

Electronic version of an article published as Requirements Engineering Journal,
Vol. 13, No. 1, Jan. 2008, pp. 73-86

[doi: 10.1007/s00766-007-0058-9]

© [2008] Springer London

Die Originalpublikation ist unter folgendem Link verfügbar:

http://www.springerlink.com/content/bk040603038p3621/

 1

MOQARE: Misuse-oriented Quality Requirements
Engineering

Abstract. This work presents MOQARE (Misuse-oriented Quality
Requirements Engineering), a method to explore quality requirements. The aim
of MOQARE is to support intuitive and systematic identification of quality
requirements. It was developed by integrating and adapting concepts from other
methods (like Misuse Cases). It provides a general conceptual model of quality
requirements, and a checklist-based process for deriving them in a top-down
fashion. This derivation starts from business goals and vague quality
requirements and delivers detailed requirements. MOQARE applies to
requirements on the system to be developed requirements, but also derives
requirements on the development process, including administration and
maintenance. It considers normal and extreme use. The relationships among
these requirements are modeled in a Misuse Tree. MOQARE has shown its
merits in several case studies, one of which is presented here.

Keywords: requirements elicitation, requirements specification, non-functional
requirements, Misuse Cases, quality requirements

1 Introduction

The elicitation of quality requirements (QR) for software systems – also called
non-functional requirements - often starts with quality goals vaguely expressed which
apply to the whole system (e.g.: “The system has to be secure/ easy to use/ fast.”).
However, such requirements are neither detailed enough for being implemented by a
developer nor specific enough for being verified by a tester, nor are they useful for
cost estimation. Therefore, we developed the method MOQARE (Misuse-oriented
Quality Requirements Engineering) which derives QRs from business goals and
details vague QRs into system specific, realizable and verifiable requirements.

Other methods of exploring QRs often are designed for a specific quality attribute
or for a specific activity. E.g. Misuse Cases detail security requirements, and ATAM
(Architecture Tradeoff Analysis Method) supports the evaluation of given
architectural alternatives with respect to QRs. The NFR Framework is applicable to
all types of QRs, but focused on the documentation and negotiation of QRs, and not
on their elicitation from business goals. However, MOQARE is applicable to all types
of QRs, systematic and thorough, and at the same time readily comprehensible for
non-technical stakeholders.

This publication describes MOQARE´s general conceptual model of QRs and the
checklist-based process for deriving them in a top-down fashion. This process was
evaluated and improved in its application in several case studies. One important case
study is presented here.

The article is structured as follows: Section 2 presents the case study setting, since
we use examples from the case study when we present our conceptual model in

 2

section 3 and describe the process of requirements elicitation and specification with
MOQARE in section 4. The case study results are presented in section 5. Lessons
learned are summarized in section 6. Section 7 discusses related work. In section 8,
we conclude with perspectives for further research.

2 Presentation of the Case Study Setting

MOQARE in a case study was applied to the “Uveitis Database” used at the
Interdisciplinary Uveitis Center Heidelberg. This Center was founded in 2001 at the
Otto-Meyerhof-Zentrum. Ophthalmologists and internists work together to diagnose
and treat the non-trivial causes of uveitis, an inflammatory eye disease. The Uveitis
Database is used by doctors, nurses and reception personnel to manage patient data
such as address and age as well as examination results, diagnoses, medication and
operation data at different points of time, both for the analysis and optimization of the
therapy course, and as a data basis for scientific studies. Data are entered manually at
client computers, or – tentatively – on a mobile device. The software is in operative
use, and is being improved and enhanced constantly. In addition to the Uveitis
Database, the documentation of the patients and their data is also being filed in paper.

MOQARE in this case study was used to analyse the QRs of the Uveitis Database.
Knowing the business goals to be supported by the Uveitis Database, we identified
those software quality attributes (QA) which serve these business goals best, e.g.
integrity and privacy of data. From these, countermeasures were derived.
Countermeasures are the detailed requirements and the intended result of the
MOQARE analysis, as they allow to define precisely what quality means in the case
of the Uveitis Database and they allow to improve the quality of this software.

3 Conceptual Model of MOQARE

Quality requirements are difficult to elicit [1]. Misuse Cases have proven to be
intuitive. Therefore, we chose the Misuse Case approach as a basis for detailing QRs
from business goals down to quality goals and further to detailed requirements (here
called ‘countermeasures’). The original Misuse Case principle is: Misuse Cases
foresee the behaviour of a misuser whose activity (or inactivity) constitutes or leads to
misuse of the system or even whose goal is to misuse the system. Such misuse cases
can be defined as “a function that the system should not allow” [2] or as the
description of threats to (security) goals [3]. From these Misuse Cases new
requirements can be derived which prevent or mitigate misuse. In this way, Misuse
Cases help to complement the system specification, also considering extreme use,
exceptions and threats in addition to intended normal and successful use. The
application of Misuse Cases in the area of security has demonstrated that these
considerations help the stakeholders to define in detail what security means in their
domain and how this desired security level can be achieved by technical and
organizational requirements.

 3

MOQARE [4] identifies potential Misuse Cases not only with respect to security,
but with respect to all QAs and derive further requirements thereof. For instance, one
threat to data integrity, is unintentional data corruption by users, and therefore those
software properties and other measures which prevent user errors support data
integrity. In the application of Misuse Cases to all QAs, we found that a more general
terminology is necessary, because Misuse Cases are tailored to security requirements.
As will be shown in section 7, Misuse Cases and several other methods of exploring
QRs, are based on the same general principle: An asset is to be protected from a
threat, and to do so, countermeasures are defined. Therefore we think it is appropriate
to adopt concepts from these other methods. Figure 1 presents an overview of the
MOQARE concepts and their relationships. Table 1 lists examples for most of the
concepts as well as categories, on the highest level of granularity.

Figure 1: The MOQARE concepts: see text for definitions and explanation

A system is developed and used because it supports important business goals.

Therefore, these business goals justify all other requirements on the system. The
business goals usually are threatened by business damages which are partly caused by
quality deficiencies of the system.

 4

The business goals are supported by quality goals of the system. A quality goal is
the combination of an asset plus a QA, which both are to be protected, like “integrity
of the data”. (Remark: A QA describes an aspect or characteristic of quality, while
QRs are instantiations of QAs, i.e. requirements which refer to a defined system.) An
asset can be any part of the system. The quality goals are high-level QRs. Although
stakeholders (e.g. users) usually cannot tell how the system can support their business
goals, they can define the relevant QA.

A quality deficiency means that the asset does not satisfy the QA. The quality
deficiencies concretize how (when/ where/ how much) the system does not satisfy the
QA. This non-compliance can be total or partial, permanent or temporary. For
example, if the quality goal is “availability of data”, the quality deficiency can consist
in temporary inaccessibility for all users or for certain users, irreversible destruction
of the data, corruption of the data, and many more.

A threat is an action (during system use, development, administration or
maintenance) which causes a quality deficiency and consequently degrades the
satisfaction of a quality goal. For instance, testing which neglects usability testing
threatens the usability of the user interface. The threat is usually executed by a
misuser, its driving force. In literature, the misuser often is described in terms of a
misuser motivation, goal or attribute. This might be business damage (i.e. pure
destruction), an advantage for himself like enrichment, or a characteristic of the
misuser (being disgruntled or careless). As we do not want to mix goals, damages,
etc., we either add this information to the misuser description, like in “disgruntled
employee” or in the Misuse Case (as precondition). To identify misusers and threats,
not only normal uses (typical uses of the existing system) are relevant, but also
growth scenarios (these cover anticipated changes of the system; relevant for
maintainability, interoperability, safety and portability) and exploratory scenarios
(these cover extreme changes; relevant for security, reliability, efficiency,
recoverability). These three types of scenarios were proposed by ATAM [5].

Often, the threat is facilitated or even provoked by a vulnerability. A vulnerability
is a property of the system, either a flaw or a side-effect of an otherwise wanted
property, if it can be misused with respect to a quality goal. For instance, concerning
the quality goal “data integrity”, a possible vulnerability can be “lack of usability of
user interface where users enter data”. The corresponding threat then is the
unintentional data corruption (by user error) and the consequence is wrong data. On
the other hand, not each flaw is a vulnerability. If there is no potential misuser for it,
then the flaw is not a vulnerability. So, each system flaw and system property must be
evaluated regarding the quality goal, to decide whether there is a potential misuser
who might threaten the QA of the asset.

How, why and by whom a quality deficiency is caused and quality goal threatened,
is documented in the form and granularity of a Misuse Case which is similar to a Use
Case. Misuse Cases can be modeled as separate Misuse Cases, but also as an
exception scenario as part of a Use Case. In the Misuse Case, the misuser corresponds
to the Use Case´s actor, the vulnerability is a pre-condition, the steps of the threat are
described by a scenario, and the consequences (quality deficiency) are a post-
condition of the Misuse Case. If we call the vulnerability a pre-condition, we assume
that the vulnerability is a necessary (but not sufficient) condition for the threat. There
might also be vulnerabilities which are not a pre-condition but aggravate a misuse.

 5

An example of a Misuse Case, which refers to the quality goal “data integrity”, is
the following:

misuser: mobile device
pre-condition: configuration of data synchronization set on “data set creation”

(vulnerability); user has entered data on mobile device and another user has entered
data concerning the same patient on Uveitis Database

threat: creation of doublets during synchronization of Uveitis Database with mobile
device

scenario:
• mobile device connects to Uveitis Database and starts synchronization
• data conflict is detected, and it is unclear which data are more recent
• new data set is created in the Uveitis Database, containing the data entered

on the mobile device
post-condition: two data sets exist for the same patient

Table 1: Categories and examples of each MOQARE concept

Concept Categories Examples
Business
goals and
business
damages

They belong to the following five dimensions [6]:
product size, quality, staff, cost, (calendar) time.

good therapy for
patients at optimal
cost; valid scientific
studies

Asset An asset is any part of the system. By “system”
we do not only include the software, hardware,
and network, but also the physical building, the
company, the personnel of the system, and the
development, operation and maintenance process.
Firesmith [7] lists: “data, communications,
services, hardware components, and personnel”.
Architecture analysis methods like ATAM mainly
consider architecture components. For us, assets
can be all of these.

Individual patient
data

QA functionality, reliability, usability,
maintainability, portability, efficiency; they can
be detailed further, see the hierarchy of ISO 9126
[8]

Integrity; privacy

Vulnerability a property of the system (the code, design or
software development, operation or
administration process), either a flaw or a side-
effect of an otherwise wanted property, if it can
be misused with respect to a quality goal

lack of usability of
user interface where
users enter data;
time-pressure

Threat theft, intentional destruction, accident,
environment change, error during usage,
development or maintenance

Unintentional
corruption of data;
testing which
neglects usability
testing

 6

Misuser A misuser can be a person, other systems or

forces of nature like fire and thunderstorm.
Security is a special case, where the misuser
either is an intruder or a user who executes a Use
Case he/ she is not supposed to, following a
harmful goal, or a careless user violating security
rules. All other QAs are threatened by regular
system personnel (e.g. end users, administrators
and maintainers, and developers) who try to use
the system as intended, but fail for some reason.

User (like doctors,
nurses and
reception
personnel),
developer,
maintainer

Counter-
measure

Countermeasures can be new functional
requirements (e.g. Use Cases), new or extended
exception scenarios of Use Cases, QR on Use
Case (including metrics if possible), architectural
constraints, user interface constraints, constraints
on project and software development, constraints
on administration or maintenance, or another
quality goal [5][9]-[12]

The objective of the MOQARE analysis is to derive realizable requirements which

describe how the quality goals can be achieved. These requirements are obtained by
identifying countermeasures for misuses. Countermeasures can counteract the threat,
the misuser or his/her motivation, the vulnerability or that the Misuse Case leads to
the predicted negative consequences (e.g., quality deficiency). Countermeasures can
either detect, prevent [2] or mitigate [13]. They might reduce or eliminate the risk, i.e.
the probabilities or the damage severity. Some countermeasures derived, though, are
not realizable, but are on the high detail level of quality goals and therefore demand
further analysis. As the countermeasures can be of different types, each
countermeasure is described by a parameter “type”. Is it a new functional requirement
(FR), a quality goal, a QR on an FR, an architectural constraint, etc.? This parameter
prepares the integration of the MOQARE concepts with the FRs.

The MOQARE concepts can be collected in a Misuse Tree, i.e. a hierarchical
graphical presentation which displays the relationships among the concepts. For an
example see Figure 2.

4 The MOQARE Process

In this section, we describe how we elicit the MOQARE concepts described in
section 3. In MOQARE, the resulting Misuse Tree is more important than the process
itself, which we think must be as flexible as possible, as requirements elicitation is a
creative activity.

MOQARE starts with a set of (usually incomplete) FR of a planned or existing
system. The requirements engineer is guided by a four-step process and supported by
checklists. These checklists represent a compilation of reusable knowledge. It was

 7

gained by classifying the content of checklists collected from literature and is
enhanced by our case studies. (As Firesmith [14] discusses, security requirements are
potentially highly reusable. In the course of our case study, we saw that this is also
true for other QRs.) Table 1 presents the categories for each concept on their highest
level of granularity. The checklists and their sources are published in a technical
report [15]. Separate checklists help to identify each of the following concepts:
business goals, QAs, assets, and misusers. The most extensive lists are these two: a
list of threats, misusers and their countermeasures for each QA; and a list of
vulnerabilities and their countermeasures for several assets, like data or personnel in
general, or specific operating systems or types of software products. More details
about content and structure of these checklists are given later in this section.

MOQARE recommends the identification of the concepts in the following order:
1. Find the quality goals (based on business goals, business damages, and quality

deficiencies).
2. Describe Misuse Cases (including threat, misuser, vulnerabilities, consequences).
3. Define countermeasures.
4. With countermeasures which are quality goals, re-start the cycle at step 2.

This information can be elicited from different stakeholders but also obtained by
document analysis or software (prototype, legacy system) analysis.

These four steps are now described in more detail:
1.) A quality goal is valuable because it supports a business goal. Therefore, it

makes sense to start with the definition of the business goals. This step is guided by
the questions: What is essential to this business? Why is this IT system being
developed? The five dimensions named in table 1 are useful here. In our case study,
the business goals were “good therapy for patients at optimal cost” and “valid
scientific studies”.

After having identified the major business goals, the next question is which
business damages might threaten them. To identify the quality attribute QA to be
protected, we use the ISO 9126 hierarchy of the QAs as a checklist. We use the two
levels of this standard and include a third level for security [15] as is common in the
security community. Probably all QAs must be satisfied to a certain degree, but which
of them have essential influence on the business goals and business damages? From
these QAs, the quality deficiencies are derived as well as the quality goals.

The quality goals are derived from the QAs by adding the affected assets. Each QA
can apply to several assets, and the same asset can be protectable with respect to
several QAs. The asset identification is supported by a high-level checklist (as in table
1) and a more detailed hierarchy of assets. They are far from being exhaustive, but
they help to identify the specific assets in a given system.

As can be seen in Figure 1, the relationships between the concepts are complex.
For each business goal, the business damages and quality deficiencies can be
identified that may threaten it (as has been done above) or, vice versa, it can be
considered which quality goals support the business goal. Both ways will lead to the
quality goals which describe high-level QRs for the system.

 8

2.) Describe Misuse Cases: the misuser is the actor, the vulnerability a pre-
condition, the steps of the threat are described by a scenario, and the consequences
(quality deficiency) are a post-condition of the Misuse Case.

As the same threat can be performed by several different misusers following
different courses of events (e.g. data corruption can be intended by an intruder, but
also be caused by a user making an error, or by corruption by a system breakdown,
system errors, software engineering errors), we start with the identification of the
threats and then derive one Misuse Case per misuser. The Misuse Case creation is
supported by checklists: for each QA, specific threats are listed and for each of them
resulting quality deficiencies, potential misusers and countermeasures. For example,
theft threatens availability and confidentiality, but normally not usability or
efficiency. One can and should use domain specific roles like “ophthalmologist” to
describe the misuser in more detail than in the list.

For a given asset, e.g. a certain operating system, potential vulnerabilities are
known. Therefore, we also use lists of vulnerabilities and their countermeasures. (Our
main source of software, hardware and personnel vulnerabilities and their
countermeasures was a handbook of the German Ministry for Security in Information
Technology [16]; concerning the software engineering process the works of Nakajo
and Kume [17] and of Lutz [18]). They can be used as checklists to consider the most
common vulnerabilities and to trigger ideas for further vulnerabilities and Misuse
Cases not identified on the basis of the threat lists. We think that the vulnerability lists
are relevant to all QAs and depend mainly on the asset, as the same property/
vulnerability can often be misused with respect to different QAs.

3.) Define countermeasures: For each Misuse Case, one tries to find

countermeasures for the threat, the misuser, the misuser´s motivation, the
vulnerability and the caused quality deficiency. Our lists of threats and vulnerabilities
also provide countermeasures, but we do not claim them to be complete. Moreover,
they are quite general, while the ideal countermeasure is concrete, realizable and
system-specific. Therefore, the lists are intended to be used to trigger a system-
specific brainstorming. It is important to add a metric to the countermeasure where
possible. For instance, countermeasures against user errors are usability and fault
tolerance of user interfaces, testing, compliance to standards, plausibility check of
user input, training, and many more.

4.) If necessary, re-start the cycle at step 2: A countermeasure can also be a new

quality goal. For example, the usability of a user interface helps to improve the
integrity of the data, if they are entered by the users manually. In this case, the
elicitation of QRs is not finished with finding all countermeasures, but has to start a
new Misuse Case analysis referring to the newly defined quality goals.

The MOQARE results can be presented in the form of a graph, a “Misuse Tree”

(see in Figure 2 an extract from the case study results), similar to attack trees of van
Lamsweerde et al. [19] or quality models [10], [20]. They also derive detailed
requirements from the QA top-down, but – compared to MOQARE – they lack some
of our concepts, as is discussed in section 7.

A Misuse Tree has the following levels, from top to bottom:

 9

o business goal
o business damage
o quality deficiency
o quality goal
o Misuse Case (including threat, misuser, vulnerability, consequences)
o countermeasure, some of them being quality goals
o Misuse Case
o countermeasure, some of them being quality goals
o …

A graphical tree presentation appears to be natural because for each business goal,
there are several business damages, quality deficiencies and quality goals, for each
quality goal, several misuses and for each misuse several countermeasures. Note that
we call it a tree because of the clear levels. However, strictly speaking, it can be a
graph, see for example Figure 2, where the same quality deficiency leads to several
business damages. Often, the same countermeasure applies to several Misuse Cases.

Two alternative strategies can be used for the MOQARE analysis: Aiming at a
complete analysis of all types of potential threats (actual, future, already prevented,
improbable), all potential threats are considered, and the probability and the damage
are estimated later-on. However, in practical work, the efficient analysis of the actual
quality of the system (or system prototype or design) and the potential ways for
effective improvements are often more desirable. In this case, threats or
vulnerabilities need not be considered where an effective countermeasure is already
intended, or if the threat/ vulnerability is unlikely or not dangerous for other reasons.
In the case study, we concentrated on relevant misuses, i.e., those with significant
probability and those which may cause the most harmful damage.

5 Case Study

As mentioned in section 2, MOQARE was applied to the Uveitis Database which is
in operation at the Interdisciplinary Uveitis Center Heidelberg. MOQARE was used to
describe the QRs of the actual system and to elicit requirements which improve the
system quality.

The analysis of the requirements of the Uveitis database was performed by two
persons: 1.) the MOQARE specialist and 2.) the requirements engineer, developer,
maintainer and administrator, represented by one person, i.e. the domain and system
specialist who knows the software, its FRs and QRs, how it is to be used and how it
had been used during its operation before.

These two persons conducted three interviews of about two hours each. The first
interview specified the FRs resulting in 14 Use Cases. The second interview
produced unstructured QRs, which afterwards were put together to a first Misuse Tree
by the MOQARE specialist and complemented by results of the analysis of the
software documentation and the software itself. Then, a third interview validated and
completed the requirements in the Misuse Tree and was guided by the four steps
presented in section 4. The Misuse Tree was used to structure the requirements and
served as a discussion guideline for the iterated interviews. It summarized the results

 10

of the former interviews and analyses and defined the questions for the following
requirements elicitation. Altogether we gathered 50 countermeasures.

For the sake of simplicity, Figure 2 shows only one section of the whole Misuse

Tree for the Uveitis Database. In the following, we describe the most important
results:

1.) On the business level, we found two business goals, both being equally
important for the Uveitis Database: “good therapy for patients at optimal cost” and
“valid scientific studies”. The first of them has several factors: A good therapy is
based on all the examination results, former medications and their effects. Performing
all possible examinations is neither effective, nor time-efficient, nor cost-efficient. To
identify the best order of examinations and medications, leading to a high quality
therapy at the lowest possible cost, the Uveitis Database has to contribute to the
management and the supply of correct, complete and up-to-date data of patients, their
examination results, medications and diagnosis.

Both business goals - “good therapy for patients at optimal cost” and “valid
scientific studies” - are threatened by the quality deficiency “wrong, missing or
outdated data” as well as by the “disclosure of individual patient data”. With respect
to therapy, wrong, missing and outdated data can lead to the business damage
”suboptimal therapy”, which causes avoidable cost and - in the worst case – blindness
of a patient, who otherwise (i.e. with the right data being available) could have been
cured or at least the illness could have been slowed down. With respect to the
scientific study, wrong, missing and outdated data lead to wrong study results.
Consequently, the study would not be accepted by the scientific community, and the
institute would lose money, time and fame. Individual data of patients are subject to
strict data protection laws in Germany. Although they must be available for the
persons involved in the therapy, and can be used and published in anonymous form in
scientific publications, the individual patient data must not be disclosed to
unauthorized persons. Such a breach of the data protection laws would lead to
litigation with all its consequences (cost, negative publicity, etc.).

The quality deficiency “wrong, missing or outdated data” leads us to the QA
“integrity” and the asset “data”, i.e. the quality goal “data + integrity”. The quality
deficiency “disclosure of individual patient data” leads to the quality goal “individual
patient data + privacy”. On this top level of the analysis, it seems that only mere data
was important in the case study, but later-on the MOQARE analysis will show, that if
we want to control the privacy and integrity of data, the whole process of data input,
processing and output as well as the software development process has to be
controlled.

2.) For each quality goal, several threats, misusers and vulnerabilities could be
derived, using the checklists as a basis for creativity. In the Misuse Tree, we group a
threat with its misuser and vulnerability in a Misuse Case. To keep the size and
complexity of the Misuse Tree at a minimum, we summarized several vulnerabilities,
which lead to similar threats within one Misuse Case.

3.) For each Misuse Case, we derived countermeasures, also using the checklists.
4.) Re-start of the cycle: As was expected, many countermeasures were new

quality goals, like the “usability of user interfaces”. Such a quality goal needs a new
analysis, re-starting at step 2. Usability for instance is a countermeasure for user

 11

errors which threaten the quality goal “data + integrity” and also “individual patient
data + privacy”. In fact, pilot use had shown that user errors are a major source of
invalid data. Hence, further QAs were considered which do not support the business
goals directly, but indirectly.

The complete Misuse Tree produced by this case study is too big to be presented

here. It contained 8 layers (i.e., two iterations). On the first level, there were two
quality goals, ten threats and 35 countermeasures. Of these countermeasures, 13 were
quality goals and three of these were analysed further, leading to ten more threats and
15 countermeasures. The other quality goals were not analysed, because other
stakeholders are responsible for their satisfaction or they are already being sufficiently
supported by the standard software in use. The 15 quality goals belonged to all six
categories of ISO 9126: Availability and usability appeared twice and usability three
times, each time referring to another asset. Integrity, privacy, recoverability,
learnability, maintainability, portability, time-efficiency and fault tolerance appeared
once. All QRs found during the case study could be elicited or justified using Misuse
Cases, and we expect this to be so in general.

Figure 2 shows an extract of this Misuse Tree, focused on the quality goals
concerning usability. They were derived like this: Quality goal “data + integrity” is
threatened by several Misuse Cases, one of them being “unintentional data corruption
by user error”. The new quality goal “usability of interfaces where users enter data” is
one countermeasure out of sixteen for this threat. Other potential Misuse Cases to this
quality goal were: “intentional corruption of data by intruders”, “use of data format
which is inadequate for domain data”, “wrong or inaccurate calculation”, “intentional
corruption of data by users”, “data corruption by system error/ break-down”.

The quality goal “individual patient data + privacy” is threatened by the Misuses
“intentional disclosure by intruder”, “intentional disclosure by user”, “unintentional
disclosure by user”, “unintentional disclosure by developer during software
enhancement”, “developers see confidential data during software tests with productive
data”. The probability of the threat “unintentional disclosure by user” is reduced by
the quality goal “usability of printout functionality” and “usability/ learnability of
interfaces”, but also by the definition of a security policy, the training of users
concerning this policy and users signing data protection commitments.

Concerning data integrity, a lot of threats could be identified, especially as the

system has already been in operative use, and former user errors could be analyzed.
Most of them were of general types as they occur in each system, like typing errors
(countermeasures: value lists, automated reading of data via card reader from
insurance card, plausibility check, …), incomplete input (countermeasure: obligatory
fields which enforce input), creation of an empty data set (countermeasures:
confirmation message at data set creation, obligatory fields, data cleansing by a script
searching for empty data sets), impatience of the user (countermeasure: time-
efficiency of the system). But also system-specific vulnerabilities were identified, like
the similarity of the search and input interfaces, or the possibility to save an empty
data set.

 12

Figure 2: Part of the Misuse Tree for the Uveitis Database, focused on usability
aspects. Rectangles containing three dots […] indicate where further elements
have been left out.

 13

6 Lessons Learned

What did we learn from the case study? MOQARE supports the systematic
investigation of QRs. The requirements elicitation was well guided by the four steps
of concept elicitation, the Misuse Tree and by the checklists which help to ask result-
oriented questions.

The Misuse Cases seemed to be easy to understand for the domain experts
(developer and ophthalmologist). The hierarchical graphical presentation of the
Misuse Tree gives an overview of the requirements (which can be documented in
more detail in another document, if required) and visualizes relationships among
goals, requirements and Misuse Cases. Therefore, it helped to structure the interviews.
A simple graphic UML tool is sufficient to navigate within the tree, to update its
content and to print the tree or sections of it.

Our iterative requirements elicitation process was supported by the Misuse Tree:
At each iteration, first the Misuse Tree resulting from the former iteration was
reviewed and then used as an interview guide for further requirements elicitation.
Then a branch was chosen where the interview was to continue to bring forth new
results. In this way, the tree structure helped to structure the elicitation process, but
also allowed us to add spontaneous ideas at the right position.

The checklists were helpful in avoiding the concentration on only a few QAs, types
of threats or misusers, as happens easily in unstructured discussions. In the case study,
QAs that emerged during the discussion thanks to the checklist analysis were
recoverability, maintainability and portability, i.e. those QAs which refer to growth
scenarios.

The iterative assessment of requirements, proceeding from a general level down to
more and more details, combined with document analysis and analysis of the
software, was an efficient way of gathering the needed information with a minimum
effort for the domain expert and a good way of avoiding misunderstandings.

Not only did we gather 50 countermeasures, but also analysed their motivations,
starting from business goals. This selection of the most important countermeasures
also signified to decide that the other possible countermeasures on our checklists are
less relevant.

The Misuse Tree represents several different QAs and the relationships among
them. For example, data integrity depends both on security and on usability, and
usability also depends on time-efficiency. Therefore, it is reasonable to consider all
QAs in an integrated approach, not ignoring but integrating the expertise of the HCI
(Human Computer Interaction) community concerning usability or of the security and
reliability community, etc…

As the analysis aimed to find system specific requirements, the wording of the
items in the checklists was too general. A domain-specific wording should always be
preferred. For instance, “user” should be replaced by a specific role like “nurse”, and
the quality goal “usability of interfaces where users enter data” must be concretized
by naming these interfaces e.g. “usability of user interface ‘create and edit patient
data’”.

Several quality goals which emerged during the case study could be satisfied by
generally known solutions, not specific to the Uveitis Database. An example of this is
the intrusion of a hacker. As countermeasures, intrusion detection and all measures

 14

which prevent intrusion or at least make it more difficult, can be proposed. Such
solutions are known and standard products are on the market, like intrusion detection
software. The corresponding countermeasures can be found in our general checklists
and the specialized literature. The hospital´s specialists already apply a whole bundle
of countermeasures to prevent intrusions. Therefore, we stopped our analysis here.
Therefore, we focused on the analysis of 5 quality goals out of the 15. Otherwise,
more layers would have been included in the Misuse Tree.

Some of the countermeasures might look trivial and are common good practice in
software engineering like “compliance to known usability rules” or “good testing”.
But if our aim is a comprehensive description of all important requirements, this is a
good result and shows that the checklists also help to explicitly name the “tacit
assumptions” so much searched for by requirements engineers. We think that the
logic behind this observation is as follows: These trivial requirements are considered
to be trivial, because they prevent misuses that are relevant to practically all software
systems. Nevertheless, they are important for protecting a business goal.

Not only requirements referring to the software were discovered, but also
requirements and constraints on the software development process or the project. This
not only happened because we explicitly included them from the beginning (e.g. in
the checklists, as the security literature does), but also because they strongly affect
quality. Software quality is the result of good software engineering, and therefore the
analysis would not be complete without such requirements.

Some Use Cases which represent countermeasures refer to tasks like data cleansing
or maintenance, i.e. to tasks which might easily be forgotten by the stakeholders
during the requirements analysis. In MOQARE, you are reminded to include them in
the description of requirements, as data cleansing and maintenance in fact are tasks
one needs to perform in the system. These tasks not only improve the system quality,
but are necessary to sustain the quality level of the new system. In a dynamic
environment, the quality of a system can be expected to decrease, if it is not
maintained.

Adhering to the definitions of the concepts is important for the completeness of the
results. However, this is difficult and in case studies this goal cannot be achieved
neatly by untutored stakeholders. Vulnerabilities and threats, causes and
consequences, are easily being mixed up. Therefore, MOQARE requires a method
specialist to translate the stakeholders´ unstructured requirements into a Misuse Tree.

We started with 14 Use Cases, but the number of all Misuse Cases amounts to
several dozens. We cannot give the exact number, as we stopped our analysis where
the discussion started to become too general and where standard solutions are known
(see above). Only think of the large number of possible Misuse Cases for intrusion
into the network.

Several more case studies were performed ([21]-[24] and unpublished) and they
support these lessons learned.

 15

7 Related Work

When developing MOQARE, we strongly relied on other publications which
describe methods for QRs elicitation. In this section, we state our sources and other
related literature. Researching the relevant literature, we identified the concepts
commonly used and based on these concepts, we developed the comprehensive and
clearly defined conceptual framework of MOQARE. Tables 2 to 4 show that our
sources share similar concepts, but MOQARE is the first one to cover all of them,
providing a way of modelling QRs in more detail and more systematically than other
methods.

Misuse Cases have been successfully used to elicit and operationalize the QR
“security”. We follow a suggestion of Alexander [25]: “There is scope for further
work applying Misuse Cases to elicit Usability requirements.” In [26], Alexander
applied the Misuse Cases to reliability, maintainability and portability. Firesmith [27]
highlights the similarities of safety, security and survivability. We went one step
further and developed a systematic method to apply Misuse Cases to all other QAs.
Misuse Cases have not been applied to all QA before in an equal way. And when
Misuse Cases were applied to particular other QA like reliability, necessary
generalizations of the concept definitions were not discussed.

The concept of Misuse Cases has a short history. 1999, McDermott and Fox [28]
introduced the term ’Abuse Case’ for eliciting security requirements. Sindre and
Opdahl [2],[11] explicitly call them Misuse Cases. Allenby and Kelly [29] describe a
similar method of eliciting and analyzing safety requirements for aero-engines using
what they call ‘Use Cases’. The concept of Misuse Cases has been used successfully
since, and several field reports are available [7][25][30][31]. However, there are few
systematic methods of deriving them other than enhanced UML Use Case diagrams
and templates. Usually they are used intuitively.

We soon found out that generalizations of the definitions of the Misuse Case
concepts were necessary to apply Misuse Cases to all QAs defined by ISO 9126.
Therefore, we searched in Misuse Cases, risk analysis, security, reliability, QR and
architecture analysis contexts for further concepts and ways of specifying QRs. We
were especially interested in approaches describing and analyzing QRs by identifying
threats, Misuse Cases, and everything which is NOT to happen, as we expected that
this approach helps to investigate QRs and to complement the requirements. The
concepts of assets, vulnerability and threats are implicitly used everywhere in the area
of security assessment, see for example [31] and [32], but these concepts are often not
clearly defined and even mixed, because of a lack of differentiation. These sources all
have in common that they search for logical and causal relationships of QRs with
other system concepts. In the area of security related requirements, we looked at the
following work:
� The abuse case model of McDermott and Fox [28]
� Misuse Case templates of Sindre and Opdahl [2], [11]
� The attack patterns of Moore, Ellison and Linger [33]
� Lin et al. [34] apply problem frames to identify security requirements
� Van Lamsweerde at al. [19] develop an extension of the KAOS framework which

considers intruder anti-goals against system goals, additionally to the goal-
anchored trees modeling FR

 16

� Liu, Yu and Mylopoulos [35] develop a framework based on i*
� Firesmith´s templates for reusable security requirements [7],[13],[14]
� Object Management Group [36] integrate the risk assessment concepts into the

UML standard and enhance the standard by using five sub-models
� Blakley, Heath, and other members of The Open Group Security Forum [37]

published a catalogue of security patterns and a generic method using them to
design a system architecture

As can be seen in Tables 2 and 3, they all use different terminology and do not

cover all MOQARE concepts in full generality. Not only are various terms used for
the same concept, but the same word has different meanings. For instance, the term
‘threat’ is used by other authors as well, but its definition is not clear. Firesmith [7]
uses this term to describe the anti-goal of a misuser and lists the “security threats”
“theft, vandalism, fraud, unauthorized disclosure, destruction, extortion, espionage,
trespass” as categories, which are rather consequences of security problems than their
causes. Others [32] mix misusers, forces of nature, motivation of the misuse,
vulnerabilities or the consequences of Misuse Cases in the same list. The same holds
true for the following general QR methods listed in Table 4:

� ATAM (Architecture Tradeoff Analysis Method) [5][38], evaluates several

architectural styles or solutions with each other, using QRs as evaluation criteria
� The EMPRESS Quality Models [10][20] link QAs to means for satisfying them

and to metrics for measuring quality, in a tree structure
� Sutcliffe and Minocha´s scenario templates for process guidance in early

exploration and validation of QRs [12]
� The NFR Framework also derives requirements from goals: Chung et al. [9]

decompose QAs (called “softgoals”) in their sub-goals and derive
‘operationalizations’. They also document contributions of means to the softgoal
satisficing, priorities, decisions and their rationale, within the softgoal graph. The
softgoal networks are also used as a means of cataloguing QRs for reuse [39]. In
some works, the researchers using softgoal graphs also distinguish between
technical objectives and business objectives [40], [41]. Countermeasures
sometimes also are expressed as scenarios [42]. But the NFR Framework does not
use any negative elements (threats, vulnerabilities and misuse cases), i.e. such
concepts which describe what is not wanted (see Table 4). We think that these
negative elements make MOQARE more intuitive and they better document the
motivations of requirements.

Not presented in the tables is FMEA (Failure Mode and Effect Analysis) [43]. It is

a well-established method for deriving actions (i.e. requirements respectively
countermeasures) via failures (threats). These failures have causes (vulnerabilities)
and effects (quality deficiencies), and these are all gathered in templates. This method
analyses both systems and processes. It is implicitly focused on functionality and
reliability requirements. We think that mainly the graphical presentation of
requirements in the Misuse Tree is an advantage over FMEA.

 17

We analysed more references without discovering further concepts. Therefore, we
merely used their extensive lists of threats, vulnerabilities and countermeasures to
compile our checklists [31], [32], [44-50].

Table 2: Terminologies used in five references on security requirements

MOQARE Abuse Case
model of
McDermott
and Fox [28]

Misuse Case
templates of
Sindre and
Opdahl [2]

Moore, Ellison
and Linger
[33]

Van
Lamsweerde
et al.
[19]

Liu, Yu and
Mylopoulos
[35]

Asset Use Case --- --- --- ---
QA (Security) (Security) --- Goal Security,

privacy
Vulnerability --- (assumptions,

preconditions)
Precondition Vulnerability Dependencies

lead to
vulnera-
bilities

Threat Exploit Threat Attack (intentional
and non-
intentional)
Obstacle

Threat

Consequence
(=quality
deficiency or
business
damage)

Harm Post-condition Post-condition --- ---

Misuse Case Abuse Case Misuse Case,
course of
events

Attack pattern
steps

Attack
(intentional &
unintentional)

Misuser Actor Misactor,
stakeholder

Attacker Attacker Attacker (as
subset of
Actors)

Misuser
Attribute

Resources,
skills,
objectives

Misuser
profile

Attack goal,
precondition

Anti-goal Malicious
intent

Counter-
measure

Use Case --- Security
Requirements

Counter-
measure

Table 3: Terminologies used in five references on security requirements

MOQARE Misuse Cases
[13]

Template of
Firesmith [7]

Template of
Firesmith [14]

UML
enhancement
[36]

Blakley,
Heath, et al.
[37]

Asset Assets and
services

(Vulnerable)
Asset

Asset Asset = target
of evaluation

Resources,
critical

 18

components,
protected
system
instance

QA --- (Security) Security goal,
security
quality factor

QoS Category,
asset value

Availability +
security

Vulnerability --- Vulnerability Vulnerability Vulnerability,
weakness

(Applicability
)

Threat Threat Attack Threat, attack Unwanted
incident

Consequence --- Negative
outcomes

negative
impacts, harm

Consequence Consequences

Misuse Case Misuse Case Situation --- Threat ---
Misuser Misuser Attacker Attacker Threat Agent Actor, attacker
Misuser
Attribute

--- (Anti-)Goal --- --- ---

Counter-
measure

Security
requirements,
security
mechanisms

Requirement,
quality sub-
factors

Requirement,
security sub-
factor, security
criterion

Treatment Protected
System
pattern, policy

Table 4: Terminologies used in five references on QRs

MOQARE ATAM [5] EMPRESS
Quality Model
[10], [20]

Template of
Sutcliffe &
Minocha [12]

NFR
Framework:
Chung,
Cysneiros,
Leite,
Mylopoulos,
Nixon, Yu
[9], [39], [42]

Lin et al. [34]

Asset (Trade-off
point)

 --- --- Softgoal topic Asset

QA Quality
Attribute
(Response)

Quality
Attribute

NFR (non-
functional
requirement)

Softgoal type Security
(confidentiality,
integrity,
availability)

Vulnerability Sensitivity
Point,
(Architec-
tural) Risk

--- --- --- Vulnerability

Threat --- --- Expected
failure

--- Threat

Consequence --- Damage Damage Contribution Anti-

 19

requirements
Misuse Case Scenario --- Scenario ---
Misuser Stakeholder

(customer,
maintainer
and
developer)

Stakeholder
(customer and
developer)

Agent --- Attacker

Misuser
Attribute

Stimulus --- Motivation --- ---

Counter-
measure

Response Means Counter-
measure

Sub-goal,
operationa-
lization

Security
requirements

Most of these sources do not offer a systematic process for deriving requirements.

Concepts are not clearly defined or not general enough to apply them to all types of
QAs. Our conceptual framework includes the total of all concepts typically used in
literature. The MOQARE process which is described in section 4, builds on the
primitive process commonly applied by all authors using threats or Misuse Cases:
Starting from vague quality goals or QAs, Misuse Cases are developed and then
countermeasures are derived (steps 2 and 3). What is new is the derivation of the
quality goals from business goals (step 1) or from other quality goals, which leads to
recursion (step 4). We think it is important to differentiate between quality goal (asset
+ QA) and countermeasure to judge whether the objective of deriving realizable
requirements is reached. We are the first to do so.

In this section, we exclusively relied to references which describe methods for QR
elicitation and specification, because this is the focus of our present work. Of course,
there are many other aspects of quality which we did not treat here, like the trade-off
among contradicting quality requirements, processes of quality management in
general (e.g. Total Quality Management [51]), organizational measures or
programming paradigms for improving quality, or metrics for measuring quality.

8 Conclusions and Future Work

This paper presents a conceptual framework and the method MOQARE for a
systematic elicitation and graphical documentation of QRs. MOQARE is based on the
concept of Misuse Cases and on reusable lists of QAs, threats, vulnerabilities and
countermeasures. Its result is a so-called Misuse Tree.

MOQARE is demonstrated by applying it to a clinical database in a case study. We
think that an analysis of QRs in terms of quality goals, Misuse Cases and
countermeasures helps to complement software and project requirements. To support
a complete view on system quality, we consider not only end-users, but also system
administrators, maintainers and intruders of the system. We take account of normal
use, growth and exploratory scenarios. Not only requirements on software and
hardware are derived, but also on their development, use and maintenance. An
important merit of our approach is its general applicability to all QAs.

 20

MOQARE has been used successfully in a case study for software that already
exists and which is in operative use. We also applied MOQARE to systems before
their implementation. In these cases, the countermeasures found were more general
and could be concretized further during the system design. MOQARE was able to
derive all types of requirements via Misuse Cases, and we expect that this is generally
the case. The Misuse Case scenarios are intuitive and allow to predict – more
specifically than other methods - which of the potential misuses are the most relevant
ones for a system. In our case study, this prediction was facilitated by former
operation experience. When analysing a system before its implementation, it is useful
to adapt experience from similar systems.

Some of the requirements found by MOQARE in the form of countermeasures are
further FRs as well as QRs on FRs. Therefore, it makes sense to integrate the results
of MOQARE with FRs. Such integration will be a good basis for the trade-off
between conflicting requirements, for the design, implementation and test of the
system. MOQARE has been successfully integrated with a method for FRs elicitation
and documentation.

We did not yet consider here the threats and side-effects caused by the
implementation of countermeasures. During the case study, one such example was
discussed. As data can be input on a mobile device, from time to time, data on the
mobile device and on the Uveitis Database must be synchronized. Usually, time
stamps help the system to identify those data which are more recent. But when data
concerning the same patient have been changed on both systems, conflict happens.
The configuration of the synchronization can be on “overwrite”. Then, the data in the
Uveitis Database are assumed to have higher priority and data on the mobile device
are overwritten. But data entered on the mobile device can then be lost. The
countermeasure against this threat is the configuration “data set creation”, which
creates a new data set on the Uveitis Database (see Figure 2). But this can lead to
doublets. So, both configurations threaten the quality goal “data integrity”. (As is
shown in Figure 2, the third and best solution has been chosen as countermeasure: to
provide Intranet access to the Uveitis Database from all work places and thus to avoid
data conflict, as all users enter new data on the database directly.) Such threats
provoked by a countermeasure are important during the trade-off analysis of
requirements, but not during elicitation. This also applies to other relationships
between countermeasures. For example, “user training on security policy” and “define
security policy” depend on each other in several ways: Training on the policy can
only be done after such a policy has been defined. Training was judged to be a more
effective countermeasure, and the mere definition of a policy does not improve much
by itself. Such dependencies are treated within the method ICRAD [52], which
integrates MOQARE with requirements conflict trade-off and architectural design.
These activities are strongly interrelated, as was motivated by Paech et al. [53].

MOQARE as well as its integration with FRs and architectural design needs tool
support. A simple UML tool allows us to edit a Misuse Tree as a class diagram or
component diagram. We are currently developing a better, web-based tool support
which also allows the integration of the QR analysis into the FR description. This tool
is based on Sysiphus [54].

 21

Acknowledgements

MOQARE is the result of the research project SIKOSA, which was funded by the
Ministry of Science, Research and Art of Baden-Württemberg, Germany
(Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg).

We would like to thank Professor Matthias Becker and Damian Plaza of the
Interdisciplinary Uveitis Center Heidelberg for their friendly and dedicated
cooperation on the case study. We also thank Maike Gilliot and Lutz Lowis from the
University of Freiburg and our colleagues from Heidelberg for many constructive
discussions.

References

1. Paech B, Kerkow D. (2004) Non-functional Requirements Engineering: Quality is
Essential. In Regnell B, Kamsties E, Gervasi V (eds). Proceedings of the 10th Intl.
Workshop on Requirements Engineering: Foundation of Software Quality - REFSQ
04, Essener Informatik Beiträge Bd 9, Essen/ Germany, pp 237-250.

2. Sindre G, Opdahl AL (2001) Templates for Misuse Case Description. In
Proceedings of the 7th Intl. Workshop on Requirements Engineering: Foundation of
Software Quality – REFSQ 01, Essener Informatik Beiträge Bd.6, Essen/ Germany,
pp. 125-136.

3. Sindre G, Firesmith DG, Opdahl AL (2003) A Reuse Based Approach to
Determining Security Requirements. In Proceedings of the 9th Intl. Workshop on
Requirements Engineering: Foundation of Software Quality – REFSQ 03,,Essener
Informatik Beiträge Bd.8, Essen/ Germany, 37-46.

4. Herrmann A, Paech B (2005) Quality Misuse. In Kamsties E, Gervasi V, Sawyer P
(eds). Proceedings of the 11th Intl. Workshop on Requirements Engineering:
Foundation of Software Quality - REFSQ 05, Essener Informatik Beiträge Bd. 10,
Essen/ Germany, pp 193-199.

5. Kazman R, Klein M, Clements P (2000) ATAM: Method for Architecture
Evaluation. CMU/SEI-2000-TR-004, Software Eng. Inst., Carnegie Mellon
University.

6. Wiegers KE (2002) Success Criteria Breed Success, The Rational Edge, 2(2)
7. Firesmith DG (2003) Analyzing and Specifying Reusable Security Requirements.

Requirements for High Assurance Systems (RHAS) Workshop.
8. International Standard ISO/IEC 9126. Information technology - Software product

evaluation - Quality characteristics and guidelines for their use.
9. Chung L, Nixon BA, Yu E, Mylopoulos J (2000) Non-Functional Requirements in

Software Engineering. Kluwer Acadamic Publishers.
10. Dörr J, Punter T, Bayer J, Kerkow D, Kolb R, Koenig T, Olsson T, Trendowicz A

(2004) Quality Models for Non-functional Requirements. IESE-Report Nr.
010.04/E.

11. Sindre G, Opdahl AL (2000) Eliciting Security Requirements by Misuse Cases.
TOOLS Pacific 2000: 120-131.

12. Sutcliffe A, Minocha S (1998) Scenario-based Analysis of Non-Functional
Requirements. In Dubois E, Opdahl AL, Pohl K (eds.). Proceedings of the Fourth
Intl. Workshop on Requirements Engineering: Foundation of Software Quality –
REFSQ 98, Presses universitaires de Namur, Namur/Belgium, 219-234.

13. Firesmith DG (2003) Security Use Cases. Journal of Object Technology 2(3): 53-64.

 22

14. Firesmith DG (2004) Specifying Reusable Security Requirements. Journal of Object
Technology 3(1): 61-75.

15. Herrmann A, Paech B (2005) Software Quality by Misuse Analysis. Technical
Report SWEHD-TR-2005-01 (University of Heidelberg), http://www-
swe.informatik.uni-heidelberg.de/ research/publications/reports.htm.

16. BSI (Bundesamt für Sicherheit in der Informationstechnik = German Ministery for
Security in Information Technology) (2004) IT-Grundschutzhandbuch.
http://www.bsi.bund.de/gshb/deutsch/g/g01.html.

17. Nakajo T, Kume H (1991) A Case History Analysis of Software Error Cause-Effect
Relationships. IEEE Transactions on Software Engineering 17 (8): 830-838.

18. Lutz RR (1993) Analysing software requirements errors in safety-critical embedded
systems. Requirements Engineering Conference, IEEE Computer Society Press,
Silver Spring: 126-133.

19. van Lamsweerde A, Brohez S, De Landtsheer R, Janssens D (2003) From System
Goals to Intruder Anti-Goals: Attack Generation and Resolution for Security
Requirements Engineering. RHAS'03 Workshop: 49-56.

20. Dörr J, Kerkow D, von Knethen A, Paech B (2003) Eliciting Efficiency
Requirements with Use Cases. In Proceedings of the 9th Intl. Workshop on
Requirements Engineering: Foundation of Software Quality – REFSQ 03, Essener
Informatik Beiträge Bd.8, Essen/ Germany, 37-46.

21. Herrmann A, Rückert J, Paech B (2006) Exploring the Interoperability of Web
Services using MOQARE. IS-TSPQ Workshop "First International Workshop on
Interoperability Solutions to Trust, Security, Policies and QoS for Enhanced
Enterprise Systems", 21th March 2006 in Bordeaux

22. Herrmann A (2007) Priorisierung von Qualitätsanforderungen auf der Basis von
Risikoabschätzungen. Software & Systems Quality Conferences International 2007,
27th April 2007, Düsseldorf, Germany.

23. Herrmann A, Kerkow D, Doerr J (2007) Exploring the Characteristics of NFR
Methods – a Dialogue about two Approaches. In Proceedings of the 13th Intl.
Workshop on Requirements Engineering: Foundation of Software Quality – REFSQ
07, to be published

24. Weiß D, Kaack J, Kirn S, Gilliot M, Lowis L, Müller G, Herrmann A, Binnig C,
Illes T, Paech B, Kossmann D (2007) Die SIKOSA-Methodik – Unterstützung der
industriellen Softwareproduktion durch methodisch integrierte
Softwareentwicklungsprozesse. Wirtschaftsinformatik 49(3): 188-198.

25. Alexander I (2002) Initial Industrial Experience of Misuse Cases. Requirements
Engineering Conference: 61-68.

26. Alexander I (2003) Misuse Cases: Use Cases with hostile intent. IEEE Software 20
(1): 58-66.

27. Firesmith DG (2003) Common Concepts Underlying Safety, Security, and
Survivability Engineering. Technical Note CMU/SEI-2003-TN-033.

28. McDermott J, Fox C (1999) Using Abuse Case Models for Security Requirements
Analysis. 15th Annual Computer Security Applications Conference ACSAC: 55-65.

29. Allenby K, Kelly T (2001) Deriving Safety Requirements Using Scenarios.
Requirements Engineering Conference: 228-235.

30. Aagedal JÖ, den Braber F, Dimitrakos T, Gran BA, Raptis D, Stölen K (2002)
Model-based Risk Assessment to Improve Enterprise Security. 5th International
EDOC Conference: 51-62.

31. Moffett JD, Haley CB, Nuseibeh B (2004) Core Security Requirements Artefacts.
Technical Report No 2004/23, Department of Computing, The Open University,
UK.

 23

32. Computer Security Resource Center (CSRC). Common Criteria, Version 2.1.
http://csrc.nist.gov/cc/.

33. Moore AP, Ellison RJ, Linger RC (2001) Attack Modeling for Information Security
and Survivability. Technical Note CMU/SEI-2001-TN-001.

34. Lin L, Nuseibeh BA, Ince DC, Jackson M, Moffett JD (2003) Analysing Security
Threats and Vulnerabilities Using Abuse Frames. Technical Report No: 2003/ 10,
Department of Computing, The Open University, United Kingdom.

35. Liu L, Yu E, Mylopoulos J (2003) Security and Privacy Requirements Analysis with
a Social Setting. Requirements Engineering Conference: 151-161.

36. Object Management Group (2004) UML Profile for Modeling Quality of Service
and Fault Tolerance Characteristics and Mechanisms.
http://www.omg.org/docs/ptc/04-09-01.pdf.

37. Blakley B, Heath C, and members of The Open Group Security Forum. Security
Design Patterns. http://www.opengroup.org/onlinepubs/9299969899/toc.pdf.

38. Kazman R, Klein M, Barbacci M, Longstaff T, Lipson H, Carriere SJ (1998) The
Architecture Tradeoff Analysis Method. Software Engineering Institute, Technical
Report CMU/SEI-98-TR-008.

39. Cysneiros LM, Yu E, Leite JCSP (2003) Cataloguing Non-Functional Requirements
as Softgoal Networks. Proc. of Requirements Engineering for Adaptable
Architectures, at RE´03:13-20.

40. Mylopoulos J, Chung L, Liao SSY, Wang H, Yu E (2001) Exploring Alternatives
During Requirements Analysis. IEEE Software 18(1): 92-96.

41. Liu L, Yu E (2001) From requirements to architectural design - Using goals and
scenarios. Workshop STRAW, ICSE 2001, http://www.cin.ufpe.br/~straw01/.

42. Cysneiros LM, Leite JCSP (2001) Driving Non-Functional Requirements to Use
cases and Scenarios. Proc. of XV Brazilian Symposium on Software Engineering: 7-
20.

43. Stamatis DH (2003) Failure Mode and Effect Analysis - FMEA from Theory to
Execution. American Society for Quality Press, Milwauki, USA

44. BSI (Bundesamt für Sicherheit in der Informationstechnik = German Ministery for
Security in Information Technology) (1989) IT security criteria.
http://www.bsi.bund.de/zertifiz/itkrit/itgruene.pdf.

45. BSI (Bundesamt für Sicherheit in der Informationstechnik = German Ministery for
Security in Information Technology) (1991) Information Technology Security
Evaluation Criteria. http://www.bsi.bund.de/zertifiz/itkrit/itsec-en.pdf.

46. Landwehr CE, Bull AR, McDermott JP, Choi WS (1994) A taxonomy of computer
program security flaws, with examples. ACM Computing Surveys 26(3): 211-254.

47. Aslam T (1995) A taxonomy of security faults in the Unix operating system.
Master´s thesis, Purdue University.

48. Anton AI, Earp JB, Reese A (2002) Analyzing Website Privacy Requirements Using
a Privacy Goal Taxonomy. Requirements Engineering Conference: 23-31.

49. Richardson R (2003) 2003 CSI/FBI Computer Crime and Security Survey.
Computer Security Institute,
http://i.cmpnet.com/gocsi/db_area/pdfs/fbi/FBI2003.pdf.

50. Killourhy KS, Maxion RA, Tan KMC (2004) A Defense-Centric Taxonomy Based
on Attack Manifestations. International Conference on Dependable Systems &
Networks: 102-111.

51. Feigenbaum AV (1961) Total quality control - engineering and management.
McGraw-Hill, New York

52. Herrmann A, Paech B, Plaza D (2006) ICRAD: An Integrated Process for
Requirements Conflict Solution and Architectural Design. IJSEKE 16(6): 1-34.

Formatiert: Deutsch
(Deutschland)

 24

53. Paech B, Dutoit A, Kerkow D, von Knethen A (2002) Functional requirements, non-
functional requirements and architecture specification cannot be separated - A
position paper. In Proceedings of the 8th Intl. Workshop on Requirements
Engineering: Foundation of Software Quality – REFSQ 02, Essener Informatik
Beiträge Bd.8, Essen/ Germany, pp. 102-107.

54. Sysiphus http://sysiphus.in.tum.de/, 2007

