SAC) !**Nutzen von C** Referenzsystem = **Perfektes System** N(SABC) = N(SABC) - N(SAB) N(SABC) **SABC** N(SAB) **Nutzen von B** N(SAC) = N(SAB) - N(SA)?N(S) N(S)

Nutzen von A + Nutzen von B + Nutzen von C ≠ N(Sabc)!

Folie 18 erungen tzungen

Test der Software/ Versionierung

Qualitätsanforderungen

Motivation

Anforderungsbewertung

Entwurfsentscheidungen

Lessons Learned Test ->

effektiver Nutzen des Systems

= Nutzen des Referenzsystems – Risiko

 Versionierung der Gegenmaßnahmen: höchste Priorität, wenn noch nicht umgesetzt
 höchster Nutzen

Aufbau des Vortrags

Qualitätsanforderungen

Motivation

Anforderungsbewertung

Entwurfsentscheidungen

Lessons Learned Anforderungsbewertung <-Risikoabschätzungen, z.B. in MOQARE

- Entwurfsentscheidungen <-
 Anforderungsbewertungen
- Lessons Learned aus Fallstudien und Anwendungsbeispielen

ICRAD: Bewertungskriterien

Qualitätsanforderungen

Motivation

Anforderungsbewertung

Entwurfsentscheidungen

Lessons Learned

- Nutzen
- Risiko
- Implementierungskosten
- Wartungskosten

Nutzen – Risiko = effektiver Nutzen

IK + WK= Gesamtkosten

- Nettowert = effektiver Nutzen Gesamtkosten
- Nutzen-Kosten-Verhältnis = effektiver Nutzen / Gesamtkosten

ICRAD: Vergleich v Entwurfsalternativen

d	Alternative I	Alternative II	Unterschied (II)-(I)
Implement.kosten	C1	C2	C2-C1
Wartungskosten	CC1	CC2	CC2-CC1
Risiko	R1	R2	R2-R1
Nutzen	N1	N2	N2-N1
Effektiver Nutzen	N1-R1	N2-R2	$(N2-R2)-(N1-R1) = \Delta EB$
Gesamtkosten	C1+CC1	C2+CC2	$(CC2-CC1)+(C2-C1) = \Delta TC$
Nettowert	(N1-R1)- (C1+CC1)	(N2-R2)- (C2+CC2)	(N2-R2)-(C2+CC2) -(N1-R1) +(C1+CC1)
Effektiver Nutzen/ Gesamtkosten	(N1-R1) / (C1+CC1)	(N2-R2) / (C2+CC2)	$\Delta EB/\Delta TC$ = [(N2-R2)-(N1-R1)] /
Purzoby Kada Haiszenität Haidelbara		Апогеа пентнапи	[(CC2-CC1)+(C2-C1)]

Ruprecht-Karls-Universität Heidelberg

Phonsierung von Qualitatsaniorderungen

Auf der Basis von Risikoabschätzungen

Aufbau des Vortrags

Qualitätsanforderungen

Motivation

Anforderungsbewertung

Entwurfsentscheidungen

Lessons Learned Anforderungsbewertung <-Risikoabschätzungen, z.B. in MOQARE

- Entwurfsentscheidungen <-
 Anforderungsbewertungen
- Lessons Learned aus Fallstudien und Anwendungsbeispielen

Lessons Learned aus Fallstudien

Qualitätsanforderungen

Motivation

Anforderungsbewertung

Entwurfsentscheidungen

Lessons Learned

- Anforderungserfassung: MOQARE-Baum als Interviewleitfaden
- Anforderungsbewertung: unterstützt Entscheidungen (Entwurf, Versionierung, ...), ist aber schwierig -> Bündel bewerten & klares Referenzsystem definieren
- Herleitung und Bewertung von Testkriterien für manuelle Systemtests: misst Qualität und Qualitätsverbesserung
- Wissensmanagement durch Listen, Teilbäume und Statistiken

Zusammenfassung des Vortrags

Qualitätsanforderungen

Motivation

Anforderungsbewertung

Entwurfsentscheidungen

Lessons Learned

Anforderungsbewertung verlangt

- Konkrete Anforderungen
- Klare Kriterien
- Berücksichtigung von Risiken
- Berücksichtigung von Abhängigkeiten
- Referenzsystem als Messlatte

Anforderungsbewertung unterstützt:

- Entscheidungen
- Qualitätsmessung

Literatur

Qualitätsanforderungen

Motivation

Anforderungsbewertung

Entwurfsentscheidungen

Lessons Learned

- A. Herrmann, B. Paech: "MOQARE = Misuse-oriented Quality Requirements Engineering - Über den Nutzen von Bedrohungsszenarien beim RE von Qualitätsanforderungen", Softwaretechnik-Trends 26:1, Feb. 2006, S. 13-14
- A. Herrmann, B. Paech: "Software Quality by Misuse Analysis. Technical Report SWEHD-TR-2005-01 (University of Heidelberg, 2005)", http://www-swe.informatik.uni-heidelberg.de/research/publications/reports.htm
- A. Herrmann, B. Paech, D. Plaza: "ICRAD: An Integrated Process for Requirements Conflict Solution and Architectural Design", IJSEKE (International Journal of Software Engineering and Knowledge Engineering), Vol. 16, no. 6, Dec. 2006, S. 917-950
- A. Herrmann, B. Paech: "Lernen aus dokumentierten Architektur-Entscheidungen", *Softwaretechnik-Trends* 26:4, Nov. 2006, S. 22-27

Vielen Dank für Ihre Aufmerksamkeit!

Qualitätsanforderungen

Motivation

Anforderungsbewertung

Entwurfsentscheidungen

Lessons Learned **Andrea Herrmann**

Institut für Informatik Neuenheimer Feld 326 D-69120 Heidelberg Germany

http://www-swe.informatik.uni-heidelberg.de herrmann@informatik.uni-heidelberg.de