

Copyright © [2008] IEEE

Reprinted from Proceedings of the 34th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA 2008), Parma (Italy), September 3-5, 2008, pp. 240-
247

This material is posted here with permission of the IEEE. Internal or personal use of this
material is permitted. However, permission to reprint/republish this material for advertising
or promotional purposes or for creating new collective works for resale or redistribution must
be obtained from the IEEE by writing to pubs-permissions@ieee.org

By choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

Requirements Prioritization Based on Benefit and Cost Prediction:
A Method Classification Framework

Maya Daneva, Andrea Herrmann

m.daneva@utwente.nl, andrea.herrmann@iese.fraunhofer.de

Abstract

In early phases of the software development

process, requirements prioritization necessarily relies
on the specified requirements and on predictions of
benefit and cost of individual requirements. This paper
induces a conceptual model of requirements
prioritization based on benefit and cost. For this
purpose, it uses Grounded Theory. We provide a
detailed account of the procedures and rationale of (i)
how we obtained our results and (ii) how we used them
to form the basis for a framework for classifying
requirements prioritization methods.

Key words: Requirements Prioritization, Software
Economics, Non-Functional Requirements,
Quantitative Prioritization, Grounded Theory

1. Introduction

Requirements prioritization based on importance
has been as old as software engineering itself.
Knowing the most important requirements for a
software product is key to any software product
improvement actions and gives an increased certainty
that one is building in the most important
functionalities and qualities, for example those with the
highest benefit-cost-ratio. Therefore, the requirements
engineering (RE) community devised a number of
requirements prioritization methods (RPM) to support
project organizations in their product improvement
endeavors. In RE, there are multiple proposals for
defining what the term ‘importance’ means. Two key
factors are benefit and/or cost associated with each
individual requirement [4],[18],[33],[34].
Consequently, early requirements prioritization can be
supported by means of methods for predicting the cost
caused and benefit added by single requirements. This
reasoning about requirements prioritization from cost
and benefit perspective lead us to the following
research question (RQ): “What - in terms of methods
and activities - is needed to prioritize requirements
using cost and benefit predictions as criteria?” Our

motivation to raise this question rests on the fact that,
despite the awareness of the usefulness of cost and
benefit information in requirements prioritization, the
RE community did very little to consolidate existing
knowledge on this topic and to position existing RPM
in respect to how each one treats cost and benefit
estimation for single requirements.

This work presents the results of the first of a series
of research activities. This series has the objective to
sketch the problem of using benefit and cost
information in support of requirements prioritization,
to survey current solutions to this problem and their
empirical evaluation, and to propose a research agenda
in this area. We focus on RPM used in early project
stages, when little is known about the architectural
design and implementation of the requirement. (For
later development phases, different benefit and cost
estimation methods exist.)

In this paper, we are set out to answer our RQ by
applying the explorative research method of Grounded
Theory (GT). In what follows, we first present this
method, its application to the RQ and our main results,
which we summarize in a conceptual model. We then
highlight one specific aspect: how requirements
dependencies are treated by RPMs. Next, we define a
framework for classifying RPM, particularly based on
benefit and cost predictions. We finish up with a
discussion on the threats to validity, conclusions and
future research.

2. Grounded Theory

The GT which we deployed is the qualitative research
method developed by Strauss and Corbin [31] for
systematically building theories in social research from
qualitative data possibly drawn from case studies, from
surveys and also from literature. As a research method,
the GT has two unique features: (i) that it is inductive
in nature, which means that we as researchers have no
preconceived ideas to prove or disprove and (ii) that it
relies on the concept of ‘constant comparison’, a
process in which we constantly compare instances of
data that we have named as a specific category with
other instances of data, to see if these categories fit and

are workable [32]. The philosophical foundation of GT
[31] and how it affects the researcher’s choices in
carrying out his/her work have been discussed in [7]
and are beyond the scope of this paper. Here, we focus
on the application of the GT process [31] and the
results we obtained.

Identification of

Process & Contingency
(7)

Axial and
Selective

Coding (5+6)
 Theoretical

sampling (9)

Questioning
(4)

Saturation? Yes

Open Coding
(3)

 No

Research
Closure

RQ & Reading
(1+2)

Fig. 1 The iterative framework-building

process by means of GT.

The GT steps are as follows:
(1) Setting the research question, which means

determining what we specifically focus on and what
we want to know about it ([31], p.38);

(2) Reading technical and non-technical literature to
stimulate theoretical sensitivity ([31], p.41f);

(3) Open coding: identification of concepts,
grouping them to categories, identifying the categories´
properties and dimensions;

(4) Questioning for enhancing theoretical
sensitivity;

(5) Axial coding, which means to connect
categories, utilizing a coding paradigm;

(6) Selective coding, which means to identify the
core category and to write the ‘story’;

(7) Identification of process (linking of action/
interaction sequences) and contingency (unplanned
happening);

(8) Transactional analysis;
(9) Theoretical sampling of empirical data, using

the concepts and categories found earlier.
The objective of GT is the discovery of as many

relevant categories as possible, along with their
properties and dimensions. Steps 1-9 can be and
usually are traversed iteratively several times [23] (Fig
1), because: “Constant interplay between proposing
and checking […] is what makes our theory
grounded!” [31]. That means, the analysis of the data
collected in one step helps to check the interpretations
from the previous step. Section 4 indicates the results
we obtained from our application of GT.

3. Use of Literature

To us, GT was an iterative learning process taking 9
months of continual literature research and discussion.
In our study, the data used and constantly compared to
the emerging theory was scientific literature. Our
iterative GT process included a two-phase literature
research [7]: First, we selected a set of literature
sources from RE and Software Engineering literature
for the purpose of developing our conceptual model
and classification framework (Fig 2). During this first
phase, we analyzed about 400 recent publications
(including their “related work” sections), which we
found in conference/workshop proceedings and
journals, as well as technical reports from RE schools,
to trace back to primary studies. The list of these
sources was the result of our literature research done in
the last three years. We read and re-read text of these
papers to uncover categories and inter-relationships
(steps 2-7).

Second, we performed a systematic review [19],
during which we analyzed other 100 publications,
which we used for the specific purpose of testing (i)
the completeness of the conceptual model and (ii)
whether the classification framework helps classify the

sources and if so, to what extent [7] (theoretical
sampling, step 9). Thus, the framework was finished
up only after the second phase of literature review.
Both phases yielded a total of 240 papers which met
the following five quality criteria for inclusion in the
review:

(1) the paper is on a RPM which treats individual
requirements and includes estimation of cost and/or
benefits for each individual requirement (and not for
the system as a whole); this is to ensure the paper
directly adds up to answering the RQ.

(2) the paper is credible, i.e. the method described is
meaningful and intuitive to follow;

(3) relevance for practice: the method potentially
offers support for practical requirements prioritization,

(4) the paper adequately describes the context, in
which the method is expected to be applicable;
‘adequately’ means that the reader can replicate the use
of the RPM in his/her own context;

(5) original paper: for each method, we searched at
least its original publication; if an original paper is
difficult to access, or is outside the RE field, we
included another description from an RE author.

The publications we selected in both phases were
written in English only and included both qualitative
and quantitative research, from scientists and
practitioners. The results of both phases of literature
research are published in [8].

4. Results of the Grounded Theory

Below, we describe how we executed each GT step
and what our results were:

Step (1+2) Given our RQ, we reviewed the 400
literature sources which formed the first phase of
literature research. The first author focused on cost
estimation and the second on benefit estimation and
RPM in general. This choice was motivated by
resource constraints and by each author´s specific
expertise. Our ’theoretical sensitivity’ resulted from
14.5 years of authors’ collective experience in software
development.

Step (3) Open coding: This step was carried out by
creating an internal report (described in step 4) and
diagrams which the authors exchanged and discussed.
(These diagrams were intermediate versions of the
activity diagram (Fig. 2) and visualizations of the
benefit function discussed in Section 5.) In this step,

the core concept, which emerged, is the requirements
prioritization process; it consists of activities which are
performed on each requirement. A requirement is
characterized by the following properties relevant with
respect to the RQ: (i) type, (ii) estimated benefit to
stakeholders, (iii) estimated size of software that
embeds the requirement, (iv) estimated cost to build
the software, (v) priority, and (vi) requirement
dependencies. Herein, the property ‘type’ means a pair
of two orthogonal qualities: ‘functional/non-functional
requirement (FR/NFR)’ and ‘primary/secondary
requirement’. The type of a requirement can be one of
the following pairs ‘primary FR’, ‘secondary FR’,
‘primary NFR’ or ’secondary NFR’. Primary
requirements directly provide benefit to the
stakeholders, while secondary requirements are derived
from primary requirements, support and constrain them
[20]. Only few authors distinguish between these two
types of requirements explicitly, while many do it
implicitly. In [25], it’s assumed that primary
requirements are usually FR and that secondary
requirements can be both FR and NFR. However, there
are other authors [9], [11] who regard NFR as primary
requirements as well. Hence, we assume that FR/ NFR
and primary/secondary are properties which are
orthogonal to each other.

Priority turned out to be an ambiguous concept, not
only in practice, as one case study indicates [20]. We
found that RPMs usually do not define what ‘priority’
means. Reviewing literature, we identified the
following categories of priority criteria: (i) benefit if
the requirement is implemented, (ii) importance of the
stakeholder defining the requirement, (iii)
dissatisfaction if the requirement is not implemented,
(iv) cost, (v) risk and (vi) dependencies among
requirements.

Benefit, size and cost estimation for individual
requirements in the early life cycle phases was found to
be theoretically challenging, because of the multi-
faceted dependencies among requirements and their
benefit and/or, respectively, cost. One vehicle for
studying requirements dependencies and for classifying
how RPMs account for them is the benefit function
(see section 5). Such a function is under-utilized in
software engineering [4], [10], but commonly used in
Mathematical Economics [30].

Requirements can also be linked to each other by
hierarchical relationships like decomposition and

operationalization. Decomposition refers to the process
by which a complex FR or NFR is broken down into
sub-requirements that are more specific, easier to
conceive and to refine. An operationalization is a
“possible design alternative for meeting NFR [or more
generally: requirements] in the target system” [2].

Step (4) Questioning: During the whole GT process,
the concepts proposed in step 3 by each author and
examples of methods and publications for each concept
category were gathered in an internal (unpublished)
report. Each author regularly reviewed and questioned
the sections written by the other author.

Step (5) Axial coding, (6) selective coding and (7)
process and contingency identification in our study
didn’t need to be as sophisticated as it is in sociological
studies. In this work, the ‘process’ or ‘story’ are
modelled in the notation of an activity diagram (Fig.
2): We found that benefit estimation demands a
different approach for primary requirements (which by
definition directly contribute benefits) and for
secondary requirements (which by definition enhance

benefits produced by primary requirements). Cost
estimation usually is based on secondary requirements,
and is done in two steps, supported by two types of
methods: the activity ‘Estimate size (of requirement)’
means determining the size of software it would take to
realize one specific requirement and the activity
‘Estimate cost (of requirement)’ means determining the
cost it would take to implement the piece of software
of that size.

Fig. 2 shows the prioritization ‘story’ [31] of each
individual requirement, not necessarily of all
requirements together. The role and treatment of
requirement dependencies are discussed in Section 5.

We found that each activity corresponds to a specific
type of methods. For example, most RPMs exclusively
prioritize requirements by sorting (what includes
negotiation among stakeholders). However, these RPM
are not designed with a specific prioritization criterion
in mind and do not offer any support for benefit or cost
estimation/ prediction.

Fig. 2: Activity diagram depicting activities during requirements prioritization based on benefit and cost

estimation

Step (8) Transactional analysis has not been done

for this study yet.
Step (9) Theoretical sampling was done by means of

a systematic review of literature. (In the future, we plan

to do it by applying the process shown in Fig. 2 in case
studies.) In step 9, we checked the completeness of
both the concepts and the properties of the concepts,
identified in step 3. We also investigated which of
them can be used for characterizing published RPMs.
This question is answered by the classification
framework presented in Section 6.

5. Requirements Dependencies

Requirements dependencies, although important in
practice [27], are discussed by only few requirements
prioritization authors [3], [20], [24], [33]. Unlike other
requirement properties (as priority or estimated cost),
we found the following: (i) requirement dependencies
do not describe a property of one requirement, but of
the relationship between at least two requirements, (ii)
we could not identify an activity or method which is
specifically designed for coping with dependencies.
Instead, our finding is that (i) dependencies are treated
by RPMs only implicitly, and (ii) the way each method
does this is a characterizing property of this method.
This finding led us to classify RPMs according to how
they treat requirements dependencies. For developing
and justifying criteria for our classification, we applied
a mathematical model [30] of how to reason about
requirements benefit, based on the concept of a benefit
function. We assume that a benefit function B(S)
models the benefit provided by an IT system S in
which a certain number out of N candidate
requirements is realized, while others are not [6], [7].
In the light of our RQ, we are interested in the benefit
produced by single requirements, i.e. the benefit being
gained when adding requirement A to system S. Our
earlier analysis [7] showed the following consequences
of requirements dependencies on benefit estimation: (i)
benefit estimation for a single requirement only makes
sense relative to a clearly defined ‘reference system’,
which is an idea of an ensemble of requirements which
are supposed to be realized [10]; (ii) requirements
benefits are not additive, i.e. the benefit of a group of
requirements is not the sum of the benefits of the
individual requirements. However, these two
observations and further factors lead to practical
challenges in benefit estimating [1], [7]. Practical
benefit estimation must be executed in a simpler way
than determining a complete benefit function exactly in
the N dimensional space; even if such simpler ways of
estimating mean an approximation and the result of

which deviated from the exact benefit value. Our
review of RPMs shows that six types of simplifications
are usually made, each with its specific advantages and
disadvantages:

1) Each requirement´s benefit or importance is
assumed to be fixed, independently of any reference
system, and additive: The advantage of this
simplification is that estimations need to be done only
once and that the benefits of requirements can be
added. This approach disregards all dependencies
among requirements.

2) Grouping requirements: Requirements are
grouped into bundles in a way that each group is
approximately independent of the others with respect
to the prioritization criterion (e.g. benefit). Such groups
are used by many RPMs (without theoretical
justification, though) (see overview in [7]). This
simplification accounts for the most important
dependencies and disregards all others. The groups can
be built on different levels to form a hierarchy of
requirements [16], which in turn reduces the
complexity of the benefit estimation task when one
first gets estimations for the requirements groups and,
then, for the requirements within each group (like in
[21]).

3) Using relative values instead of absolute: Should
benefit be compared to cost, it is ideal to monetize the
benefit (e.g. in $US or work hours saved). However,
often relative values (like 1/2/3 or low/medium/high)
are preferred as they are easier to estimate than
absolute ones [13].

4) Pair-wise comparison: Some RPMs attribute a
value to each requirement, while other methods
determine relative values by pair-wise comparison.

5) Using discrete values instead of a continuous
scale: This means that the importance (or benefit)
values are not estimated in real numbers, but only a
finite number of values are used. This can be an ordinal
scale which ranks the requirements in an order of
importance or a nominal scale as the values 1-2-3,
where the numbers signify names of categories.
6) Building intervals: Some authors advocate that
intervals be used for the estimation, for example by
doing an optimistic, realistic and pessimistic estimation
[1], [3]. The merit of using intervals is that it can
capture uncertainties.

The above six types of simplification are used in
Section 6 to design a classification framework that
should help position the existing RPMs with respect to

how each one treats requirement dependencies.

6. Classification Framework for Methods

The model in Fig 2, (resulting from the GT study)
served to develop a classification framework capable
of structuring the methods existing in the RE literature.
This framework we used for classifying results of our
literature research. Below, we introduce the
classification factors that make up the framework.
 Essentially, it classifies the existing methods on the
basis of the activity which they support (Fig. 2). For
example, some methods support the activity of
estimating cost based on size estimation, or of deriving
secondary requirements from primary requirements, or
of prioritizing the requirements based on known
importance values. We chose this classification
criterion for two reasons: (i) a method adds value by
being integrated into the activities it is supposed to
support, (ii) most methods were found to focus on one
and only one activity.

For different types of methods, we furthermore use
the following classification factors (given in italic):

Benefit and cost estimation methods are
characterized by the type of requirements (FR or NFR,
primary or secondary requirements) they take as input.

RPMs are characterized by the type of simplification
they use to treat requirement dependencies. This
classification refers to the six simplification described
in Section 5. They correspond to six factors which
indicate whether or not an RPM applies this
simplification. For instance, some RPM include the
simplification of pair-wise comparison, while others
don´t. For each method in the literature, we analyzed
whether it usually does apply a simplification or not.
We also questioned whether the simplification could be
used with this method. Most combinations of the six
factors were found to be applicable in at least one
RPM. We analyzed 15 basic RPM like Cumulative
Voting [21] and Analytic Hierarchy Process [28]. All
of them assume a fixed importance and priority value.
Grouping explicitly is foreseen in two RPM, in eight it
is not foreseen but can easily be included, while for the
others this makes no sense. Almost all RPM use
relative values, except for Cost-Benefit Analysis [22]
which explicitly uses absolute ones and another which
has been applied using both types of scales. Six out of
15 RPM apply pair-wise comparison. Ten RPM

foresee discrete values, while the others use continuous
scales. The latter could also use discrete values, except
for Cost-Benefit Analysis [22]. Intervals of values are
almost never used, except for one RPM which has been
applied using intervals. Eight RPM are constructed in a
way that the use of intervals is not possible, while for
the others it is.

In the RE literature, RPMs are distinguished
according to some other criteria, like: time
consumption [13], [14], [15], [16], ease of use [14],
[15], [16], [29], fault tolerance [15], notation [29].
These criteria all are relevant when choosing a RPM
for a specific purpose. However, these are not relevant
with respect to our RQ. Therefore, we do not use them
here. Furthermore, our literature research showed that
existing RPM can not be distinguished with respect to
the following criteria: (i) the prioritization criterion
supported (benefit, cost or others) and (ii) the type of
requirements input into the RPM. We found that most
RPM can use any prioritization criterion and that all
RPM can apply to all types of requirements (FR or
NFR, primary or secondary requirements).

7. Threats to Validity

We considered the possible threats to validity and took
measures to counterpart them. A key validity concern
is the degree to which the set of classification factors is
complete. We call it ‘complete’ if the factors
sufficiently account for the major differences between
the methods found. We judged the completeness of the
framework when using it for classifying the results
from the systematic literature review on the same topic,
namely the use of benefit and cost information in
support of requirements prioritization. Using the
framework [8], we found, that the classification
framework well supported the classification of the
literature sources. Both authors used it without any
need of additional concepts, properties or property
values to be added to the set of factors. We, however,
acknowledge that this judgment is subjective. The
factors could have been more fine-grained, as can be
concluded from the observation that methods falling in
the same group still differ. It is possible, therefore, that
researchers posing different research questions, might
want to include further factors to our classification
framework.

Second, the ‘relevance’ of the papers included in the

GT analysis could be put in question as: (i) the first
author was the only reviewer for cost-based
requirements prioritization papers, and (ii) the second
author was the only reviewer of benefit-based
requirement prioritization papers, thus it was not
assessed whether each author’s tabulation and
application of the selection criteria are correct. Because
of resource constraints, working this way was the only
viable option to us at the time. Some papers, for which
classification turned out to be difficult, were read and
discussed by both authors. We are aware of approaches
by other researchers [12] who do an individual
classification by several researchers and then discuss
the differences in each classification proposal by
tracking rates of inter-researchers’ agreement.
However, this approach demands much time because
all researchers must read all papers.

Moreover, we also considered Glaser’s criteria [6]
for judging the credibility of an emerging theory that
comes out of GT research efforts. Glaser (as well as
other GT authors [5]) put forward three key criteria for
judging the emerging theory: adequacy, fitness (or
relevance) and modifiability. Adequacy is to be
assured by applying the set of techniques and
analytical procedures in the GT, for example, adhering
as closely as possible to the GT principles and
processes, coding the data independently by each
researcher before re-coding them in joint work
discussions (in order to ensure the highest possible
degree of inter-coder reliability), consulting literature
to evaluate similarities and dissimilarities of the
resulting theory to extend literature and to check for
any category, property or property value that might
have been overlooked. We kept to the above GT
principles, and so the main validity concern arises from
the fact that the two authors could not do much joint
re-coding due to their limited resources (as mentioned
earlier in this section).

The relevance of the results to researchers is to be
judged regarding how it fits the situation, that is,
whether it helps individuals familiar with the
phenomenon (in this study, requirement prioritization)
- either as researchers or as ‘lay observers’ - to make
sense of their experience and to manage the situation
better. We plan in our immediate future to demonstrate
the fit of the framework by using it in case studies.

Furthermore, modifiability of an emerging theory is

concerned with the possibility to update it and extend it
in the future. We chose deliberately to keep our
framework open and, in our view, it makes more sense
to invite other researchers to use it and test it, then to
strive for all-inclusive and general results. We believe
that if industrial uptake of requirements prioritization
practices increases, our framework will need some
refinement/extension so that it’s kept useful.

8. Summary and Future Work

The key contribution in this paper is a classification
framework for methods used in the context of early
requirements prioritization based on benefit and cost
estimation. We derived it by applying GT. This effort
was part of an on-going research aimed at increasing
the understanding of how benefit and cost estimates are
used in support of state-of-the-art requirements
prioritization. For the immediate future, our mandate is
to complete the systematic literature review [19] a
summary of which is published in [8] to present how
existing methods support the prioritization activities in
our framework. This will serve the objective to identify
a research agenda on benefit/cost-based requirements
prioritization. We also plan three other steps to
augment and/or refine the agenda: (i) we want to know
which methods have been validated empirically and
how, so that we add to our research agenda items
pertinent to empirical research; (ii) our application of
the GT so far exclusively treated questions concerning
method support. We plan to carry out a transactional
analysis for the RQ (as discussed in [6]) and expect it
to lead to further issues, e.g. concerning the role of the
organization/stakeholders in the prioritization; (iii) we
plan case studies in companies’ sites to demonstrate
the adequacy, the relevancy and the modifiability of
our framework.

9. References

[1] Boehm B.W., R. E. Fairley, “Software Estimation

Perspectives”, IEEE Software, Nov/Dec 2000, pp.22-26.
[2] Chung, L., B.A. Nixon, E. Yu, and J. Mylopoulos, Non-

Functional Requirements in Software Engineering,
Kluwer Acadamic Publishers, 2000.

[3] Davis, A.M. “The Art of Requirements Triage”, IEEE
Computer, vol. 36, no. 3, March 2003, pp. 42-49.

[4] Erdogmus, H., J. Favaro, M. Halling, “Valuation of
Software Initiatives Under Uncertainty: Concepts, Issues,

and Techniques”, Value-Based Software Engineering, S.
Biffl, ed., Springer, Berlin, Germany, 2006, pp. 39-66.

[5] Esteves,J., I. Ramos, J.Carvalho, Use of Grounded
Theory in Information Systems Area: an Exploratory
Analysis, European Conference on Research
Methodology for Business and Management, 2007, pp.
129-136.

[6] Glaser B. G., Basics of grounded theory analysis:
emergence vs forcing, Mill Valley, Ca.: Sociology Press,
1992.

[7] Herrmann, A., M. Daneva, Requirements Prioritization
Based on Benefit and Cost Prediction: A Method
Classification Framework, Technical Report SWEHD-
TR-2008-01, University Heidelberg, Version 1.0, 3
March 2008, http://www-swe.informatik.uni-heidelberg.
de/research/publications/reports.htm.

[8] Herrmann, A., M. Daneva, “Requirements Prioritization
Based on Benefit and Cost Prediction: An Agenda for
Future Research”, Proc. 16th Int’l Conf. Requirements
Eng., 2008, Barcelona, Spain, 08-12th Sept 2008.

[9] Herrmann, A., B. Paech, “Quality Misuse”, Proc.
Workshop on Requirements Engineering for Software
Quality, Foundations of Software Quality Essener
Informatik Berichte, Essen, Germany, 2005, pp. 193-199.

[10] Herrmann A., B. Paech, “Benefit Estimation of
Requirements Based on a Utility Function”, Proc.
Workshop on Requirements Eng. for Software Quality,
Foundations of Software Quality Essener Informatik
Beiträge, Band 11, Essen, Germany, pp. 249-250.

[11] Herrmann, A.,B. Paech, “MOQARE: Misuse-oriented
Quality Requirements Engineering”, RE Journal, vol.
13, no. 1, Jan 2008, pp. 73-86.

[12] Jørgensen, M., M.J. Shepperd, “A Systematic Review of
Software Development Cost Estimation Studies”, IEEE
Trans. Software Eng., vol. 33, no. 1, 2007, pp. 33-53.

[13] Karlsson, J., “Software requirements prioritization”, 2nd
Int’l Conf. Requirements Eng., 1996, pp.110-116.

[14] Karlsson, L., Requirements Prioritisation, SERG
Software Engineering Research Group, Lund University,
Sweden, 2006,
http://serg.telecom.lth.se/research/packages/ReqPrio/
(last updated: 9 Aug 2006, last visit: 21 Jan 2008)

[15] Karlsson, J., C. Wohlin, and B. Regnell, An evaluation
of methods for prioritizing software requirements,
Information & Software Technology, vol. 39, 1998, pp.
939-948.

[16] Karlsson, L., P. Berander, B. Regnell, C. Wohlin,
„Requirements Prioritisation: An Experiment on
Exhaustive Pair-Wise Comparisons versus Planning
Game Partitioning“, Proc. 8th Int’l Conf. on Empirical
Assessment in Software Eng., Edinburgh, pp. 145-154.

[17] Karlsson, J., S. Olsson, K. Ryan, “Improved Practical
Support for Large-scale Requirements Prioritisation”, RE
Journal, vol. 2, no. 1, 1997, pp.51-60.

[18] Karlsson J., K. Ryan, “A Cost-Value Approach for
Prioritizing Requirements”, IEEE Software 14(5) 1997,
pp. 67-74.

[19] Kitchenham, B., Procedures for Performing Systematic
Reviews, JTR, Keely University TR/SE-0401, ISSN:
1353-7776.

[20] Lehtola, L., M. Kauppinen, S. Kujala, “Requirements
Prioritization Challenges in Practice”, Proc. 5th Int’l
Conf. on Product Focused Software Process
Improvement, 2004, pp.497-508.

[21] Leffingwell, D., D. Widrig, Managing Software
Requirements - A Unified Approach, Addison-Wesley,
Reading, Massachusetts, USA, 2000.

[22] Nas, T.F., Cost-Benefit Analysis: Theory and
Application, Thousand Oaks, Sage, USA, 1996.

[23] Pandit, N.R., “The Creation of Theory: a Recent
Application of the Grounded Theory Method”, The
Qualitative Report, 2(4), Dec 1996.

[24] Papadacci,E., C. Salinesi C. Rolland. “Payoff Analysis
in Goal-Oriented Requirements Engineering”, Proc.
Workshop on Requirements Engineering for Foundations
of Software Quality, 2004.

[25] Poort E.R., P.H.N. With, “Resolving Requirement
Conflicts through Non-Functional Decomposition”, Proc.
4th Workshop on Software Architecture, 2004, pp. 145-
154.

[26] Ruhe, G., A. Eberlein, D. Pfahl, “Trade-Off Analysis
For Requirements Selection”, Int’l J of Soft. Eng. and
Knowledge Eng., 13(4), 2003, pp. 345-366.

[27] Ryan K., J. Karlsson, “Prioritizing Software
Requirements in an Industrial Setting”, Int’l Conf.on
Software Eng., 1997, pp. 564-565.

[28] Saaty, T.L., The Analytic Hierarchy Process, McGraw-
Hill, New York, 1980.

[29] Salinesi, C., E. Kornyshova, Choosing a Prioritization
Method - Case of IS Security Improvement, 18th Int’l
Conf. on Advanced Information Systems Engineering
CaiSE 2006, June 5-9, Luxemburg, Forum Proceedings,
pp. 51-55.

[30] Schofield, N., Mathematical Methods in Economics and
Social Choice, Springer, 2002.

[31] Strauss, A.L., and J.M. Corbin, Basics of qualitative
research - grounded theory procedures and techniques,
6th print, Sage, Newbury Park, USA, 1991.

[32] Urquhart, C. “An Encounter with Grounded Theory:
Tackling the Practical and Philosophical Issues”, In: E.
Trauth (ed.), Qualitative Research in Information
Systems: Issues and Trends, Idea Group, 2001, pp. 104-
140.

[33] Wohlin C., A. Aurum, “Criteria for Selecting Software
Requirements to Create Product Value: An Industrial
Empirical Study”, Value-Based Software Engineering, S.
Biffl, ed., Springer, Berlin, 2006

[34] Wiegers, K., “First things first: prioritizing
requirements”, Software Development, 7(9), 1999.

