

Copyright © [2008] IEEE

Reprinted from Proceedings of the 16th IEEE International Requirements Engineering
Conference (RE'08), Barcelona (Spain), September 08-12th, 2008, pp. 125-134

This material is posted here with permission of the IEEE. Internal or personal use of this
material is permitted. However, permission to reprint/republish this material for advertising
or promotional purposes or for creating new collective works for resale or redistribution must
be obtained from the IEEE by writing to pubs-permissions@ieee.org

By choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

1

Requirements Prioritization Based on Benefit and Cost Prediction:
An Agenda for Future Research

Andrea Herrmann*, Maya Daneva+
*University of Heidelberg, Faculty of Mathematics and Computer Science,

Software Engineering Group, 69120 Heidelberg, Germany1
+University of Twente, Department of Computer Science, PO Box 217,

 7500 AE Enschede, The Netherlands
m.daneva@utwente.nl

1 now at: Fraunhofer IESE, Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany, Andrea.Herrmann@iese.fraunhofer.de

Abstract

In early phases of the software cycle, requirements
prioritization necessarily relies on the specified
requirements and on predictions of benefit and cost of
individual requirements. This paper presents results of
a systematic review of literature, which investigates
how existing methods approach the problem of
requirements prioritization based on benefit and cost.
From this review, it derives a set of under-researched
issues which warrant future efforts and sketches an
agenda for future research in this area.

Key words: Requirements Prioritization, Software
Economics, Non-Functional Requirements,
Quantitative Prioritization, Systematic Review

1. Introduction

Requirements prioritization based on importance
has been a popular concept in software engineering for
more than 30 years. A number of requirements
prioritization practices have been devised to increase
its adoption in organizations. The requirements
engineering (RE) community knows multiple
proposals for defining what the term ‘importance’
means. Two key factors are benefit and cost associated
with each individual requirement [1], [2].
Consequently, requirements prioritization can be
supported by means of methods allowing the
prediction of cost caused and benefit added by single
requirements. The objective of the present article is to
sketch the challenges of using benefit and cost
prediction in support of requirements prioritization, to

survey current solutions to this problem, and to
propose a research agenda to improve these solutions.
We focus on requirements prioritization methods
(RPM) used in early stages, when little is known about
the architectural design and implementation. (For later
development phases, different benefit/ cost estimation
methods exist.)

We set out to answer the following research
question (RQ): In which way is requirements
prioritization based on benefit and cost estimation
currently supported by which published method? We
approached it by using a systematic review (SR) of
literature, drawing on our earlier work [3] which
yielded a framework for classifying RPMs. In what
follows, Section 2 introduces this framework. Section
3 describes the SR of literature and Section 4 presents
its most important findings. Section 5 and Section 6
discuss threats to validity - and the research agenda
resulting from the SR, respectively.

2. Classification Framework

We derived the factors for classifying RPMs [3], [4]

found in our SR by Grounded Theory [5], by analyzing
scientific literature. The core concept of requirements
prioritization is the requirements prioritization
process; it consists of activities which are performed
on each requirement. A requirement is characterized
by the following properties relevant with respect to
requirements prioritization based on benefit and cost:
(i) type, (ii) estimated benefit to stakeholders, (iii)
estimated size of software that embeds the requirement,
(iv) estimated cost to build what embeds the
requirement, (v) priority, and (vi) requirement

2

dependencies, what in this context means that the
degree of satisfaction of one requirement influences the
cost caused or the benefit added by another
requirement. The property ‘type’ means a pair of two
orthogonal qualities: ‘functional/non-functional
requirement (FR/NFR)’ and ‘primary/secondary
requirement’. (The latter property is defined in Section
4.1.) The type of a requirement can be one of the
following pairs ‘primary FR’, ‘secondary FR’,
‘primary NFR’ and ’secondary NFR’.

We specifically acknowledge those activities (see
the ovals in Fig. 1) which determine one of the

properties of a requirement. For example, the activity
‘Estimate size (of requirement)’ means determining the
size of software it would take to realize the
requirement. This paper classifies methods existing in
the RE literature according to that activity in our
framework which each method supports (Fig. 1). We
chose this classification criterion for two reasons: (i) a
method adds value by being integrated into the
activities it is supposed to support, (ii) almost all
methods, as we will see later on, focus on one and only
one activity. For examples of methods for each
activity, see Section 4.

Fig. 1: Activity diagram depicting activities during requirements prioritization based on benefit and cost estimation

Fig. 1 explicitly separates the benefit and cost

estimation activities from the prioritization activity
which is merely concerned with determining priorities.
Moreover, we will see in Section 4 that RPM can use
arbitrary prioritization criteria and that the way each
RPM treats dependencies is characteristic to it.
Specifically, our framework distinguishes six ways of
treating dependencies [3]. Thus, it lets us classify
whether or not a RPM applies one of these six ways:

1) Each requirement´s priority (or benefit, or cost)
is assumed to be a fixed value: This approach
disregards all dependencies among requirements. This

is commonly done by state of the art RPMs, see Table
1.

2) Grouping requirements: Requirements are
grouped into bundles in a way that each group is
relatively independent of the others. This grouping
takes care of the most important dependencies and
disregards all others. The groups can be built on
different levels to form a hierarchy of requirements [6],
which in turn reduces the complexity of the estimation
task when one first gets estimations for the groups
relative to each other and, then, for the requirements
within each group (as in [7]).

3

3) Using relative values instead of absolute: If
benefit is to be compared to cost, it is ideal to express
benefit in monetary terms (e.g. in $US) or in work
hours saved. However, relative values have been found
to be easier to estimate than absolute [8] and therefore
often are preferred.

4) Pair-wise comparison: Some RPMs attribute one
value per requirement, while others determine relative
values by pair-wise comparison.

5) Using discrete values instead of a continuous
scale: This means using a set of categories, e.g. an
ordinal scale which ranks the requirements by their
order of importance or a nominal scale like the values
1-2-3, or low/ medium/ high [2], or mandatory/
desirable/ inessential [8],[9].

6) Building benefit intervals: Some authors advocate
that intervals be used, e.g. by estimating an optimistic,
realistic and pessimistic value [10], [11].

We note that in the RE literature, RPMs are also
distinguished according to other criteria, e.g.: ease of
use, fault tolerance, or notation, and that such criteria
are relevant when choosing a RPM for a specific
purpose. However, such criteria are irrelevant with
respect to our RQ. Furthermore, our literature research
showed that the following criteria don´t seem to be
factors suitable for grouping existing RPM: (i) the
prioritization criterion supported (benefit, cost or
others) and (ii) the type of requirements input into the
RPM. This is discussed in [3] and [4].

3. Systematic Review

The overall objective of our SR effort is twofold: (i)
to categorize the state-of-the-art methods supporting
requirement prioritization based on benefit and cost
information, and (ii) to identify under-researched areas
that warrant future effort.

As per SR guidelines [12], we used the RQ (defined
in the Introduction) for determining the content and
structure of the SR, for designing strategies for locating
and selecting primary studies, for critically evaluating
the studies, and for analyzing their results. We,
however, note that we didn´t strictly follow all SR
guidelines from [12], [19], [69]. Specifically, 93% of
the papers were classified by only one of the authors
(as discussed in Section 5). And the results of our
literature review (partly presented in this paper), also

include the results of our previous literature research,
like books and doctoral theses.

We used the following search strings: (1) non-
functional AND requirements, (2) prioritization AND
method, (3) prioritization AND approach, (4) cost
AND size, (5) effort AND size, (6) requirements AND
dependency, (7) value-based AND requirements, (8)
value-oriented AND requirements, (9) requirements
AND conflict, (10) requirements AND negotiation.
These search strings are the result of a learning
process, that is, we experimented with a variety of
combinations of these words in order to test synonyms
used in literature and to cover the concepts and
properties of our classification framework. We had to
proceed like this because no standardized, consistent
terminology is used with respect to requirements
prioritization, cost and benefit estimation. For example,
work on value-based software engineering/ RE usually
pertains to our RQ as well as work on requirements
conflict resolution and requirements negotiation, which
usually builds on requirements dependencies. We also
reviewed work on requirements dependencies, because
we found that RPM usually don´t treat them explicitly.

We used the Boolean “OR” operator to concatenate
all these search terms and searched: 1 OR 2 OR 3 OR 4
OR 5 OR 6 OR 7 OR 8 OR 9 OR 10. Our search
strategy included (i) journal publications in
bibliographic databases (namely, ACM Digital Library,
Compendex, IEEE Xplore, ISI Web of Science,
Kluwer Online ScienceDirect – Elsevier, SpringerLink,
Wiley InterScience) and (ii) a manual search in the
following volumes of five conference/symposium
proceedings: Requirements Engineering (RE) (2000,
2004-2007 [13]), Software Engineering (ICSE) (1999-
2007 [14]), Empirical Software Engineering and
Measurement (ESEM) (2007 [15]), Empirical Software
Engineering (ISESE) (2003-2006 [16]) - all by IEEE
Computer Society Press -, Mensura [17], published by
Springer LNCS, and Requirements Engineering –
Foundation of Software Quality (REFSQ) (1997-
2007) [18]. Our choice of the above databases rests on
that they are available to use due to our universities´
subscriptions to them. We performed the searches
between Jan 15 and Feb 5, 2008, applying the search
query individually to each source. Those databases,
which didn´t allow queries composed of complex
Boolean expressions, were queried by running separate

4

searches. Then, we used the union of the results
obtained. We borrowed this practice from Mendes [19]
who found it to work well in her SR. We applied the
search query to the titles, abstracts, and keywords of
the articles in the identified databases and conference
proceedings. We excluded editorials, prefaces,
summaries of articles and tutorials, workshops, panels
and poster sessions. Our search strategy yielded a total
of 240 papers which met the following quality criteria
for inclusion in the review:

(1) the paper is on a method (e.g., an RPM) which
treats individual requirements and includes estimation
of cost and/or benefits for each individual requirement
(and not for the system as a whole).

(2) the paper is credible, i.e. the method described is
meaningful and intuitive to follow,

(3) relevance for practice: the method is useful, i.e. it
potentially supports requirements prioritization in
practice,

(4) original paper: for each method, we searched its
original publication; if this source does not describe a
method clearly enough and in sufficient detail for
readers to execute it, we cited a more comprehensive
description; if an original paper is difficult to access, or
is outside the RE field, we cited another description
from a RE author.

 (5) cited by others: Additionally to reviewing work
published in the above journals and conferences, we
followed some references in the papers found to trace
the original paper. We expect that the fact that a work
is cited and used by others is a hint on its usefulness.

The published sources we reviewed were written in
English only and included both qualitative and
quantitative research, from scientists and practitioners.

4. Results of the Systematic Review

To synthesize the SR findings as well as results from
former literature research, we mapped them against the
classification framework (Section 2). This helped us
clearly see which activities in requirements
prioritization based on cost and benefit estimation are
covered and which ones are supported little or not
enough. We make the note that because of space
limitation, not all methods described in the 240 papers
from our SR are presented in this paper. We here focus
on those examples we deem ‘typical’, meaning that

they best illustrate how the activity can be executed.2.

4.1 From primary to secondary requirements

Our SR showed that a distinction between primary
and secondary requirements is seldom explicit, but it is
often implicitly made, using different terminology.
Poort and de With [20] define that (i) primary
requirements are those to be demanded by the
stakeholders who benefit from them and (ii) secondary
requirements are those which are derived from and
constrain the primary requirements. Primary
requirements can be decomposed, operationalized,
refined to, or supported and constrained by secondary
requirements. In MOQARE (Misuse-Oriented
Requirements Engineering) [21], [22], FR, business
goals and quality goals play the role of primary
requirements, and these are analyzed for deriving
secondary requirements (the so-called
countermeasures). The Defect Detection and
Prevention (DDP) method [23], [24], makes a
difference between (primary) requirements which the
system is to satisfy and (secondary) PACT (an
acronym for “Preventions, Analyses, process Controls,
and Tests”). The IESE NFR Method [25], [26] uses
quality attributes as primary requirements and derives
“means”. In goal-oriented RE methods [27], [28] we
can interpret goals to be primary requirements and
what these methods usually call “requirements” to be
the secondary ones. This is also evident in [29], [30]
and [31] whose authors recommend decomposing NFR
into more refined NFR and additional FR as well as
architectural requirements. We note that primary
requirements sometimes form a hierarchy, like goals
and sub-goals, or business goals and IT system goals.

Both primary and secondary requirements can be FR
or NFR. The review by [22] found that the following
types of secondary requirements could be derived from
primary NFR: (i) new FR, extensions and constraints
on FR, (ii) architectural requirements, (iii) constraints
on project and software development, or (iv)
constraints on administration or maintenance. Primary
FR can also be decomposed into secondary
requirements, as in the TORE (Task-Oriented
Requirements Engineering) approach [32], or when
goal-oriented RE methods analyze functional goals.

2 The full list of papers and referenced methods can be found
online at: http://is.cs.utwente.nl/

5

However, published case studies don´t indicate when
the decomposition of primary FR should lead to
secondary FR only and when to secondary NFR. We
note that the difference between primary and secondary
requirements depends on the viewpoint of the benefit
estimator: All those requirements which s/he can
estimate the benefit for, are primary. For instance, a
software end user usually can estimate the benefit of
FR or of quality goals, but not of architectural
requirements.

4.2 Benefit estimates: primary requirements

We found no methods which estimate benefit for
individual requirements. Instead, the methods
described in the reviewed literature treat whole IT
systems. Their predictions are either based on
experience or on the use of methods as value chain
analysis, process analysis, business cases, or sensitivity
analysis, which estimate the benefit of whole systems,
while we need benefit estimations for individual
requirements. Often, it is left to those stakeholders,
who experience the benefit, to estimate it.

4.3 Benefit estimates: secondary requirements

Estimating benefit for secondary requirements
usually includes two steps: the estimation of how much
a secondary requirement´s satisfaction contributes to
the primary requirements’ satisfaction, and, then, the
calculation of the secondary requirement´s benefit. We
found two groups of methods quantifying the
contribution of secondary requirements to the
satisfaction of primary NFR: The first group of
methods is risk-reduction-oriented as it defines
secondary requirements in order to detect, mitigate or
prevent risk posed to the satisfaction of primary
requirements. For these secondary requirements,
benefit can be quantified as the risk reduction which
they affect, what is a common practice in security RE
[33],[34],[35],[36]. Risk is defined as the product of
‘probability of having something going wrong‘ and
’anticipated damage‘ [35],[36]. Next, the second group
of methods directly quantifies the contribution of
secondary requirements to the satisfaction of primary
NFR. These methods often are specific to one or few
quality attributes, e.g. reliability prediction models
derive failure rate from the software defect rate, or the
defect rate from quality assurance measures [37],[38],

[39],[40].
With respect to FRs, our SR could not identify any

method that rests on the derivation of benefits of
secondary requirements from primary FR benefit.

4.4 Size estimation for requirements

Requirements-based cost estimation usually includes
two steps: sizing the FR and NFR requirements and,
then, estimating how much it would cost to implement
the requirements of this size. We note explicitly that
we consider only those methods which take
requirements as their input (that is, they are applicable
in early phases) and which relate size and cost to
individual requirements (and not whole systems).

Our SR indicates that FR are sized by using
functional size measurement (FSM) models that rest on
Function Point Analysis; examples of commonly used
FSM methods are [41],[42],[43]. We also found that
FSM models are now being extended to cover ‘size
estimation’ of NFR, provided NFRs are defined in
operationalized form, that is in testable and verifiable
terms [44], [45]. For example, the authors of [44]
extend the COSMIC-FFP [41] FSM method to account
for NFRs and, then, integrate it into the NFR
framework [28]. In this proposal [44], the COSMIC-
FFP counting rules take as their inputs the NFRs that
are specified as goals in operational form. The
counting output data (Full Function Points) are then
provided to stakeholders who use them to make
prioritization decisions.

Our SR suggests that in current FSM methods two
perspectives could be taken in quantifying NFRs. As
per [42],[43], to obtain size and effort numbers for the
NFRs in a project, the NFRs must be first decomposed
into a series of corresponding FRs. Then, a FSM
method is considered to be the suitable vehicle for
quantifying the contribution of NFRs to software size,
and, ultimately, to the effort it would take to build the
software project. These authors assume that it makes
sense to decompose all NFRs into FRs. Recently,
however, this assumption was questioned by
researchers in goal-oriented RE [46],[47],[48], who put
forward that not all NFRs should or can be
decomposed into FRs. Specifically, these authors
recommend NFRs not be decomposed into FRs if: (i)
the NFRs are ‘normative’, that is, if they say how the
actor is to interact with the system [47]; or (ii) the

6

NFRs serve as criteria for making architectural design
choices; that is, the function of these NFRs is to help

evaluate alternatives.

Table 1: Classification of 15 RPMs according to the criteria in Section 2. These 15 methods are basic RPMs,
which most frequently discussed by prioritization authors and serve as building modules in more complex
RPMs. ‘X’ stands for ‘yes’, the symbol ‘|’ means that both alternatives have been found in literature, the
symbol ‘-’ means ‘no (impossible or makes little sense)’ and the symbol ‘○’ means ‘no, but can be included’.

 Fi
xe

d
im

po
rta

nc
e

R
eq

ui
re

m
en

ts
 g

ro
up

in
g

(in
st

ea
d

of
 tr

ea
tin

g
in

di
vi

du
al

 re
qu

ire
m

en
ts

)

U
si

ng
 re

la
tiv

e
va

lu
es

in

st
ea

d
of

 a
bs

ol
ut

e

D
et

er
m

in
in

g
re

la
tiv

e
va

lu
es

 b
y

pa
ir-

w
is

e
co

m
pa

ris
on

U
si

ng
 d

is
cr

et
e

va
lu

es

in
st

ea
d

of
 a

 c
on

tin
uo

us

sc
al

e

B
ui

ld
in

g
be

ne
fit

in

te
rv

al
s i

ns
te

ad
 o

f u
sin

g
on

e
va

lu
e

on
ly

Numeral assignment [8] x ○ | - ○ ○
Cost benefit analysis [56] x ○ ○ - - -
Cumulative voting/ $100 test [57] x - x - | -
Priority groups [64], also called grouping/numeral x ○ x - x -
Top 10 Requirements [59] x - x - x -
Multi-Attribute Utility Theory [60], [61] x ○ x - ○ ○
Weighting Method [61],[62] x ○ x - ○ ○
Planning Game [9] x ○ x - x |
Analytic Hierarchy Process (AHP) [1],[63],[64] x ○ x x x ○
hierarchy AHP [64],[65] x x x x x ○
Outranking [61],[66] x ○ x x ○ -
Minimal spanning tree matrix [64] x - x x x -
Bubblesort [64],[67] x - x x x -
Binary search tree [64], [67] x - x x x -
Hierarchical Cumulative Voting [68] x x x ○ x ○

4.5 Cost estimation from size
FSMs often serve as dependent variables when
developing cost (or effort) estimation models [49],
might it be a model based on expert judgments,
algorithmic estimation, or estimation by analogy [50],
[51]. Our SR found, however, that very few cost
estimation approaches have ever been used for the
purpose of requirements prioritization. Very little is
done to guide project managers and RE staff on which
cost estimation practices work best, which are must-do,
which can be safely dropped or merged in which
contexts. In practice, most project managers still
predict effort by using what is called a “delta method”
[52], which suggests new projects be costed via their
delta to previous projects: the effort associated with a
new requirement is the amount of hours which went to
the last project’s requirements, multiplied by some
factors modeling the recent and the new project

contexts. This method was found simple, quick, and
best of all, can take full advantage of local costing
information. However, evidence for its use exists with
respect to FR only and there is no indication of
adopting this method to estimate the cost of
implementing NFR. For NFR, there exists no clarity in
the literature which approach to use in which context.
So, cost analysts better stick to recommendations by
software economics researchers to deploy multiple
effort estimation techniques and compare results [50].

4.6 Requirement importance from benefit/ cost
As said earlier, benefit and cost both can be criteria for
requirement prioritization or can be used in
combination, e.g. when requirements are prioritized
according to their net value (benefit minus cost)

7

[9],[35], benefit-cost-ratio [53],[54] or return on
investment [55].

4.7 Requirements prioritization based on
requirement importance
Our analysis of RPMs indicates that all of them assume
that (i) stakeholders, at least tacitly, know the
importance of requirements, or (ii) estimation methods
are available for them to use. Our SR identified two
methods only which explicitly define their
prioritization criteria. Both use benefit and cost. These
are: the cost benefit analysis [56] and the Planning
Game [9]. All other methods, can use any importance/
priority criterion. We present our classification of 15
methods in Table 1, summarizing how they treat
requirement dependencies according to the six factors
from Section 2. We analyzed whether a method does
apply an approximation or not, as described in
literature. We also evaluated whether an approximation
could possibly be used with it.

5. Threats to Validity

We considered the possible threats [12] to validity

and took measures to counterpart them. First, the
‘relevance’ of the papers included in the SR and their
classification could be questioned as in the SR (i) the
first author was the only reviewer of papers for
sections 4.2, 4.3, 4.6 and 4.7 and (ii) the second author
was the only reviewer for cost and benefit estimation
papers (see sections 4.1, 4.4, 4.5). We are aware of the
SR guidelines [69] suggesting an individual
classification be done by several researchers who then
discuss the differences in each classification proposal
by tracking rates of inter-researchers’ agreement.
However, this approach demands much time because
all authors must read all papers. Because of resource
constraints, the only viable option to us at the time was
to (i) classify the papers individually and then (ii) have
both authors read and discuss those papers only, for
which classification turned out difficult. The latter
account for 7% of the total sample. The classification
of the other 93% of the papers was checked by means
of an internal (unpublished) report. Each author
regularly reviewed and questioned the part written by
the other author. As we are concerned about the
internal validity of the classification, in immediate
future we plan to engage a third researcher in the role

of checker, that is, s/he will review a subset of our
papers and compare his/her classification with ours.
This will increase the validity of the results and also
avoid bias. We also note that the framework was
developed in an earlier effort by the same authors and
that the research process of framework formulation
might have biased us in classifying the papers.
Moreover, we are aware that our access to ‘relevant’
sources depended on the appropriateness of the search
strings used. The fact that there is no standardized
terminology used in RE posed a challenge. We treated
their composition as a learning process. The list of
search terms was adapted six times and search re-run
with the new terms. For some search strings, we
applied synonyms like “value-based” and “value-
oriented”. We also tentatively AND-combined the ten
search strings pair-wise and queried the databases. The
resulting list of papers had a reduced the number of
items, which were less than 10% of the items resulting
from using one search string alone. In half of the cases
with pair-wise combined strings, the resulting paper
list was empty or contained only one or two papers.
This is a hint that our search strings are only slightly
redundant. Moreover, we also accounted for concerns
experienced by other SR authors [19], for example,
that some key words are absent in the abstract or title,
although the paper itself treats the topic searched for.
Though, as we also searched for “prioritization” AND
“method”, we localized such papers. We achieved it at
the expense of much screening work because the
majority of papers in the resulting list (around 95%)
were irrelevant to our RQ. However, the remaining 5%
often didn´t use any of our other search strings. So,
without these very general search strings they would
not have been identified. We used the abstracts only
for the decision whether the paper is relevant. The
method classification itself was based on the complete
paper.

6. Research Agenda Resulting from the SR

Drawing on the foregoing results, we identified an

agenda for future requirements prioritization research.
It includes six themes concerned with those issues
which have been solved only partly or not at all:

1.) Concluding from section 4.1, it is under-
researched when decomposing primary FR leads to

8

secondary NFR or when it makes sense to identify
secondary FR only. Explicitly investigating these
questions would advance our understanding of the
relation between FR and NFR.

2.) Section 4.2 indicated that in RE no methods
could be found to estimate direct benefit for primary
requirements. There is still space for research on
whether and how well mature benefit estimation
methods from other disciplines (e.g. business) can be
applied to requirement benefit estimation.

3.) How the quantified contribution of secondary
requirements to primary requirements can be used for
quantifying benefit of secondary requirements remains
an unanswered question (Section 4.3). No method was
found, which explicitly puts these values together.

4.) Applying quantitative approaches to sizing NFRs
is another potentially fruitful avenue. The use of a
standard FSM model (e.g. COSMIC FFP) seems
promising [44]. To advance in this direction, more
research efforts are needed to confront further issues
such as when to decompose NFRs to FR, and how to
link the estimated size of operationalized NFRs to
effort (see Section 4.4).

5.) Although methods exist for estimating cost of
FR, based on their size, such relationships are under-
researched for NFRs (see Section 4.5).

6.) Requirements dependencies are largely neglected
in requirements prioritization, despite the fact that the
RE community agrees on their importance. In section
2, we identified six ways of how RPMs usually treat
them. We assume that there is a benefit function which
exactly describes the benefit. When applying an
approximation, there will result a deviation between
the approximated and the exact benefit value. We are
uncertain how much these two values deviate from
each other. In practice, one often accepts to live with
this uncertainty because the approximation saves time
(when applying the method) and makes it easier to use
it. It would be interesting to empirically compare two
versions of RPMs, by applying it once with an
approximation, and once without.

7.) Theoretically, 48 combinations of the six
approximations are possible3, but the cited 15 methods
only apply 21 of these (Table 1). 24 are not
implemented because all methods assume fixed

3 not 64, because pair-wise comparison only makes sense when
relative values are estimated

priority values4. The three combinations which remain
yet-not-tried-out are: (i) all six simplifications are
applied, except for discrete values; (ii) fixed, relative
and continuous values, without grouping or pair-wise
comparison, either estimating intervals or (iii) single
values. However, it is unclear whether this observation
is coincidental, or whether these combinations make no
sense for the practice of requirements prioritization.

7. Summary and Future Work

This paper investigated in which way existing

methods support requirements prioritization based on
early benefit and cost estimation. This was done by an
SR. Answering this question served the objective to
identify a research agenda on this topic. Two
immediate future steps are planned to augment and/or
refine the agenda: (i) we are interested to know which
methods have been validated empirically and how.
This is to add to our research agenda more items
pertinent to empirical research; and (ii) we so far
exclusively treated questions concerning method
support. Research on further factors still remains to be
done and will lead to further issues, e.g. concerning the
role of the organization and of stakeholders in the
prioritization.

8. References

[1] Karlsson J., K. Ryan, A Cost-Value Approach for

Prioritizing Requirements, IEEE Software 14(5) 1997,
pp. 67-74.

[2] Wiegers, K. First things first: prioritizing requirements,
Software Development, 7(9) Sept 1999.

[3] Herrmann, A., M. Daneva, Requirements Prioritization
Based on Benefit and Cost Prediction: A Method
Classification Framework, Technical Report SWEHD-
TR-2008-01, University Heidelberg, Version 1.0, 9 Feb
2008, http://www-swe.informatik.uni-heidelberg.de/
research/publications/reports.htm.

[4] Daneva, M., A. Herrmann, Requirements Prioritization
Based on Benefit and Cost Prediction: A Method
Classification Framework, Proc. 34th Euromicro Conf.,
Track on SPPI 2008, to be published

4 Except for Hierarchical Cumulative Voting; however, the other

methods don´t add priority/ importance values, and therefore no
major error is made.

9

[5] Strauss, A.L., J.M. Corbin, Basics of Qualitative
Research - Grounded Theory Procedures and
Techniques, 6th print, Sage, Newbury Park, USA, 1991

[6] Karlsson, J., S. Olsson, K. Ryan, Improved Practical
Support for Large-scale Requirements Prioritisation, REJ
2(1) 1997, pp.51-60.

[7] Ruhe, G., A. Eberlein, D. Pfahl, Trade-Off Analysis for
Requirements Selection, Int’l J of SEKE 13(4) 2003, pp.
345-366.

[8] Karlsson, J. Software requirements prioritization, Proc.
2nd Int’l Conf. RE, 1996, pp.110-116.

[9] Beck, K., Extreme programming explained, Addison-
Wesley, Upper Saddle River, USA, 2000.

[10] A.M. Davis, The Art of Requirements Triage, IEEE
Computer 36(3) March 2003, pp. 42-49.

[11] B.W. Boehm and R. E. Fairley, Software Estimation
Perspectives, IEEE Software, Nov/Dec 2000, pp.22-26.

[12] Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Jones,
P.W., Hoaglin, D.C., El Emam, K., and Rosenberg, J.,
Preliminary Guidelines for Empirical Research in
Software Engineering, IEEE Trans. on Software Eng.,
28(8) 2002, pp. 721–734.

[13] www.re08.org, www.re07.org, etc.
[14] www.icse-conferences.org
[15]http://www.esem-conferences.org/
[16] http://www.cos.ufrj.br/%7Eght/isese2006.htm
[17] http://mensura2007.uib.es
[18] www.refsq.org
[19] Mendes E., A Systematic Review of Web Engineering

Research, Proc. of Int’l Symp. on Empirical Software
Eng. 2005, IEEE CS Press, pp. 498-507

[20] E.R. Poort, P.H.N. With, Resolving Requirement
Conflicts through Non-Functional Decomposition, Proc.
4th Workshop on Software Architecture, 2004, 145-154.

[21] Herrmann A., B. Paech, Quality Misuse, Proc.
Workshop on Requirements Engineering Foundations of
Software Quality (REFSQ 2005), Essener Informatik
Beiträge, Essen, Germany, 2005, pp. 193-199.

[22] Herrmann A., B. Paech, MOQARE: Misuse-oriented
Quality Requirements Engineering, REJ 13(1) 2008, pp.
73-86.

[23] Feather, M.S.,S.L. Cornford, uantitative risk-based
requirements reasoning, REJ 8(4), 2003, pp. 248-265.

[24] Feather, M.S., S.L. Cornford, J.D. Kiper, T. Menzies,
Experiences using Visualization Techniques to Present
Requirements, Risks to Them, and Options for Risk
Mitigation”, Int’l Workshop on Requirements Eng.
Visualization, Minneapolis, 2006.

[25] Kerkow, D., J. Doerr, B. Paech, T. Olsson, T. Koenig,
Elicitation and Documentation of Non-functional
Requirements for Sociotechnical Systems, in:
Requirements Engineering for Sociotechnical Systems,
S. Maté, ed., Idea Group, 2004.

[26] Doerr, J., D. Kerkow, T. Koenig, T. Olsson, T. Suzuki,
Non-Functional Requirements in Industry - Three Case

Studies Adopting an Experience-based NFR Method”,
Proc. 13th Int´l Conf. on RE, 2005, pp. 373-384.

[27] A. van Lamsweerde, Goal-Oriented Requirements
Engineering: A Guided Tour, Proc. 5th Int’l Symp. on
RE, 2001, pp. 249-263.

[28] Chung, L., B.A. Nixon, E. Yu, and J. Mylopoulos, Non-
Functional Requirements in Software Engineering,
Kluwer Acadamic Publishers, 2000.

[29] Paech, B., A. Dutoit, D. Kerkow, A. von Knethen,
Functional requirements, non-functional requirements
and architecture specification cannot be separated, Proc.
8th Int’l Workshop on REFSQ,2002), Essener Informatik
Beiträge Band 7, Essen, Germany, pp. 102-107.

[30] C. Ebert, Understanding the Product Life Cycle: Four
Key Requirements Engineering Techniques, IEEE
Software, May/June 2006, pp. 19-25.

[31] Gilb T., Competitive Engineering: A Handbook For
Systems Engineering, Requirements Engineering, and
Software Engineering Using Planguage, Butterworth-
Heinemann 2005.

[32] Paech, B., K. Kohler, Task-driven Requirements in
Object-oriented Development, Perspectives on
Requirements Engineering, Kluwer Acad. Publ., 2003.

[33] Butler, S. Security Attribute Evaluation Method: A
Cost-Benefit Approach, Proc. 24th Int. Conf. Soft.
Eng.(ICSE 02), ACM Press, 2002, pp. 232–240.

[34] Arora, A., D. Hall, C.A. Pinto, D. Ramsey, and R.
Telang, An ounce of prevention vs. a pound of cure: How
can we measure the value of IT security solutions?,
Carnegie Mellon CyLab, 2004.

[35] Xie, N., N. R. Mead, P. Chen, M. Dean, L. Lopez, D.
Ojoko-Adams, H. Osman, SQUARE Project:
Cost/Benefit Analysis Framework for Information
Security Improvement Projects in Small Companies,
Techn. Note CMU/SEI-2004-TN-045, SEI, CMU, 2004.

[36] International Standards Organization ISO, Risk
management – Vocabulary – Guidelines for use in
standards, ISO Guide 73, International Standards
Organization, Geneva, 2002.

[37] Laprie, J.C., K. Kanoun, C. Beounes, M. Kaaniche, The
KAT (Knowledge-Action-Transformation) Approach to
the Modeling and Evaluation of Reliability and
Availability Growth, IEEE Trans. on Software Eng.
17(4) 1991, pp. 370-382.

[38] Brocklehurst, S., S. Littlewood, New Ways to Get
Accurate Reliability Measures, IEEE Software 9(4) 1992,
pp. 34-42.

[39] Wallace D., C. Coleman, Application and Improvement
of Software Reliability Models, Proc. NASA OSMA
Software Assurance Symposium 2001.

[40] Boehm, B., L. Huang, A. Jain, R. Madachy, The ROI of
Software Dependability: The iDAVE model, IEEE
Software 21(3) 2004, pp. 54- 61.

[41] Abran, A., J.-M. Desharnais, S. Oligny, D. St-Pierre,
and C. Symons, COSMIC FFP – Measurement Manual,

10

COSMIC implementation guide to ISO/IEC 19761:2003,
École de technologie supérieure – Université du Québec,
Montréal, Canada, 2003

[42] FISMA, Experience Situation Analysis, Finnish
Software Metrics Association, 2001,
http://www.fisma.fi/wp-content/uploads/2006/09/fisma_
situation _ analysis_method_nd21.pdf

[43] ISBSG, Practical Software Estimation, 2nd Edition, Int´l
Software Benchmarking Standard Group, 2006.

[44] Kassab, M., O. Ormandjieva, M. Daneva, A. Abran,
“Non-Functional Requirements: Size Measurement and
Testing with COSMIC-FFP”, Proc. Int’l Conf. on
Software Process and Product Measurement
(MENSURA), UIB Press, pp. 247-259.

[45] Clements, P., The Value of Software Architecture, Proc.
of the IFIP Int’l Conf on Software Architecture
(WICSA2008), SEI, CMU, US.

[46] M. Glinz, Rethinking the Notion of Non-Functional
Requirements, Proc. 3rd World Congress for Software
Quality, Munich, Germany, 2005.

[47] Wieringa, R., The Declarative Problem Frame:
Designing Systems that Create and Use Norms, Proc.
10th IEEE Int’l Workshop on Software Specification and
Design, IEEE Computer Society Press, 2002, pp. 75-85.

[48] Mylopoulos, J., Goal-oriented Requirements
Engineering, Keynote speech at the 14th Int’l Conf. on
Requirements Eng., IEEE Computer Society Press, 2006.

[49] Finnie, G., G. Wittig, J.-M. Desharnais, A Comparison
of Software Effort Estimation Techniques Using
Function Points with Neural Networks, Case-based
Reasoning and Regression Models, J of Syst & Soft 39,
1997, pp. 281-289.

[50] Shepperd, M., Software Project Economics: a Roadmap,
ICSE 2007: Future of SE, pp.304-315.1

[51] Boehm, B. C. Abts, S. Chulani, Software Development
Cost Estimation Approaches - a Survey”, Annals of
Software Eng. 10, 2000, pp. 177-205.

[52] B. Boehm, B, Safe and Simple Software Cost Analysis,
IEEE Software, Sept/Oct, 2000, pp. 14-17.

[53] Kazman, R., J. Asundi, M. Klein, Quantifying the Cost
and Benefits of Architectural Decisions, ICSE, 2001, pp.
297-306.

[54] In, H., R. Kazman, D. Olson, From Requirements
Negotiation to Software Architectural Decisions, Proc.

From Software Requirements to Architectures Workshop
(STRAW), 2001.

[55] Nejmeh B., I. Thomas, Business-Driven Product
Planning Using Feature Vectors and Increments, IEEE
Software 19(6) 2002, pp. 34-42.

[56] Nas, T.F., Cost-Benefit Analysis: Theory and
Application, Thousand Oaks, Sage, USA, 1996.

[57] Leffingwell, D., D. Widrig, Managing Software
Requirements - A Unified Approach, Addison-Wesley,
Reading, Massachusetts, USA, 2000.

[58] Berander P. A. Andrews, Requirements Prioritization,
Engineering and Managing Software Requirements, A.
Aurum and C. Wohlin, eds., Springer, Berlin,
Heidelberg, Germany, 2005, pp. 69-94.

[59] Lauesen, S., Software Requirements - Styles and
Techniques, Addison-Wesley, NY, 2002.

[60] Keeney, R.L. and H. Raiffa, Decisions with Multiple
Objectives: Preferences and Value Trade-Offs,
Cambridge University Press, 1993.

[61] Salinesi C., E. Kornyshova, Choosing a Prioritization
Method - Case of IS Security Improvement, Forum Proc.
of 18th CAiSE´06, Luxemburg, 2006, pp.51-55.

[62] Keeney, R.L. Foundations for Making Smart
Decisions”, IIE Solutions 31(5) 1999, pp. 24-30.

[63] Saaty, T.L., The Analytic Hierarchy Process, McGraw-
Hill, New York, 1980.

[64] Karlsson, J., C. Wohlin, and B. Regnell, “An evaluation
of methods for prioritizing software requirements”, Inf
&Soft Techn 39, 1998, pp. 939-947.

[65] Davis, A., Software Requirements: Objects, Functions
and States, Prentice-Hall, NJ, 1993.

[66] Roy, B., Multicriteria Methodology for Decision Aiding,
Kluwer Acad. Publ., Dordrecht, 1996.

[67] Aho, A.V., J.E. Hopcroft, and J.D. Ullmann, Data
Structures and Algorithms, Addison-Wesley, Reading,
MA, USA, 1983.

[68] Berander P., P. Jönsson, Hierarchical Cumulative
Voting (HCV) - Prioritization of Requirements in
Hierarchies, Int’l J of SEKE. 16(6) 2006, pp. 819-849.

[69] Jørgensen,M., M.J. Shepperd, A Systematic Review of
Software Development Cost Estimation Studies, IEEE
Trans. Software Eng. 33(1) 2007, 33-53.

